Electronic Supplementary Information

Asymmetric dual catalysis via fragmentation of a single rhodium precursor

complex

Liangliang Song, Lei Gong and Eric Meggers

Contents

1. General Information	S2
2. Synthesis of the Substrates and Racemic Products	S 3
3. Synthesis of Rhodium Catalyst Δ_{Rh} - S_C - Rh1	S7
4. Asymmetric Michael Addition Catalyzed by Δ_{Rh} -S _C - Rh1	S 9
5. Stereochemical Assignment of the Products	S36
6. Transformation of the Michael Addition Product	S38
7. Chiral HPLC Traces	S43
8. Single Crystal X-Ray Diffraction	S72
9. References	S77
10. ¹ H NMR and ¹³ C NMR Spectra	S78

1. General Information

All reactions were carried out under an atmosphere of argon with magnetic stirring unless stated otherwise. Solvents were distilled under argon from calcium hydride (CH₃CN, CH₂Cl₂) or sodium/benzophenone (THF, toluene). Rhodium complex rac-Rh2 and Δ -Rh2,¹ Wittig reagents **S1a-c**,² glyoxylates **S2a** and **S2c-d**,^{3,4} α , α -disubstituted aldehydes **3b-j**⁵ and α , β -unsaturated acvl imidazole $2b-c^{6,7}$ were prepared according to published procedures. All other reagents were purchased from Acros, Aldrich, Alfa and J&K, and used without further purification. Column chromatography was performed with silica gel (300-400 mesh, Yantai Jiangyou Silica Gel Development Co., Ltd). ¹H and ¹³C NMR spectra were recorded on a Bruker AM (400 MHz) or a Bruker AM (500 MHz) spectrometer at ambient temperature. NMR standards were used as follows: $CDCl_3 = 7.26 \text{ ppm} (^{1}\text{H} \text{ NMR}), 77.0 \text{ ppm} (^{13}\text{C} \text{ NMR})$. IR spectra were recorded on a Nicolet Avatar 330 FT-IR spectrophotometer. Chiral HPLC chromatograms were obtained from an Agilent 1260 Series HPLC system. High-resolution mass spectra were recorded on a Bruker En Apex Ultra 7.0T FT-MS instrument using ESI technique. Optical rotations were measured on an Anton Paar MCP 500 polarimeter at concentrations of 1.0 g/100 mL. Enantioselectivities were determined by chiral HPLC and diastereoselectivities were determined by ¹H NMR.

2. Synthesis of the Substrates and Racemic Products

2.1 Synthesis of \alpha,\beta-Unsaturated Acyl Imidazoles

General Procedure. The α,β -unsaturated acyl imidazole substrates **2a-f** were synthesized following published methods.^{6,7} Accordingly, to a solution of **S1a-c** (5.0 mmol) in CH₂Cl₂ (25 mL) was added corresponding glyoxylate **S2a-d** (6.0 mmol). The reaction was stirred for 12 hours at room temperature. After evaporation of the solvent, the residue was purified by flash chromatography on silica gel (300-400 mesh, *n*-hexane/ethyl acetate = 5:1 to 3:1) to afford **2a-f**.

(E)-tert-butyl 4-oxo-4-(1-phenyl-1H-imidazol-2-yl)but-2-enoate (2a)

Following the general procedure, reaction of Wittig reagent **S1a** (2.23 g, 5.0 mmol) and *tert*-butyl glyoxylate **S2a** (0.781 g, 6.0 mmol) afforded **2a** as a pale yellow solid (1.07 g, 3.59 mmol, yield: 72%).

¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 15.9 Hz, 1H), 7.48 (t, J = 3.2 Hz, 3H), 7.37 (d, J = 0.5 Hz, 1H), 7.34-7.28 (m, 2H), 7.25 (d, J = 0.6 Hz, 1H), 6.78 (d, J = 15.8 Hz, 1H), 1.52 (s, 9H).

S3

¹³C NMR (126 MHz, CDCl₃) δ 178.6, 164.6, 143.2, 138.0, 136.0, 134.0, 130.5, 129.1, 129.0, 128.0,
125.8, 81.7, 28.0.

IR (film) *v*_{max}: 2918, 2850, 1716, 1673, 1631, 1492, 1446, 1404, 1369, 1306, 1149, 1042, 974, 858, 764, 737, 692, 522 cm⁻¹.

HRMS (ESI) calcd for C₁₇H₁₈N₂O₃Na (M+Na)⁺: 321.1210, found: 321.1211.

(E)-ethyl 4-oxo-4-(1-phenyl-1H-imidazol-2-yl)but-2-enoate (2d)

Following the general procedure, reaction of Wittig reagent **S1a** (2.23 g, 5.0 mmol) and ethyl glyoxylate **S2b** (0.613 g, 6.0 mmol) afforded **2d** as a pale yellow solid (1.06 g, 3.92 mmol, yield: 78%).

¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, *J* = 15.9 Hz, 1H), 7.49 (t, *J* = 3.1 Hz, 3H), 7.38 (s, 1H), 7.31 (q, *J* = 2.8 Hz, 2H), 7.27 (s, 1H), 6.85 (d, *J* = 15.8 Hz, 1H), 4.28 (q, *J* = 7.2 Hz, 2H) 1.33 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) *δ* 178.1, 165.4, 143.2, 138.0, 136.9, 131.8, 130.6, 129.1, 129.0, 128.1, 125.8, 61.2, 14.1.

IR (film) *v*_{max}: 2917, 2849, 2283, 1720, 1673, 1492, 1445, 1402, 1299, 1040, 762, 691, 522 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₄N₂O₃Na (M+Na)⁺: 293.0897, found: 293.0899.

(E)-methyl 4-oxo-4-(1-phenyl-1H-imidazol-2-yl)but-2-enoate (2e)

Following the general procedure, reaction of Wittig reagent **S1a** (2.23 g, 5.0 mmol) and methyl glyoxylate **S2c** (0.528 g, 6.0 mmol) afforded **2e** as a pale yellow solid (0.961 g, 3.75 mmol, yield: 75%).

¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 15.9 Hz, 1H), 7.49 (s, 3H), 7.38 (s, 1H), 7.31 (d, J = 3.1 Hz, 2H), 7.27 (s, 1H), 6.85 (d, J = 15.9 Hz, 1H), 3.82 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) *δ* 178.0, 165.8, 143.1, 137.9, 137.2, 131.2, 130.6, 129.1, 129.0, 128.2, 125.8, 52.2.

IR (film) v_{max} : 2918, 2849, 1725, 1699, 1668, 1631, 1557, 1538, 1493, 1444, 1401, 1301, 1213, 1169, 1155, 1088, 1043, 974, 914, 804, 756, 701, 689, 678, 557, 523 cm⁻¹.

HRMS (ESI) calcd for C₁₄H₁₂N₂O₃Na (M+Na)⁺: 279.0740, found: 279.0744.

(E)-isopropyl 4-oxo-4-(1-phenyl-1*H*-imidazol-2-yl)but-2-enoate (2f)

Following the general procedure, reaction of Wittig reagent **S1a** (2.23 g, 5.0 mmol) and isopropyl glyoxylate **S2d** (0.697 g, 6.0 mmol) afforded **2f** as a pale yellow solid (0.995 g, 3.50 mmol, yield: 70%).

¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 15.9 Hz, 1H), 7.49 (t, J = 3.1 Hz, 3H), 7.38 (s, 1H), 7.31

(q, J = 2.7 Hz, 2H), 7.27 (s, 1H), 6.83 (d, J = 15.9 Hz, 1H), 5.22-5.06 (m, 1H), 1.30 (d, J = 6.2 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) *δ* 178.2, 164.9, 143.2, 138.0, 136.6, 132.5, 130.5, 129.1, 129.0, 128.1, 125.8, 68.8, 21.7.

IR (film) *v*_{max}: 2917, 2849, 1716, 1673, 1492, 1445, 1402, 1295, 1042, 762, 691, 522 cm⁻¹. HRMS (ESI) calcd for C₁₆H₁₆N₂O₃Na (M+Na)⁺: 307.1053, found: 307.1050.

2.2 Synthesis of the Racemic Products as HPLC References

General Procedure. To a solution of **2a-f** (0.10 mmol) in anhydrous 1,2-dichloroethane (0.10 mL) was added the racemic rhodium complex *rac*-**Rh2** (1.66 mg, 0.0020 mmol) in a glass vial. After being stirred at room temperature for 30 min, **3a-p** (0.30 mmol) and *N*-methylbenzylamine (0.020 mmol) were added. The reaction mixture was stirred at 20 °C for 12 h. After evaporation of the volatile organic solvent, the residue was purified by flash chromatography on silica gel (300-400 mesh, *n*-hexane/ethyl acetate = 5:1 to 3:1) to afford the racemic products *rac*-**4a-u** as HPLC reference for the determination of enantiomeric excess in the asymmetric reaction.

3. Synthesis of Rhodium Catalyst Δ_{Rh} -S_C-Rh1

Compound Δ_{Rh} -*S*_C-*R*h1.¹ 5-*tert*-butyl-2-phenylbenzo[*d*]oxazole (1.030 g, 4.1 mmol) was added to RhCl₃·3H₂O (418.5 mg, 2.0 mmol) in a mixture of 2-ethoxyethanol and water (3:1, 92.0 mL). The reaction mixture was heated at 120 °C for 24 h under an atmosphere of argon. The resulting precipitate was collected by centrifugation, washed with methanol and dried to obtain the rhodium dimer (779.62 mg, 0.61 mmol, yield: 61%) as a pale yellow solid.

Subsequently, to a solution of NaOMe (40.5 mg, 0.75 mmol) in MeOH (16.0 mL), (*S*)-3-amino-3-phenylpropanoic acid (49.6 mg, 0.30 mmol) was added in one portion. The mixture was stirred for 30 min, to which rhodium dimer (201.3 mg, 0.150 mmol) was added. The mixture was stirred and heated at 50 °C for 12 h to give a clear, yellow solution. The solvent was removed in *vacuo* and the mixture of two diastereoisomers was washed with CH₂Cl₂/Et₂O (1:20, v/v) until the filtrate was almost colorless. The residual insoluble solid was dissolved in CH₂Cl₂. After filtering, the filtrate was dried and collected as Δ_{Rh} -S_C-**Rh1** (92.1 mg, 0.117 mmol, yield: 39%). The total yield in two steps is 24%. The absolute configuration of the rhodium (III) complex was assigned as Δ_{Rh} -S_C by its X-ray crystal structure.

¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 1.4 Hz, 1H), 7.78 (d, J = 6.8 Hz, 1H), 7.72 (d, J = 6.8 Hz,

1H), 7.67 (q, *J* = 5.2 Hz, 2H), 7.60 (dd, *J* = 8.8, 1.7 Hz, 1H), 7.54 (dd, *J* = 8.8, 1.5 Hz, 1H), 7.31 (t, *J* = 7.1 Hz, 2H), 7.27 (s, 1H), 7.17 (q, *J* = 12.2 Hz, 3H), 7.05-6.95 (m, 2H), 6.93-6.84 (m, 2H), 6.65 (d, *J* = 7.7 Hz, 1H), 6.36 (d, *J* = 7.7 Hz, 1H), 4.82 (t, *J* = 12.2 Hz, 1H), 3.63 (d, *J* = 10.9 Hz, 1H), 2.88 (d, *J* = 16.9 Hz, 1H), 2.55 (t, *J* = 12.5 Hz, 1H), 2.42 (q, *J* = 11.3 Hz, 1H), 1.40 (s, 9H), 1.18 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 177.3, 172.4, 171.2, 166.4, 166.2, 164.2, 163.9, 151.5, 150.0, 148.3, 143.8, 138.3, 137.7, 135.0, 133.5, 131.3, 130.6, 129.0, 128.0, 125.8, 125.7, 125.1, 123.8, 123.5, 123.1, 123.0, 115.0, 111.7, 110.7, 110.6, 56.2, 47.3, 35.5, 35.0, 31.7, 31.4.

IR (film) *v*_{max}: 2923, 2852, 1736, 1659, 1589, 1524, 1449, 1428, 1383, 1261, 1088, 1037, 1015, 932, 805, 738, 557 cm⁻¹.

HRMS (ESI) calcd for C₄₃H₄₂N₃O₄RhNa (M+Na)⁺: 790.2123, found: 790.2130.

CD (MeOH): λ, nm (Δε, M⁻¹cm⁻¹) 391 (+46), 338 (-65), 297 (+73), 253 (-37), 230 (+10), 214 (-77), 202 (+7).

Figure S1. CD spectrum of complex Δ_{Rh} -S_C-Rh1 recorded in CH₃OH (0.20 mM)

4. Asymmetric Michael Addition Catalyzed by Δ_{Rh} -S_C-Rh1

4.1 Optimization of the Asymmetric Michael Addition Catalyzed by ARh-Sc-Rh1

General Procedure. To a solution of **2a** (29.8 mg, 0.10 mmol) in the indicated solvent (0.10 mL) were added the catalyst Δ_{Rh} - S_C -**Rh1** (3.84 mg, 0.0050 mmol), the indicated additive and **3a** (0.041 mL, 0.30 mmol) stepwise. The reaction mixture was stirred for the indicated time at the indicated temperature. After evaporation of the solvent, the crude product was used directly for determination of the conversion and diastereomeric ratio by ¹H NMR as well as ee values by chiral HPLC.

Table S1. C	Conditions o	ptimization	of the as	ymmetric	Michael-Stork	addition.
-------------	--------------	-------------	-----------	----------	---------------	-----------

^{*a*}Determined by ¹H NMR spectroscopy. ^{*b*}Determined by HPLC analysis on a chiral stationary phase. DCE = 1,2-dichloroethane, MTBE = *tert*-butyl methyl ether, IPA = isopropanol, TFA = trifluoroacetic acid.

4.2 Control Experiments

General Procedure for Table 1. To a solution of 2a (29.8 mg, 0.10 mmol) in anhydrous 1,2-dichloroethane (0.10 mL) were added the indicated catalyst (0.0050 mmol) and 3a (0.041 mL, 0.30 mmol) stepwise. The reaction mixture was stirred for the indicated time at 0 or 50 °C. After evaporation of the volatile organic solvent, the crude product was used directly for determination of the conversion and diastereomeric ratio by ¹H NMR as well as enantiomeric excess by chiral HPLC.

General Procedure for Table S2. To a solution of 2c (23.6 mg, 0.10 mmol) in anhydrous 1,2-dichloroethane (0.10 mL) were added the catalyst Δ_{Rh} - S_C -Rh1 with different ee values (25, 50, 75, 90 or 95% ee, 0.0050 mmol), trifluoroacetic acid (0.040 mmol) and 3a (0.041 mL, 0.30 mmol) stepwise. The reaction mixture was stirred for the indicated time for 14 h at 0 °C. After evaporation of the volatile organic solvent, the crude product was used directly for determination of the conversion and diastereomeric ratio by ¹H NMR as well as enantiomeric excess by chiral HPLC.

Table S2. The relationship between ee values of Δ_{Rh} - S_C -**Rh1** and ee values of the major diastereomer of **4c**.

Entry	ee values of Δ_{Rh} -S _C - Rh1 (%)	Conv. (%)	ee values of the major diastereomer of $4c$ (%)
1	25	>95	-11
2	50	>95	-16
3	75	>95	-8
4	90	>95	48
5	95	>95	74
6	>99	>95	95

Figure S2. The relationship between ee values of Δ_{Rh} -S_C-Rh1 and ee values of the major diastereomer of 4c.

4.3 Substrate Scope with ARh-Sc-Rh1

Method A. To a solution of 2a-f (0.10 mmol) in anhydrous 1,2-dichloroethane (0.10 mL) were added the catalyst Δ_{Rh} -S_C-Rh1 (3.84 mg, 0.0050 mmol), trifluoroacetic acid (0.040 mmol) and 3a-e or 3g-i (0.30 mmol). The reaction mixture was stirred for 14 h at 0 °C. After evaporation of the

solvent, the residue was purified by flash chromatography on silica gel (300-400 mesh, *n*-hexane/ethyl acetate = 5:1 to 3:1) to afford the product **4a-j** or **4l-n**.

Method B. To a solution of 2a (0.10 mmol) in anhydrous 1,2-dichloroethane (0.10 mL) were added the catalyst Δ_{Rh} - S_C -Rh1 (3.84 mg, 0.0050 mmol), trifluoroacetic acid (0.040 mmol) and 3f or 3j (0.30 mmol). The reaction mixture was stirred for 48 h or 36 h at 20 °C. After evaporation of the solvent, the residue was purified by flash chromatography on silica gel (300-400 mesh, *n*-hexane/ethyl acetate = 5:1 to 3:1) to afford the product 4k or 40.

Method C. To a solution of 2a (0.10 mmol) in anhydrous 1,2-dichloroethane (0.10 mL) were added the catalyst Δ_{Rh} - S_C -Rh1 (3.84 mg, 0.0050 mmol), NH₄PF₆ (0.010 mmol) and 3k-p (0.30 mmol). The reaction mixture was stirred for 10 h at 20 °C. After evaporation of the solvent, the residue was purified by flash chromatography on silica gel (300-400 mesh, *n*-hexane/ethyl acetate = 3:1 to 1:1) to afford the product **4p-u**.

Compound 4a

Following **Method A**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3a** (0.041 mL, 0.30 mmol) afforded **4a** (37.6 mg, 0.0869 mmol, yield: 87%). The diastereomeric ratio was determined as 5.8:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 98.9%/90% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 92:8, flow rate: 0.4 mL/min, 25 °C, $t_r(major) = 25.3 \text{ min}, t_r(major) = 29.3 \text{ min}, t_r(minor) = 31.6 \text{ min}, t_r(minor) = 73.2 \text{ min}). [\alpha]_D^{20} = -127.9^\circ (c \ 1.0, \text{CHCl}_3).$

Analytic data of the major diastereomer:

¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 1H), 7.50-7.46 (m, 3H), 7.40-7.36 (m, 3H), 7.30-7.27 (m, 5H), 7.19 (s, 1H), 4.14 (dd, *J* = 11.4, 1.6 Hz, 1H), 3.87 (q, *J* = 11.2 Hz, 1H), 2.45 (dd, *J* = 17.8, 2.0 Hz, 1H), 1.55 (s, 3H), 1.40 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) *δ* 198.7, 189.0, 171.2, 142.5, 138.2, 137.2, 129.4, 129.2, 128.9, 128.8, 127.6, 127.0, 126.8, 125.8, 82.5, 55.2, 46.3, 35.5, 27.8, 13.7.

IR (film) v_{max} : 2925, 2853, 2720, 1726, 1689, 1597, 1527, 1494, 1447, 1410, 1368, 1344, 1304, 1235, 1154, 1075, 1035, 1002, 968, 931, 914, 884, 844, 764, 697, 554, 523 cm⁻¹.

HRMS (ESI) calcd for $C_{26}H_{28}N_2O_4Na$ (M+Na)⁺: 455.1941, found: 455.1942.

Compound 4b

Following **Method A**, reaction of **2b** (20.8 mg, 0.10 mmol) and **3a** (0.041 mL, 0.30 mmol) afforded **4b** (23.9 mg, 0.0698 mmol, yield: 70%). The diastereomeric ratio was determined as 3.9:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 96%/78% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 90:10, flow rate: 0.8 mL/min, 25 °C,

 $t_r(major) = 24.2 \text{ min}, t_r(major) = 27.6 \text{ min}, t_r(minor) = 33.9 \text{ min}, t_r(minor) = 49.4 \text{ min}). [\alpha]_D^{20} = -86.7^{\circ} (c \ 1.0, CHCl_3).$

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.80 (s, 1H), 7.37 (d, J = 2.8 Hz, 4H), 7.26 (t, J = 3.6 Hz, 1H), 7.10 (s, 1H), 6.99 (s, 1H), 4.25-4.19 (m, 1H), 4.18-4.10 (m, 2H), 3.94 (s, 3H), 3.85-3.75 (m, 1H), 2.62 (dd, J = 18.2, 2.1 Hz, 1H), 1.54 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 198.9, 190.0, 172.2, 142.2, 136.9, 129.2, 128.8, 128.7, 127.7, 127.1,
61.4, 55.1, 45.3, 36.1, 35.7, 14.0, 13.9.

IR (film) *v*_{max}: 2956, 2921, 2850, 1728, 1678, 1646, 1494, 1467, 1446, 1414, 1371, 1351, 1326, 1289, 1258, 1218, 1180, 1157, 1135, 1080, 1030, 995, 915, 930, 915, 867, 767, 701, 522 cm⁻¹.

HRMS (ESI) calcd for C₁₉H₂₂N₂O₄Na (M+Na)⁺: 365.1472, found: 365.1471.

Compound 4c

<u>Reaction with 3 equivalents of 3a:</u> Following **Method A**, reaction of **2c** (23.6 mg, 0.10 mmol) and **3a** (0.041 mL, 0.30 mmol) afforded **4c** (24.4 mg, 0.0659 mmol, yield: 66%). The diastereomeric ratio was determined as 4.0:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 95%/61% (HPLC: AD-H, 254 nm, *n*-hexane/isopropanol =

93:7, flow rate: 0.4 mL/min, 25 °C, $t_r(minor) = 43.0 \text{ min}, t_r(major) = 51.8 \text{ min}, t_r(minor) = 80.7 \text{ min},$ $t_r(major) = 84.6 \text{ min}). [\alpha]_D^{20} = -94.9^\circ (c \ 1.0, \text{CHCl}_3).$

Reaction with 1.2 equivalents of 3a: To a solution of **2c** (23.6 mg, 0.10 mmol) in anhydrous 1,2-dichloroethane (0.10 mL) were added the catalyst Δ_{Rh} -S_C-**Rh1** (3.84 mg, 0.0050 mmol), trifluoroacetic acid (0.040 mmol) and **3a** (0.016 mL, 0.12 mmol). The reaction mixture was stirred for 33 h at 0 °C (Conv. > 95%). After evaporation of the solvent, the residue was purified by flash chromatography on silica gel (300-400 mesh, *n*-hexane/ethyl acetate = 5:1 to 3:1) to afford the product **4c** (21.2 mg, 0.0539 mmol, yield: 54%). The diastereomeric ratio was determined as 4.2:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 94%/44%.

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.80 (s, 1H), 7.40-7.37 (m, 4H), 7.30-7.28 (m, 1H), 7.22 (s, 1H), 7.12 (s, 1H), 5.51-5.47 (m, 1H), 4.25-4.22 (m, 1H), 4.19-4.14 (m, 2H), 3.85-3.80 (m, 1H), 2.64 (dd, J = 18.0, 2.2 Hz, 1H), 1.54 (s, 3H), 1.41 (q, J = 6.3 Hz, 6H), 1.19 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 199.0, 190.2, 172.3, 141.6, 136.9, 129.4, 129.2, 127.7, 127.2, 121.1,
61.3, 55.2, 49.2, 45.4, 36.2, 23.5, 23.5, 14.1, 13.9.

IR (film) v_{max} : 2957, 2922, 2850, 1728, 1676, 1494, 1466, 1397, 1371, 1351, 1255, 1180, 1133, 1087, 1027, 986, 929, 916, 764, 700 cm⁻¹.

HRMS (ESI) calcd for C₂₁H₂₆N₂O₄Na (M+Na)⁺: 393.1785, found: 393.1785.

Compound 4d

Following **Method A**, reaction of **2d** (27.0 mg, 0.10 mmol) and **3a** (0.041 mL, 0.30 mmol) afforded **4d** (31.8 mg, 0.0786 mmol, yield: 79%). The diastereomeric ratio was determined as 3.5:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 98.0%/97% (HPLC: AD-H, 254 nm, *n*-hexane/isopropanol = 90:10, flow rate: 0.8 mL/min, 25 °C, $t_r(major) = 19.7 \text{ min}, t_r(minor) = 21.6 \text{ min}, t_r(major) = 33.8 \text{ min}, t_r(minor) = 39.2 \text{ min}). [\alpha]_D^{20} = -111.7^\circ$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.74 (s, 1H), 7.50-7.45 (m, 3H), 7.40-7.35 (m, 3H), 7.30-7.26 (m, 5H), 7.14 (s, 1H), 4.20-4.10 (m, 3H), 3.87 (q, *J* = 6.7 Hz, 1H), 2.55 (dd, *J* = 18.0, 1.6 Hz, 1H), 1.52 (s, 3H), 1.16 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 198.7, 188.6, 172.1, 142.2, 138.0, 136.8, 129.4, 129.3, 128.9, 128.7, 127.7, 127.6, 127.1, 125.8, 61.4, 55.1, 45.2, 35.6, 14.0, 13.9.

IR (film) *v*_{max}: 2955, 2919, 2850, 2934, 1730, 1687, 1493, 1467, 1409, 1377, 1304, 1039, 967 cm⁻¹. HRMS (ESI) calcd for C₂₄H₂₄N₂O₄Na (M+Na)⁺: 427.1628, found: 427.1628.

Compound 4e

Following **Method A**, reaction of **2e** (25.6 mg, 0.10 mmol) and **3a** (0.041 mL, 0.30 mmol) afforded **4e** (37.3 mg, 0.0955 mmol, yield: 96%). The diastereomeric ratio was determined as 3.8:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 98.0%/95% (HPLC: IC, 254 nm, *n*-hexane/isopropanol = 60:40, flow rate: 0.8 mL/min, 25 °C, $t_r(minor) = 17.5 min, t_r(major) = 21.1 min, t_r(major) = 26.3 min, t_r(minor) = 41.2 min). [\alpha]_D^{20} =$ -133.5° (*c*1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 7.50-7.47 (m, 3H), 7.40-7.37 (m, 3H), 7.30-7.26 (m, 5H), 7.16 (s, 1H), 4.20 (dd, *J* = 11.2, 1.7 Hz, 1H), 3.87 (q, *J* = 11.3 Hz, 1H), 3.65 (s, 3H), 2.63 (dd, *J* = 18.2, 2.0 Hz, 1H), 1.54 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 198.7, 188.5, 172.6, 142.2, 138.0, 136.8, 129.4, 129.3, 129.0, 128.9,
127.8, 127.4, 127.1, 125.8, 55.2, 52.0, 45.2, 35.9, 14.1.

IR (film) *v*_{max}: 2955, 2918, 2850, 1732, 1687, 1494, 1467, 1410, 1377, 1040 cm⁻¹.

HRMS (ESI) calcd for C₂₃H₂₂N₂O₄Na (M+Na)⁺: 413.1472, found: 413.1474.

Compound 4f

Following **Method A**, reaction of **2f** (28.4 mg, 0.10 mmol) and **3a** (0.041 mL, 0.30 mmol) afforded **4f** (35.2 mg, 0.0841 mmol, yield: 84%). The diastereomeric ratio was determined as 3.9:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 98.1%/93% (HPLC: IC, 254 nm, *n*-hexane/isopropanol = 80:20, flow rate: 1 mL/min, 25 °C, $t_r(major) = 18.9 min, t_r(minor) = 22.8 min, t_r(major) = 35.4 min, t_r(minor) = 64.1 min). [\alpha]_D^{20} = -129.3° (c 1.0, CHCl_3).$

Analytic data of the major diastereomer:

¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 7.50-7.46 (m, 3H), 7.40-7.36 (m, 3H), 7.30-7.27 (m, 5H), 7.16 (d, *J* = 1.0 Hz, 1H), 5.02-4.98 (m, 1H), 4.17 (dd, *J* = 11.3, 2.2 Hz, 1H), 3.90 (q, *J* = 11.3 Hz, 1H), 2.54 (dd, *J* = 18.0, 2.3 Hz, 1H), 1.55 (s, 3H), 1.20 (d, *J* = 6.3 Hz, 3H), 1.16 (d, *J* = 6.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 198.7, 188.8, 171.6, 142.4, 138.1, 137.1, 129.4, 129.3, 128.9, 128.8, 128.7, 127.7, 127.1, 125.8, 69.4, 55.2, 45.5, 35.7, 21.6, 21.4, 14.0.

IR (film) v_{max} : 2956, 2924, 2852, 1727, 1689, 1597, 1494, 1447, 1410, 1375, 1341, 1304, 1261, 1224, 1180, 1147, 1107, 1075, 1036, 1002, 968, 931, 914, 871, 767, 698, 522 cm⁻¹.

HRMS (ESI) calcd for C₂₅H₂₆N₂O₄Na (M+Na)⁺: 441.1785, found: 441.1787.

Compound 4g

Following **Method A**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3b** (64.0 mg, 0.30 mmol) afforded **4g** (50.6 mg, 0.0990 mmol, yield: 99%). The diastereomeric ratio was determined as 5.4:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 98.7%/93% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 92:8, flow rate: 0.4 mL/min, 25 °C, $t_r(major) = 21.5 \text{ min}, t_r(major) = 25.8 \text{ min}, t_r(minor) = 35.5 \text{ min}, t_r(minor) = 51.9 \text{ min}). [\alpha]_D^{20} = -136.5^\circ$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.68 (s, 1H), 7.50-7.46 (m, 5H), 7.30-7.24 (m, 5H), 7.16-7.15 (m, 1H), 4.07 (dd, *J* = 11.1, 2.2 Hz, 1H), 3.84 (q, *J* = 11.1 Hz, 1H), 2.42 (dd, *J* = 17.8, 2.3 Hz, 1H), 1.50 (s, 3H), 1.37 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) *δ* 198.2, 188.7, 170.9, 142.3, 138.1, 136.3, 132.3, 129.7, 129.5, 128.9, 128.8, 127.0, 125.8, 122.0, 82.7, 54.9, 46.1, 35.4, 27.8, 13.8.

IR (film) v_{max} : 2922, 2851, 1726, 1688, 1597, 1493, 1448, 1410, 1368, 1344, 1304, 1235, 1153, 1038, 1008, 968, 914, 766, 693, 522 cm⁻¹.

HRMS (ESI) calcd for C₂₆H₂₇BrN₂O₄Na (M+Na)⁺: 533.1046, found: 533.1049.

Compound 4h

Following **Method A**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3c** (57.1 mg, 0.30 mmol) afforded **4h** (45.7 mg, 0.0935 mmol, yield: 94%). The diastereomeric ratio was determined as 2.5:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 97%/95% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 90:10, flow rate: 0.5 mL/min, 25 °C, $t_r(major) = 11.2 \text{ min}, t_r(major) = 12.2 \text{ min}, t_r(minor) = 16.5 \text{ min}, t_r(minor) = 22.5 \text{ min}). [\alpha]_D^{20} = -115.6^\circ$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.69 (s, 1H), 7.46-7.41 (m, 3H), 7.37-7.34 (m, 2H), 7.27-7.20 (m, 5H), 7.14 (s, 1H), 4.12 (d, *J* = 11.5 Hz, 1H), 3.85 (q, *J* = 11.7 Hz, 1H), 2.46 (dd, *J* = 17.7, 1.7 Hz, 1H), 1.50 (s, 3H), 1.38 (s, 9H), 1.27 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) *δ* 198.7, 189.3, 171.4, 150.5, 142.5, 138.2, 133.8, 129.4, 128.9, 128.7, 127.7, 126.7, 126.2, 125.7, 82.4, 54.8, 46.2, 34.4, 31.2, 27.8, 22.6, 13.6.

IR (film) v_{max} : 2962, 2927, 2869, 1726, 1689, 1597, 1505, 1494, 1447, 1410, 1367, 1345, 1304, 1270, 1234, 1155, 1116, 1074, 1036, 1021, 1002, 968, 914, 885, 844, 766, 6932, 579 cm⁻¹.

HRMS (ESI) calcd for C₃₀H₃₆N₂O₄Na (M+Na)⁺: 511.2567, found: 511.2569.

Compound 4i

Following **Method A**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3d** (49.3 mg, 0.30 mmol) afforded **4i** (41.5 mg, 0.0897 mmol, yield: 90%). The diastereomeric ratio was determined as 4.7:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 98.6%/95% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 93:7, flow rate: 0.6 mL/min, 25 °C, $t_r(major) = 23.6 \text{ min}, t_r(major) = 28.3 \text{ min}, t_r(minor) = 30.5 \text{ min}, t_r(minor) = 47.2 \text{ min}). [\alpha]_D^{20} = -166.1^\circ$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.67 (s, 1H), 7.45-7.42 (m, 3H), 7.28-7.23 (m, 5H), 7.14 (s, 1H),
6.89-6.84 (m, 2H), 4.08-4.05 (m, 1H), 3.87-3.80 (m, 1H), 3.76 (s, 3H), 2.46 (dd, J = 17.9, 1.9 Hz,
1H), 1.49 (s, 3H), 1.37 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 198.5, 189.1, 171.3, 158.9, 142.4, 138.1, 129.4, 129.2, 128.9, 128.8, 128.2, 126.8, 125.7, 114.6, 82.4, 55.2, 54.5, 46.2, 35.4, 27.8, 13.8.

IR (film) v_{max} : 2956, 2922, 2850, 1724, 1688, 1608, 1513, 1494, 1447, 1410, 1368, 1344, 1303, 1255, 1186, 1154, 1075, 1033, 1002, 968, 914, 884, 844, 830, 768, 731, 695, 549 cm⁻¹.

HRMS (ESI) calcd for C₂₇H₃₀N₂O₅Na (M+Na)⁺: 485.2047, found: 485.2051.

Compound 4j

Following **Method A**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3e** (44.5 mg, 0.30 mmol) afforded **4j** (39.8 mg, 0.0891 mmol, yield: 89%). The diastereomeric ratio was determined as 5.5:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 98.8%/94% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 93:7, flow rate: 0.6 mL/min, 25 °C, $t_r(major) = 14.0 \text{ min}, t_r(major) = 16.7 \text{ min}, t_r(minor) = 20.9 \text{ min}, t_r(minor) = 30.4 \text{ min}). [\alpha]_D^{20} = -142.9^\circ$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.70 (s, 1H), 7.45-7.41 (m, 3H), 7.28-7.20 (m, 4H), 7.14 (d, *J* = 7.8 Hz, 4H), 4.14-4.08 (m, 1H), 3.83 (q, *J* = 11.5 Hz, 1H), 2.44 (d, *J* = 17.8 Hz, 1H), 2.29 (s, 3H), 1.49 (s, 3H), 1.37 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 198.7, 189.1, 171.3, 142.4, 138.1, 137.4, 134.0, 130.0, 129.3, 128.9, 128.8, 126.9, 126.8, 125.8, 82.4, 54.8, 46.2, 35.5, 27.8, 20.9, 13.7.

IR (film) v_{max} : 2924, 2852, 1725, 1689, 1597, 1494, 1448, 1410, 1368, 1344, 1304, 1235, 1154, 1038, 1002, 968, 914, 845, 813, 767, 722, 694, 522 cm⁻¹.

HRMS (ESI) calcd for C₂₇H₃₀N₂O₄Na (M+Na)⁺: 469.2098, found: 469.2101.

Compound 4k

Following **Method B**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3f** (44.5 mg, 0.30 mmol) afforded **4k** (31.5 mg, 0.0705 mmol, yield: 71%). The diastereomeric ratio was determined as 2.3:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak IB column, ee = 89%/86% (HPLC: IB, 254 nm, *n*-hexane/isopropanol = 92:8, flow rate: 0.4 mL/min, 25 °C, t_r (major) = 19.8 min, t_r (major) = 21.3 min, t_r (minor) = 23.8 min, t_r (minor) = 26.6 min). [α]_D²⁰ = -89.5° (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 10.11 (s, 1H), 7.43-7.40 (m, 5H), 7.33-7.23 (m, 3H), 7.18-7.09 (m, 3H), 4.18 (dd, J = 11.2, 2.1 Hz, 1H), 3.82-3.75 (m, 1H), 2.48 (dd, J = 17.5, 2.2 Hz, 1H), 2.38 (s, 3H), 1.57 (s, 3H), 1.37 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 201.3, 189.1, 171.8, 142.6, 138.2, 137.4, 136.4, 132.8, 129.6, 128.8, 128.7, 128.2, 127.8, 126.8, 126.5, 125.7, 82.0, 55.8, 44.9, 36.7, 27.8, 23.1, 17.5.

IR (film) v_{max} : 2925, 2853, 1722, 1689, 1597, 1493, 1447, 1409, 1368, 1345, 1304, 1256, 1233, 1152, 1037, 1002, 967, 914, 845, 762, 727, 693, 522 cm⁻¹.

HRMS (ESI) calcd for C₂₇H₃₀N₂O₄Na (M+Na)⁺: 469.2098, found: 469.2098.

Compound 41

Following **Method A**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3g** (44.5 mg, 0.30 mmol) afforded **4l** (38.9 mg, 0.0871 mmol, yield: 87%). The diastereomeric ratio was determined as 3.4:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 97.8%/97.6% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 92:8, flow rate: 0.5 mL/min, 25 °C, $t_r(major) = 16.0 \text{ min}, t_r(major) = 18.0 \text{ min}, t_r(minor) = 20.4 \text{ min}, t_r(minor) = 44.7 \text{ min}). [\alpha]_D^{20} = -141.4^\circ$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.73 (s, 1H), 7.45-7.41 (m, 3H), 7.27-7.20 (m, 4H), 7.13 (s, 2H), 7.10-7.04 (m, 2H), 4.11 (d, *J* = 11.1 Hz, 1H), 3.85 (q, *J* = 11.4 Hz, 1H), 2.44 (d, *J* = 17.8 Hz, 1H), 2.31 (s, 3H), 1.50 (s, 3H), 1.38 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) *δ* 198.9, 189.2, 171.3, 142.6, 138.9, 138.2, 137.0, 129.5, 129.0, 128.9, 128.7, 128.3, 127.7, 126.8, 125.7, 124.0, 82.4, 55.0, 46.3, 35.4, 27.8, 21.6, 13.6.

IR (film) v_{max} : 2925, 2853, 1727, 1689, 1598, 1493, 1448, 1410, 1368, 1344, 1304, 1233, 1154, 1075, 1036, 1022, 1002, 968, 930, 914, 844, 765, 694 cm⁻¹.

HRMS (ESI) calcd for C₂₇H₃₀N₂O₄Na (M+Na)⁺: 469.2098, found: 469.2097.

Compound 4m

Following **Method A**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3h** (56.0 mg, 0.30 mmol) afforded **4m** (47.8 mg, 0.0991 mmol, yield: 99%). The diastereomeric ratio was determined as 3.8:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 98.3%/95% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 92:8, flow rate: 0.7 mL/min, 25 °C, $t_r(major) = 16.4 \text{ min}, t_r(major) = 20.8 \text{ min}, t_r(minor) = 24.7 \text{ min}, t_r(minor) = 28.9 \text{ min}). [\alpha]_D^{20} = -169.8^\circ$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.85 (s, 1H), 7.84-7.76 (m, 4H), 7.50-7.46 (m, 3H), 7.44-7.40 (m, 3H), 7.20-7.18 (m, 3H), 7.09 (d, *J* = 0.9 Hz, 1H), 4.26 (dd, *J* = 11.2, 2.3 Hz, 1H), 3.91-3.84 (m, 1H), 2.46 (dd, *J* = 17.9, 2.4 Hz, 1H), 1.65 (s, 3H), 1.40 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 198.7, 188.9, 171.2, 142.3, 138.1, 134.6, 133.4, 132.3, 129.3, 129.0, 128.9, 128.8, 128.1, 127.4, 126.8, 126.7, 126.5, 126.5, 125.7, 124.1, 82.5, 55.2, 46.3, 35.6, 27.8, 13.9.

IR (film) v_{max} : 2924, 2852, 1725, 1689, 1597, 1494, 1448, 1410, 1368, 1344, 1304, 1235, 1154, 1037, 1002, 968, 914, 894, 843, 817, 758, 694, 522, 478 cm⁻¹.

HRMS (ESI) calcd for C₃₀H₃₀N₂O₄Na (M+Na)⁺: 505.2098, found: 505.2100.

Compound 4n

Following **Method A**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3i** (43.0 mg, 0.30 mmol) afforded **4n** (32.3 mg, 0.0737 mmol, yield: 74%). The diastereomeric ratio was determined as 3.7:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 98.9%/98.5% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 92:8, flow rate: 0.5 mL/min, 25 °C, $t_r(major) = 25.3 \text{ min}, t_r(major) = 26.7 \text{ min}, t_r(minor) = 29.3 \text{ min}, t_r(minor) = 42.8 \text{ min}). [\alpha]_D^{20} = -132.8° ($ *c*1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.58 (s, 1H), 7.45-7.43 (m, 3H), 7.29-7.25 (m, 4H), 7.16 (s, 1H), 7.02-6.97 (m, 1H), 6.93 (d, *J* = 3.0 Hz, 1H), 3.98-3.90 (m, 2H), 2.67 (d, *J* = 15.3 Hz, 1H), 1.56 (s, 3H), 1.37 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 195.7, 188.9, 170.4, 142.5, 141.6, 138.1, 129.5, 128.9, 128.8, 127.7, 126.9, 126.3, 125.8, 125.7, 82.7, 54.4, 47.1, 35.5, 27.8, 15.0.

IR (film) *v*_{max}: 2923, 2851, 1728, 1689, 1597, 1494, 1448, 1410, 1368, 1344, 1304, 1236, 1153, 1076, 1036, 1002, 968, 914, 884, 844, 767, 695, 522 cm⁻¹.

HRMS (ESI) calcd for C₂₄H₂₆N₂O₄SNa (M+Na)⁺: 461.1505, found: 461.1507.

Compound 4o

Following **Method B**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3j** (44.5 mg, 0.30 mmol) afforded **4o** (40.8 mg, 0.0915 mmol, yield: 92%). The diastereomeric ratio was determined as 2.0:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak IA column, ee = 96%/85% (HPLC: IA, 254 nm, *n*-hexane/isopropanol = 95:5, flow rate: 0.4 mL/min, 25 °C, t_r(major) = 38.7 min, t_r(major) = 39.6 min, t_r(minor) = 51.7 min, t_r(minor) = 55.7 min). $[\alpha]_D^{20} = -57.0^\circ$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.74 (s, 1H), 7.44-7.38 (m, 4H), 7.29-7.22 (m, 7H), 7.14 (s, 1H), 3.87-3.73 (m, 2H), 3.00 (dd, J = 17.7, 2.0 Hz, 1H), 2.11-1.94 (m, 2H), 1.29 (s, 9H), 0.95 (t, J = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 200.5, 188.9, 171.7, 142.4, 138.1, 137.0, 129.4, 128.9, 128.7, 128.6, 128.1, 127.5, 126.8, 125.8, 81.6, 58.5, 44.7, 37.4, 27.7, 24.6, 9.0.

IR (film) v_{max} : 2964, 2925, 2852, 1723, 1689, 1597, 1494, 1447, 1409, 1368, 1304, 1256, 1231, 1153, 1038, 1002, 966, 914, 886, 846, 762, 701, 522 cm⁻¹.

HRMS (ESI) calcd for C₂₇H₃₀N₂O₄Na (M+Na)⁺: 469.2098, found: 469.2099.

Compound 4p

Following **Method C**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3k** (0.033 mL, 0.30 mmol) afforded **4p** (35.9 mg, 0.0935 mmol, yield: 94%). The diastereomeric ratio was determined as 2.1:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 99.4%/97% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 95:5, flow rate: 0.4 mL/min, 25 °C, $t_r(major) = 28.4 \text{ min}, t_r(minor) = 29.6 \text{ min}, t_r(minor) = 33.7 \text{ min}, t_r(major) = 36.2 \text{ min}). [\alpha]_D^{20} = -59.0^{\circ}$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.58 (s, 1H), 7.44-7.41 (m, 3H), 7.28-7.25 (m, 3H), 7.20 (s, 1H), 3.81 (q, *J* = 11.1 Hz, 1H), 3.41 (dd, *J* = 11.2, 3.0 Hz, 1H), 3.00 (dd, *J* = 17.7, 3.1 Hz, 1H), 1.63-1.54 (m, 2H), 1.33 (s, 9H), 1.03 (s, 3H), 0.81 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 204.0, 189.3, 171.7, 142.7, 138.2, 129.6, 128.9, 128.7, 126.9, 125.7,
82.0, 50.6, 45.5, 35.1, 27.8, 27.7, 14.1, 8.2.

IR (film) *v*_{max}: 2955, 2918, 2850, 1726, 1691, 1494, 1467, 1410, 1367, 1153, 1041, 967, 764, 556 cm⁻¹.

HRMS (ESI) calcd for C₂₂H₂₈N₂O₄Na (M+Na)⁺: 407.1941, found: 407.1943.

Compound 4q

Following **Method C**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3l** (0.037 mL, 0.30 mmol) afforded **4q** (38.3 mg, 0.0961 mmol, yield: 96%). The diastereomeric ratio was determined as 1.8:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 99.3%/98.8% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 94:6, flow rate: 0.5 mL/min, 25 °C, $t_r(major) = 18.0 \text{ min}, t_r(minor) = 19.9 \text{ min}, t_r(minor) = 21.0 \text{ min}, t_r(major) = 22.7 \text{ min}). [\alpha]_D^{20} = -55.1^\circ$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.59 (s, 1H), 7.44-7.43 (m, 3H), 7.29-7.26 (m, 3H), 7.20 (s, 1H), 3.83 (q, *J* = 11.2 Hz, 1H), 3.40 (dd, *J* = 11.2, 2.6 Hz, 1H), 3.00 (dd, *J* = 17.7, 2.7 Hz, 1H), 1.50-1.46 (m, 2H), 1.33 (s, 9H), 1.04 (s, 3H), 0.90-0.84 (m, 5H).

¹³C NMR (126 MHz, CDCl₃) δ 204.1, 189.3, 171.6, 142.7, 138.2, 129.6, 128.9, 128.7, 126.9, 125.7,
82.0, 50.5, 45.6, 37.5, 35.2, 27.7, 17.0, 14.6, 14.6.

IR (film) v_{max} : 2960, 2924, 2851, 1724, 1689, 1597, 1494, 1447, 1410, 1367, 1304, 1250, 1229, 1149, 1039, 967, 914, 846, 765, 692, 522 cm⁻¹.

HRMS (ESI) calcd for C₂₃H₃₀N₂O₄Na (M+Na)⁺: 421.2098, found: 421.2099.

Compound 4r

Following **Method C**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3m** (0.0480 mL, 0.30 mmol) afforded (41.6 mg, 0.0949 mmol, yield: 95%). The diastereomeric ratio was determined as 1.8:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 99.4%/99.3% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 88:12, flow rate: 0.2 mL/min, 25 °C, $t_r(major) = 28.8 \text{ min}, t_r(minor) = 31.8 \text{ min}, t_r(minor) = 32.7 \text{ min}, t_r(major) = 34.9 \text{ min}). [\alpha]_D^{20} = -39.8^\circ$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.60 (s, 1H), 7.44-7.43 (m, 3H), 7.29-7.25 (m, 3H), 7.19 (s, 1H), 5.04-4.95 (m, 1H), 3.82 (q, *J* = 11.1 Hz, 1H), 3.41 (dd, *J* = 11.2, 2.8 Hz, 1H), 3.01 (dd, *J* = 17.7, 2.9 Hz, 1H), 2.01-1.87 (m, 3H), 1.81-1.73 (m, 1H), 1.64 (s, 3H), 1.53 (s, 3H), 1.33 (s, 9H), 1.06 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 203.8, 189.2, 171.5, 142.7, 138.2, 132.5, 129.6, 128.9, 128.7, 126.9, 125.7, 123.2, 82.0, 50.4, 45.7, 35.2, 35.2, 27.7, 25.6, 22.4, 17.6, 14.4.

IR (film) *v*_{max}: 2922, 2851, 1722, 1689, 1645, 1598, 1494, 1447, 1409, 1367, 1344, 1304, 1244, 1150, 1074, 1038, 1021, 1001, 966, 914, 845, 764, 692 cm⁻¹.

HRMS (ESI) calcd for C₂₆H₃₄N₂O₄Na (M+Na)⁺: 461.2411, found: 461.2412.

Compound 4s

Following **Method C**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3n** (0.0650 mL, 0.30 mmol) afforded **4s** (48.9 mg, 0.0973 mmol, yield: 97%). The diastereometric ratio was determined as 2.7:1 by ¹H NMR. Enantiometric excess was established by HPLC analysis using a Chiralpak IC column, ee = 99.2%/23% (HPLC: IC, 254 nm, *n*-hexane/isopropanol = 90:10, flow rate: 1 mL/min, 25 °C, $t_r(major) = 31.2 \text{ min}, t_r(major) = 40.4 \text{ min}, t_r(minor) = 49.2 \text{ min}, t_r(minor) = 85.7 \text{ min}). [\alpha]_D^{20} = -61.3^{\circ}$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.64 (s, 1H), 7.44-7.43 (m, 3H), 7.30-7.25 (m, 5H), 7.20 (s, 1H),
6.97 (d J = 8.0 Hz, 2H), 3.91 (q, J = 11.0 Hz, 1H), 3.46 (dd, J = 11.0, 2.6 Hz, 1H), 3.28-3.22 (m,
1H), 2.94 (d, J = 13.8 Hz, 1H), 2.74 (d, J = 13.7 Hz, 1H), 1.33 (s, 9H), 1.27 (s, 9H), 1.04 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 204.0, 189.0, 171.6, 149.6, 142.7, 138.1, 132.2, 130.2, 130.0, 129.7,
128.9, 126.9, 125.7, 125.2, 82.1, 51.4, 45.6, 40.7, 35.6, 34.3, 31.2, 27.7, 15.1.

IR (film) *v*_{max}: 2962, 2927, 2869, 2720, 1725, 1690, 1598, 1494, 1448, 1410, 1367, 1345, 1305, 1246, 1152, 1110, 1074, 1036, 1021, 1002, 967, 914, 874, 844, 803, 766, 693, 571, 524 cm⁻¹.

HRMS (ESI) calcd for C₃₁H₃₈N₂O₄Na (M+Na)⁺: 525.2724, found: 525.2720.

Compound 4t

Following **Method C**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3o** (52.0 mg, 0.30 mmol) afforded **4t** (46.7 mg, 0.0990 mmol, yield: 99%). The diastereomeric ratio was determined as 4.2:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 98.2%/97% (HPLC: AD-H, 254 nm, *n*-hexane/isopropanol = 93:7, flow rate: 0.8 mL/min, 25 °C, $t_r(minor) = 22.7 \text{ min}, t_r(major) = 27.0 \text{ min}, t_r(major) = 31.6 \text{ min}, t_r(minor) = 58.0 \text{ min}). [\alpha]_D^{20} = -38.3^{\circ}$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.43 (s, 1H), 7.44-7.40 (m, 3H), 7.27 (d, *J* = 1.9 Hz, 1H), 7.25-7.23 (m, 2H), 7.17 (d, *J* = 0.7 Hz, 1H), 5.94 (s, 1H), 3.73-3.67 (m, 1H), 3.35-3.31 (m, 1H), 3.26-3.19 (m, 1H), 1.43 (s, 3H), 1.43 (s, 9H), 1.39 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 198.9, 188.2, 170.7, 154.7, 142.3, 138.1, 129.7, 128.9, 128.7, 127.0,
125.8, 82.5, 61.9, 44.9, 36.7, 28.2, 27.8, 22.6, 14.1.

IR (film) v_{max} : 3390, 2976, 2927, 2854, 1716, 1695, 1598, 1494, 1449, 1411, 1393, 1368, 1305, 1259, 1157, 1057, 1036, 967, 914, 845, 802, 761, 693, 521 cm⁻¹.

HRMS (ESI) calcd for C₂₅H₃₃N₃O₆Na (M+Na)⁺: 494.2262, found: 494.2260.

Compound 4u

Following **Method C**, reaction of **2a** (29.8 mg, 0.10 mmol) and **3p** (52.0 mg, 0.30 mmol) afforded **4u** (30.3 mg, 0.0820 mmol, yield: 82%). Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 99.2% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 90:10, flow rate: 0.7 mL/min, 25 °C, $t_r(minor) = 11.8 min$, $t_r(major) = 13.9 min$). $[\alpha]_D^{20} = -49.5^\circ$ (*c* 1.0, CHCl₃).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.46 (s, 1H), 7.40-7.32 (m, 3H), 7.24-7.16 (m, 3H), 7.12 (s, 1H), 3.73 (q, *J* = 11.1 Hz, 1H), 3.22 (d, *J* =8.8 Hz, 1H), 2.95 (d, *J* = 16.0 Hz, 1H), 1.27 (s, 9H), 1.00 (d, *J* = 3.3 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 203.2, 189.1, 171.5, 142.6, 138.1, 129.6, 128.9, 128.7, 126.9, 125.7,
81.8, 47.3, 45.9, 35.6, 27.7, 20.5, 17.7.

IR (film) *v*_{max}: 2974, 2923, 1725, 1689, 1641, 1597, 1547, 1493, 1447, 1410, 1368, 1305, 1260, 1146, 1086, 1038, 966, 914, 846, 801, 768, 693, 523 cm⁻¹.

HRMS (ESI) calcd for C₂₁H₂₆N₂O₄Na (M+Na)⁺: 393.1785, found: 393.1780.

Additional Substrates with Different β-Substituents on α,β-Unsaturated Acyl Imidazoles

Compound 4v

To a solution of **2g** (17.8 mg, 0.10 mmol) in anhydrous 1,2-dichloroethane (0.10 mL) were added the catalyst Δ_{Rh} - S_C -**Rh1** (3.84 mg, 0.0050 mmol), trifluoroacetic acid (0.040 mmol) and **3a** (0.041 mL, 0.30 mmol). The reaction mixture was stirred for 40 h at 0 °C. After evaporation of the volatile organic solvent, the crude product was used directly for determination of the conversion by ¹H NMR (Conv. < 5%).

Compound 4w

To a solution of **2h** (24.0 mg, 0.10 mmol) in anhydrous 1,2-dichloroethane (0.10 mL) were added the catalyst Δ_{Rh} - S_C -**Rh1** (3.84 mg, 0.0050 mmol), trifluoroacetic acid (0.040 mmol) and **3a** (0.041 mL, 0.30 mmol). The reaction mixture was stirred for 40 h at 0 °C (Conv. < 20%). After evaporation of the solvent, the residue was purified by flash chromatography on silica gel (300-400 mesh, *n*-hexane/ethyl acetate = 5:1 to 3:1) to afford the product **4w** (4.1 mg, 0.011 mmol, yield: 11%). The diastereomeric ratio was determined as 8.3:1 by ¹H NMR. Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 7%/60% (HPLC: OD-H, 254 nm, *n*-hexane/isopropanol = 94:6, flow rate: 0.7 mL/min, 25 °C, $t_r(major) = 13.7 \text{ min}, t_r(minor) = 15.1 \text{ min}, t_r(minor) = 26.5 \text{ min}$).

Analytic data of the major diastereomer:

¹H NMR (500 MHz, CDCl₃) δ 9.75 (s, 1H), 7.22-7.20 (m, 1H), 7.19-7.18 (m, 1H), 7.15-7.13 (m, 1H), 7.12-7.09 (m, 1H), 7.08-7.06 (m, 3H), 6.97-6.94 (m, 3H), 6.85-6.82 (m, 2H), 5.30-5.23 (m, 1H), 4.24-4.21 (m, 1H), 4.04-3.98 (m, 1H), 3.35-3.30 (m, 1H), 1.45 (s, 3H), 1.41 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 202.3, 190.5, 142.4, 139.4, 139.0, 129.5, 129.3, 128.5, 127.6, 127.5, 127.2, 126.4, 121.0, 57.6, 49.0, 46.0, 40.4, 29.7, 23.3, 16.1.

5. Stereochemical Assignment of the Products

The absolute and relative configuration of product 4a (the major diastereomer) was assigned as 2R,3S based on single crystal X-ray diffraction of its ester derivative 6a. Absolute and relative configuration of product 4a' (the minor diastereomer) were assigned as 2R,3R based on single crystal X-ray diffraction of its ester derivative 6a'. See section 6.2 for synthesis of compounds 6a and 6a', and section 8 for crystallographic data of 6a and 6a'.

<u>HPLC peaks were assigned according to comparison of HPLC traces of the products</u> generated from *rac*-Rh2, Δ_{Rh} -S_C-Rh1, and Λ_{Rh} -R_C-Rh1.

Enantiomeric excess of the compound **4a** was determined with a Daicel Chiralpak OD-H column (250 x 4.6 mm) on an Agilent 1260 Series HPLC System using *n*-hexane/isopropanol as mobile phase, the temperature was 25 °C and UV-absorption was measured at 254 nm.

Figure S3. HPLC traces of *rac*-4a/4a', (2*R*,3*S*)-4a generated from Δ_{Rh} -*S*_C-**Rh1**, and (2*S*,3*R*)-4a generated from Λ_{Rh} -*R*_C-**Rh1**.

6. Transformation of the Michael Addition Product

6.1 Transformation to a Chiral γ-Lactone

Compound 5b.^{1,8} A solution of sodium borohydride (19.0 mg, 0.502 mmol) and Na₂CO₃ (88.6 g, 0.836 mmol) in deionized water (0.167 mL) at room temperature was treated with **4b** (143 mg, 0.418 mmol, the major diastereomer of **4b** after flash chromatography, >99% de, 96% ee) in one portion. The resulting mixture was stirred for 1 h, worked up with saturated NH₄Cl solution, and extracted with ether. The extracts were dried (Na₂SO₄) and the solvent was evaporated in *vacuo*. The residue was used for the next reaction without further purification.

Subsequently, to a solution of the residue in CH₃CN (4.2 mL) was added 4 Å MS (210 mg) under argon atmosphere. The suspension was stirred vigorously under a positive pressure of argon for 2 h at room temperature, then MeOTf (0.143 mL, 1.26 mmol) was added and stirred at room temperature for 26 h. After that, methanol (1.04 mL) and DBU (0.094 mL, 0.629 mmol) were added successively at room temperature. After stirring at room temperature for 1 h, the solvent was evaporated and the residue was purified by flash chromatography on silica gel (300-400 mesh, *n*-hexane/ethyl acetate = 6:1 to 3:1) to afford **5b** (39.9 mg, 0.161 mmol, yield: 39%). Enantiomeric excess was established by HPLC analysis using a Chiralpak OJ column, ee = 95% (HPLC: OJ, 220 nm, *n*-hexane/isopropanol = 80:20, flow rate: 1 mL/min, 25 °C, $t_r(major) = 21.7$ min, $t_r(minor) =$ 24.7 min). $[\alpha]_D^{20} = +14.1^\circ$ (*c* 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 7.35-7.30 (m, 2H), 7.44-7.40 (m, 3H), 4.24 (d, *J* = 8.9 Hz, 1H), 4.16 (d, *J* = 8.9 Hz, 1H), 3.58 (q, *J* = 3.4 Hz, 1H), 3.52 (s, 3H), 2.64 (q, *J* = 7.8 Hz, 1H), 2.38 (dd, *J* = 11.1, 5.1 Hz, 1H), 1.38 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 176.8, 171.5, 141.0, 129.0, 127.6, 125.6, 78.2, 52.1, 46.5, 46.3, 29.9,
20.6.

IR (film) *v*_{max}: 2959, 2923, 2852, 1769, 1731, 1462, 1377, 1260, 1095, 1017, 800 cm⁻¹.

HRMS (ESI) calcd for C₁₄H₁₆O₄Na (M+Na)⁺: 271.0941, found: 271.0944.

6.2 Transformation to Ester Derivatives 6a and 6a' for Crystallography Study

General Method. A diastereomeric mixture of **4a** and **4a'** (dr = 5.8:1, ee = 98.9%/90%) afforded in the catalytic asymmetric Michael addition was first separated by a silica gel flash chromatography. The isolated single diastereomer **4a** or **4a'** was converted to their corresponding ester derivatives through *N*-methylation of the imidazole moiety with MeOTf followed by alcoholysis.

Compound 6a. To a solution of **4a** (565.5 mg, 1.306 mmol, the major diastereomer, 98.9% ee) in CH₃CN (13.1 mL) was added 4 Å MS (653 mg) under argon atmosphere. The suspension was

stirred vigorously under a positive pressure of argon for 2 h at room temperature, then MeOTf (0.22 mL, 1.961 mmol) was added and stirred at room temperature for 26 h. Afterwards, 4-bromobenzyl alcohol (1.466 g, 7.84 mmol) and DBU (0.29 mL, 1.961 mmol) were added in turn at room temperature. The mixture was stirred at room temperature for additional 1 h. The solvent was evaporated and the residue was purified by flash chromatography on silica gel (300-400 mesh, *n*-hexane/ethyl acetate = 6:1 to 3:1) to afford **6a** (389.5 mg, 0.821 mmol, yield: 63%). Enantiomeric excess was established by HPLC analysis using a Chiralpak IB column, ee = 82% (HPLC: IB, 220 nm, *n*-hexane/isopropanol = 92:8, flow rate: 0.5 mL/min, 25 °C, t_r(major) = 15.5 min, t_r(minor) = 16.2 min). [α]_D²⁰ = -106.7° (*c* 1.0, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 7.55-7.46 (m, 2H), 7.43-7.39 (m, 2H), 7.37-7.28 (m, 3H), 7.25-7.17 (m, 2H), 5.03 (s, 2H), 3.94 (d, *J* = 10.7 Hz, 1H), 2.69 (q, *J* = 5.3 Hz, 1H), 2.03 (d, *J* = 16.9 Hz, 1H), 1.46 (s, 3H), 1.44 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) *δ* 198.5, 171.9, 170.9, 136.9, 134.7, 131.6, 129.8, 129.3, 127.8, 127.0, 122.2, 82.7, 65.7, 55.1, 47.1, 31.1, 27.8, 13.7.

IR (film) *v*_{max}: 2977, 1730, 1597, 1490, 1446, 1369, 1337, 1260, 1148, 1071, 1014, 886, 843, 802, 763, 700 cm⁻¹.

HRMS (ESI) calcd for C₂₄H₂₇BrO₅Na (M+Na)⁺: 497.0934, found: 497.0939.

Compound 6a'. To a solution of **4a'** (377.5 mg, 0.948 mmol, the minor diastereomer, 90% ee) in CH₃CN (9.5 mL) was added 4 Å MS (474.1 mg) under argon atmosphere. The suspension was stirred vigorously under a positive pressure of argon for 2 h at room temperature, then MeOTf (0.161 mL, 1.422 mmol) was added and stirred at room temperature for 26 h. Afterwards, 4-bromobenzyl alcohol (1.06 g, 5.69 mmol) and DBU (0.213 mL, 1.422 mmol) were added in turn at room temperature. The mixture was stirred at room temperature for additional 1 h. The solvent was evaporated and the residue was purified by flash chromatography on silica gel (300-400 mesh, *n*-hexane/ethyl acetate = 6:1 to 3:1) to afford **6a'** (296.8 mg, 0.626 mmol, yield: 66%). Enantiomeric excess was established by HPLC analysis using a Chiralpak IB column, ee = 82% (HPLC: OD-H, 220 nm, *n*-hexane/isopropanol = 90:10, flow rate: 0.7 mL/min, 25 °C, t_t(minor) = 15.6 min, t_t(major) = 17.2 min). $[\alpha]_D^{20} = -77.2^\circ$ (*c* 1.0, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 9.40 (s, 1H), 7.52-7.48 (m, 2H), 7.43-7.38 (m, 2H), 7.37-7.32 (m, 1H), 7.31-7.28 (m, 2H), 7.25-7.23 (m, 2H), 5.08 (s, 2H), 3.64 (q, *J* = 2.8 Hz, 1H), 2.83 (q, *J* = 11.5 Hz, 1H), 2.56 (q, *J* = 2.9 Hz, 1H), 1.60 (s, 3H), 1.06 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) *δ* 199.0, 171.6, 171.5, 136.7, 134.7, 131.7, 129.9, 128.7, 128.0, 127.9, 122.2, 80.9, 65.7, 54.8, 46.7, 33.4, 27.3, 14.6.

IR (film) v_{max}: 2975, 2925, 2851, 1721, 1598, 1490, 1446, 1408, 1368, 1349, 1260, 1149, 1071,

1013, 844, 802, 759, 740, 699, 546 cm⁻¹.

HRMS (ESI) calcd for $C_{24}H_{27}BrO_5Na$ (M+Na)⁺: 497.0934, found: 497.0929.

7. Chiral HPLC Traces

7.1 Chiral HPLC Traces of the Michael Addition Products

Enantiomeric excess of the compounds **4b-u** and **4w** were determined with a Daicel Chiralpak AD-H, IA, IB, IC or OD-H column (250 x 4.6 mm) on an Agilent 1260 Series HPLC System using n-hexane/isopropanol as mobile phase, the temperature was 25 °C and UV-absorption was measured at 254 nm.

Figure S4. HPLC traces of *rac*-4b/4b' and (2R,3S)-4b.

Figure S5. HPLC traces of *rac*-4c/4c' and (*2R*,*3S*)-4c.

Figure S6. HPLC traces of *rac*-4c/4c' and *nonrac*-4c.

Figure S7. HPLC traces of *rac*-4c/4c' and *nonrac*-4c.

Figure S8. HPLC traces of *rac*-4c/4c' and *nonrac*-4c.

Figure S9. HPLC traces of rac-4c/4c' and nonrac-4c.

Figure S10. HPLC traces of *rac*-4c/4c' and *nonrac*-4c.

Figure S11. HPLC traces of rac-4d/4d' and (2R,3S)-4d.

Figure S12. HPLC traces of *rac***-4e**/**4e**' and (*2R*,*3S*)-**4e**.

Figure S13. HPLC traces of rac-4f/4f' and (2R,3S)-4f.

Figure S14. HPLC traces of *rac*-4g/4g' and (2R,3S)-4g.

Figure S15. HPLC traces of *rac*-4h/4h' and (2R,3S)-4h.

Figure S16. HPLC traces of *rac*-4i/4i' and (2R,3S)-4i.

Figure S17. HPLC traces of *rac*-4j/4j' and (2*R*,3*S*)-4j.

Figure S18. HPLC traces of *rac*-4k/4k' and (2R,3S)-4k.

Figure S19. HPLC traces of rac-4l/4l' and (2R,3S)-4l.

Figure S20. HPLC traces of *rac*-4m/4m' and (2R,3S)-4m.

Figure S21. HPLC traces of *rac*-4n/4n' and (2R,3R)-4n.

Figure S22. HPLC traces of *rac*-40/40' and (2*R*,3*S*)-40.

Figure S23. HPLC traces of *rac*-4p/4p' and (2R,3R)-4p.

Figure S24. HPLC traces of *rac*-4q/4q' and (2R,3R)-4q.

Figure S25. HPLC traces of *rac*-4r/4r' and (2R,3R)-4r.

Figure S26 HPLC traces of *rac*-4s/4s' and (2R,3R)-4s.

Figure S27. HPLC traces of rac-4t/4t' and (2R,3R)-4t.

Figure S28. HPLC traces of *rac*-4u and (*R*)-4u.

#	[min]		[min]	[mAU*s]	[mAU]	oło
·						
1	13.711	BV	0.5596	3635.56543	98.73522	41.5244
2	15.056	VB	0.5997	197.13937	4.91720	2.2517
3	17.406	BB	0.6523	778.00952	18.14328	8.8862
4	26.487	BB	0.8388	4144.54395	75.92959	47.3378

Figure S29. HPLC traces of *rac*-4w/4w' and *nonrac*-4w.

7.2 Chiral HPLC Traces of the Transformation Products

Enantiomeric excess of **5b**, **6a** and **6a**' were determined with a Daicel Chiralpak OJ, IB or OD-H column (250 x 4.6 mm) on an Agilent 1260 Series HPLC System using *n*-hexane/isopropanol as mobile phase, the temperature was 25 °C and UV-absorption was measured at 220 nm.

Figure S30. HPLC traces of *rac*-5b and (*3R*,4*S*)-5b.

Figure S31. HPLC traces of *rac*-**6a**, (*2R*,*3S*)-**6a** (synthesized from product **4a** with 98.9% ee) and (*2R*,*3S*)-**6a** (crystal).

Figure S32. HPLC traces of rac-6a', (2R,3R)-6a' (synthesized from product 4a' with 90% ee) and

(2R,3R)-6a' (crystal).

8. Single Crystal X-Ray Diffraction

8.1 Single Crystal X-Ray Diffraction of Rhodium Catalyst Δ_{Rh} -Sc-Rh1

Crystals of Δ_{Rh} - S_C -**Rh1** was obtained by slow diffusion from a solution of the compound in CH₂Cl₂ layered with Et₂O at room temperature for several days. Data were collected on an Oxford Xcalibur, Sapphire3, Gemini ultra detector employing graphite-monochromated Mo-K α radiation (= 0.71073 Å). The crystal was kept at 173 K during data collection. The structure was solved by SHELXL-97. Refinement was done by full-matrix least squares based on F² data of one twin domain using SHELXL-97. The absolute configuration was determined. The structure is shown in Figure S33. The detailed information is listed in the Table S3. Crystallographic data for Δ_{Rh} - S_C -**Rh1** has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1465210.

Figure S33. Ortep drawing of rhodium catalyst Δ_{Rh} - S_{C} -**Rh1** with 50% probability thermal ellipsoids, the absolute configuration was identified as Δ_{Rh} - S_{C} .
8.2 Single Crystal X-Ray Diffraction of the Converted Product 6a

Crystals of compound **6a** were obtained by recrystallization from a solution of the compound in *n*-hexane. Diffraction data were collected on a Bruker Apex CCD area detector employing graphite-monochromated Mo-K α radiation (= 0.71073 Å). The crystal was kept at 203 K during data collection. The structure was solved by SHELXL-97. Refinement was done by full-matrix least squares based on F² data of one twin domain using SHELXL-97. The absolute configuration was determined. The structure is shown in Figure S34. The detailed information is listed in the Table S3. Crystallographic data for **6a** has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1460793.

Figure S34. Ortep drawing of 6a with 50% probability thermal ellipsoids, the absolute configuration was identified as 2R, 3S.

8.3 Single Crystal X-Ray Diffraction of the Converted Product 6a'

Crystals of compound **6a'** were obtained by recrystallization from a solution of the compound in *n*-hexane. Diffraction data were collected on a Bruker Apex CCD area detector employing graphite-monochromated Mo-K α radiation (= 0.71073 Å). The crystal was kept at 173 K during data collection. The structure was solved by SHELXL-97. Refinement was done by full-matrix least squares based on F² data of one twin domain using SHELXL-97. The absolute configuration was determined. The structure is shown in Figure S35. The detailed information is listed in the Table S3. Crystallographic data for **6a'** has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1472577.

Figure S35. Ortep drawing of 6a' with 50% probability thermal ellipsoids, the absolute configuration was identified as 2R, 3R.

	Δ_{Rh} -S _C - Rh1	ба	6a'
Empirical formula	C43 H44 Br N3 O5 Rh	C24 H27 Br O5	C24 H27 Br O5
Formula weight	785.72	475.37	475.37
Temperature (K)	173(2)	203(2)	173(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Monoclinic	Orthorhombic
Space group	P2(1)2(1)2(1)	P2(1)	P2(1)2(1)2(1)
Cell dimensions			
a, b, c (Å)	12.6831, 13.3648, 25.5629	11.882, 6.1817, 15.840	6.202, 12.159, 30.276
α, β, γ (°)	90, 90, 90	90, 108.485, 90	90, 90, 90
Volume (Å ³)	4333.1 (3)	1103.4(5)	2283.1
Z	4	2	4
Density (calculated, mg/m ³)	1.204	1.431	1.383
Absorption coefficient (mm ⁻¹)	0.437	1.895	1.832
F(000)	1632	492	984
Crystal size (mm ³)	0.19 x 0.17 x 0.16	0.30 x 0.22 x 0.16	0.20 x 0.15 x 0.10
Theta range for data collection	3.05 to 25.99°	1.36 to 26.00°	1.35 to 25.00°
Index ranges	-13<=h<=15, -16<=k<=9, -31<=l<=27	-14<=h<=14, -7<=k<=7, -19<=l<=19	-7<=h<=7, -14<=k<=14, -36<=l<=36
Reflections collected	13357	8155	16429
Independent reflections	8035[R(int) = 0.0445]	4165 [R(int) = 0.0198]	4033 [R(int) =0.0973]

Table S3. Data collection and refinement statistics for the compounds Δ_{Rh} -S_C-Rh1, 6a and 6a'.

Completeness	99.1 %	98.1 %	100.0 %
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Empirical
Refinement method	Full-matrix	Full-matrix	Full-matrix
	least-squares on F ²	least-squares on F ²	least-squares on F ²
Data / restraints / parameters	8035 / 12 / 478	4165 / 1 / 271	4033 / 0 / 271
Goodness-of-fit on F ²	1.001	1.013	1.013
Final R indices [I>2sigma(I)]	R1 = 0.0792, w $R2 = 0.2105$	R1 = 0.0331, w $R2 = 0.0860$	R1 = 0.0601, w $R2 = 0.1068$
R indices (all data)	R1 = 0.0888, wR2 = 0.2191	R1 = 0.0367, wR2 = 0.0871	R1 = 0.0922, wR2 = 0.1140
Absolute structure parameter	0.03(7)	0.031(8)	0.021(13)
Largest diff. peak and hole (e.Å ⁻³)	1.933 and -0.975	0.438 and -0.209	0.612 and -0.349

9. References

1. C. Wang, L.-A. Chen, H. Huo, X. Shen, K. Harms, L. Gong and E. Meggers, *Chem. Sci.*, 2015, **6**, 1094-1100.

- 2. B. M. Trost and T. M. Lam, J. Am. Chem. Soc., 2012, 134, 11319-11321.
- 3. Y. Zhang, Y.C. Dai, G. G. Li and X. Cheng, Synlett, 2014, 25, 2644-2648.
- 4. K. Long, T. A. Edwards and A. J. Wilson, Bioorg. Med. Chem., 2013, 21, 4034-4040.
- 5. M. R. Witten and E. N. Jacobsen, Org. Lett., 2015, 17, 2772-2775.
- 6. H. Ohmiya and M. Yoshida, M. Sawamura, Org. Lett., 2011, 13, 482-485.
- 7. D. A. Evans and K. R. Fandrick, Org. Lett., 2006, 8, 2249-2252.
- 8. S. Chandrasekhar and A. Shrinidhi, Synth. Commun., 2014, 44, 2051-2056.

10. ¹H NMR and ¹³C NMR Spectra

Figure S36. ¹H and ¹³C NMR spectrum for Δ_{Rh} -*S*_C-**Rh1**.

10.2 ¹H NMR and ¹³C NMR Spectra of Substrates and Products

Figure S37. ¹H and ¹³C NMR spectrum for 2a.

Figure S38. ¹H and ¹³C NMR spectrum for 2d.

Figure S39. ¹H and ¹³C NMR spectrum for 2e.

Figure S40. ¹H and ¹³C NMR spectrum for 2f.

Figure S41. ¹H and ¹³C NMR spectrum for 4a.

Figure S42. ¹H and ¹³C NMR spectrum for 4b.

Figure S43. ¹H and ¹³C NMR spectrum for 4c.

Figure S44. ¹H and ¹³C NMR spectrum for 4d.

Figure S45. ¹H and ¹³C NMR spectrum for 4e.

Figure S46. ¹H and ¹³C NMR spectrum for 4f.

Figure S47. ¹H and ¹³C NMR spectrum for 4g.

Figure S48. ¹H and ¹³C NMR spectrum for 4h.

Figure S49. ¹H and ¹³C NMR spectrum for 4i.

Figure S50. ¹H and ¹³C NMR spectrum for 4j.

Figure S51. ¹H and ¹³C NMR spectrum for 4k.

Figure S52. ¹H and ¹³C NMR spectrum for 4l.

Figure S53. ¹H and ¹³C NMR spectrum for 4m.

Figure S54. ¹H and ¹³C NMR spectrum for 4n.

Figure S55. ¹H and ¹³C NMR spectrum for 40.

Figure S56. ¹H and ¹³C NMR spectrum for 4p.

Figure S57. ¹H and ¹³C NMR spectrum for 4q.

Figure S58. ¹H and ¹³C NMR spectrum for 4r.

Figure S59. ¹H and ¹³C NMR spectrum for 4s.

Figure S60. ¹H and ¹³C NMR spectrum for 4t.

Figure S61. ¹H and ¹³C NMR spectrum for 4u.

9.3 ¹H NMR and ¹³C NMR Spectra of the Transformation Product

Figure S62. ¹H and ¹³C NMR spectrum for 5b.

Figure S63. ¹H and ¹³C NMR spectrum for 6a.

Figure S64. ¹H and ¹³C NMR spectrum for 6a'.

Figure S65. ¹H and ¹³C NMR spectrum for 4w.