Diverse Reactivity of Borenium Cations with >N-H Compounds

Marc Devillard,^a Sonia Mallet-Ladeira,^b Ghenwa Bouhadir,^{*a} and Didier Bourissou^{*a}

^a Université de Toulouse, UPS, LHFA, 118 route de Narbonne, 31062 Toulouse, France, and CNRS, LHFA, UMR 5069, 31062 Toulouse, France. Fax: 33 (0)5 61 55 82 04; Tel: 33 (0)5 61 55 68 03; E-mail: bouhadir@chimie.ups-tlse.fr, dbouriss@chimie.ups-tlse.fr
^b Université Paul Sabatier, Institut de Chimie de Toulouse (FR 2599), 118 route de Narbonne, 31062 Toulouse cedex 9, France.

SUPPLEMENTARY INFORMATION

Contents

General experimental considerations	S2
Experimental procedures and analytical data	S 3
NMR spectra	S11
Crystallographic data	S62
Computational Studies	S63
Z-Matrices	S64

General experimental considerations

All reactions and manipulations were carried out under an atmosphere of dry argon using standard Schlenk techniques. All solvents were sparged with argon and dried using an MBRAUN Solvent Purification System (SPS). ¹H, ¹³C, ¹¹B, ¹⁹F and ³¹P NMR spectra were recorded on a Bruker Avance 500 or 300 spectrometers. Chemical shifts are expressed with a positive sign, in parts per million, calibrated to residual ¹H (7.24 ppm) and ¹³C (77.16 ppm) solvent signals, external BF₃.OEt₂, CFCl₃ and 85% H₃PO₄ (0 ppm) respectively. Otherwise stated, NMR spectra were recorded at 293 K. Mass spectra were recorded on a Waters LCT mass spectrometer. Compound **1**,¹ dibromomesitylborane¹ and 1-iodo-8-diisopropylphosphinonaphtalene² was synthetized as previously reported.

¹ M. Devillard, R. Brousses, K. Miqueu, G. Bouhadir, D. Bourissou, *Angew. Chem. Int. Ed.* **2015**, *54*, 5722. ² S. Bontemps, M. Devillard, S. Mallet-Ladeira, G. Bouhadir, K. Miqueu, D. Bourissou, *Inorg. Chem.* **2013**, *52*, 4714.

Experimental procedures and analytical data

[Ph₂P-Naphth-BNPh₂][GaBr₄] 2

Diphenylamine (20.5 mg, 0.121 mmol, 1 eq.) was added to a solution of **1** (100.9 mg, 0.121 mmol) in CD_2Cl_2 (0.5 mL) and the solution was heated for 23 h at 40 °C. The mixture of the expected compound and of C_9H_{12} was fully characterized by NMR. Then, the product was precipitated as a white powder by addition of pentane and the mother liquor was removed via canula. The expected compound was obtained as colorless crystals from a saturated dichloromethane / pentane solution at -20 °C in 52 % yield. Single crystals suitable for X-Ray analysis were obtained from a saturated dichloromethane solution at room temperature. Anal. Calcd. For $C_{34}H_{26}BNPGaBr_4$; C, 46.42; H, 2.98; N, 1.59. Found: C, 46.15; H, 2.81; N, 1.60; m.p.: 239 – 244 °C.

¹H NMR (400 MHz, CD₂Cl₂, 20 °C, δ): 7.09 (m, 3H, 2H_{Ph} and 1H_{Naphth}), 7.17 (m, 2H, H_{Ph}), 2.30- 7.40 (m, 5H, H_{Ph}), 7.48 (m, 2H, H_{Ph}), 7.54-7.64 (m, 8H, 7H_{Ph} and 1H_{Naphth}), 7.78 (m, 2H, H_{Ph}), 7.86 (ddd, 1H, ³J_{HH} = 8.2 Hz, ³J_{HH} = 7.1 Hz, J_{HP} = 3.2 Hz, H_{Naphth}), 7.98 (ddd, 1H, ³J_{HP} = 10.5 Hz, ³J_{HH} = 7.1.Hz, ⁵J_{HH} = 1.1 Hz, H_{Naphth}), 8.24 (ddd, 1H, ³J_{HH} = 8.3.Hz, ⁵J_{HH} = 1.0 Hz, J_{HP} = 1.2 Hz, H_{Naphth}), 8.34 (ddd, 1H, ³J_{HH} = 8.2.Hz, ⁵J_{HH} = 1.1 Hz, J_{HP} = 1.3 Hz, H_{Naphth}).

¹³C {¹H} NMR (101 MHz, CD₂Cl₂, 20 °C, δ): 118.7 (d, 2C, ¹J_{CP} = 72.5 Hz, P-C_{Ph}), 122.4 (d, ¹J_{CP} = 77.5 Hz, P-C_{Naphth}), 126.8 (s, 2C, CH_{NPh2}), 126.9 (s, 2C, CH_{NPh2}), 128.4 (d, J_{CP} = 11.1 Hz, CH_{Naphth}), 128.8 (d, J_{CP} = 2.4 Hz, CH_{Naphth}), 129.2 (s, CH_{NPh2}), 129.4 (s, CH_{NPh2}), 130.4 (s, 2C, CH_{NPh2}), 130.8 (d, 4C, J_{CP} = 12.7 Hz, CH_{PPh2}), 130.9 (s, 2C, CH_{NPh2}), 132.3 (d, J_{CP} = 4.2 Hz, CH_{Naphth}), 132.9 (d, J_{CP} = 9.1 Hz, C_{quat. Naphth}), 133.5 (d, 4C, J_{CP} = 11.2 Hz, CH_{PPh2}), 133.7 (d, J_{CP} = 1.5 Hz, CH_{Naphth}), 134.3 (d, J_{CP} = 2.7 Hz, CH_{Naphth}), 135.0 (d, 2C, J_{CP} = 3.2 Hz, CH_{PPh2}), 135.4 (d, J_{CP} = 10.4 Hz, CH_{Naphth}), 145.6 (d, J_{CP} = 10.5 Hz, N-C), 145.6 (d, J_{CP} = 10.5 Hz, N-C), 146.9 (d, J_{CP} = 5.1 Hz, N-C), 148.2 (d, J_{CP} = 21.3 Hz, C_{quat. Naphth}) the quaternary carbon in alpha position of boron is not observed.

¹¹B {¹H} NMR (96 MHz, CD₂Cl₂, 20 °C, δ) = 42.2.

³¹P {¹H} NMR (162 MHz, CD₂Cl₂, 20 °C, δ): -9.0.

Ph₂P-Naphth-B(Mes)(NH₂) 3

An NMR tube containing a solution of **1** (**X** = **NTf**₂) (124.6 mg, 0.173 mmol) in dichloromethane (0.5 mL) was layered with ammonia (1 atm) at room temperature leading to a colorless solution. After a few minutes at room temperature, colorless crystals appeared. The X-Ray analysis of the crystals revealed the formation of the ammonia N-H bond activation product **3**. The ³¹P NMR of the mother liquor revealed the formation of **3** as the only phosphorus-containing product. The ¹H NMR analysis of the mother liquor showed the presence of $[NH_4][NTf_2]$ and ammonia in mixture with **3** (in situ complete NMR characterization of **3** was performed at this stage). Removing the ammonia pressure leads to the quantitative formation of $[Ph_2P-Naphth-B(Mes)(NH_3)][NTf_2]$ **4**.

¹H NMR (500 MHz, CD₂Cl₂, 20 °C, δ): 2.09 (s, 6H, CH_{30-Mes}), 2.17 (s, 3H, CH_{3p-Mes}), 6.63 (s, 2H, CH_{Mes}), 6.96 (dd, 4H, J_{HP} = 6.9 Hz, ⁴J_{HH} = 6.7 Hz, H_{o-Ph}), 7.13 – 7.25 (m, 6H, H_{m-Ph} and H_{p-Ph}), 7.33 (m, 1H, H_{Naphth}), 7.37 (m, 1H, H_{Naphth}), 7.45 (m, 1H, H_{Naphth}), 7.70 (d, 1H, ³J_{HH} = 6.7 Hz, H_{Naphth}), 7.83 (d, 1H, ³J_{HH} = 8.01 Hz, H_{Naphth}), 7.89 (d, 1H, ³J_{HH} = 7.8 Hz, H_{Naphth}). Due to fast exchange, amido protons couldn't be observed.

¹³C {¹H} NMR (126 MHz, CD₂Cl₂, 20 °C, δ): 21.0 (s, CH_{3p-Mes}), 24.3 (d, 2C, $J_{CP} = 7.2$ Hz, CH_{3p-Mes}), 125.5 (s br., CH_{Naphth}), 126.2 (s, CH_{Naphth}), 128.4 (s, 2C, CH_{p-Ph}), 128.5 (d, 4C, $J_{CP} = 6.4$ Hz, CH_{m-Ph}), 129.2 (s, 2C, CH_{Mes}), 129.3 (d, $J_{CP} = 3.1$ Hz, CH_{Naphth}), 131.0 (s br., CH_{Naphth}), 133.1 (d, 4C, $J_{CP} = 17.5$ Hz, CH_{o-Ph}), 133.8 (d, $J_{CP} = 3.2$ Hz, CH_{Naphth}), 134.3 (d, $J_{CP} = 7.0$ Hz, C_{quat.Naphth}), 135.6 (d, $J_{CP} = 7.7$ Hz, C_{quat.Naphth}), 135.7 (d, $J_{CP} = 2.8$ Hz, CH_{Naphth}), 137.7 (d, $J_{CP} = 1.6$ Hz, C_{p-Mes}), 138.1 (d, 2C, ¹ $J_{CP} = 11.2$ Hz, P-C_{Ph}), 141.0 (d, ¹ $J_{CP} = 32.6$ Hz, P-C_{Naphth}), 142.4 (d, 2C, $J_{CP} = 2.9$ Hz, C_{o-Mes}), 146.4 (br., B-C_{Naphth}). The quaternary carbon connected to boron in ipso position of the mesityl group was not observed).

¹¹B {¹H} NMR (96 MHz, CD_2Cl_2 , 20 °C, δ) = 40.4.

³¹P {¹H} NMR (203 MHz, CD₂Cl₂, 20 °C, δ): -12.6.

[Ph₂P-Naphth-B(Mes)(NH₃)][NTf₂] 4

Protocol A

A solution of **1** (27.7 mg, $3.84.10^{-2}$ mmol) in dichloromethane (0.4 mL) was treated with a solution of ammonia in dichloromethane ($4.25.10^{-2}$ mmol, 0.25 mL, 0.17 M, 1.1 eq.) at room temperature. After 5 minutes at room temperature, the slight excess of ammonia was removed by a few vacuum / argon cycles. The ammonia adduct **4** was the only product that could be detected by multinuclear NMR.

Protocol B

A solution of **1** (124.6 mg, 0.173 mmol) in dichloromethane (0.5 mL) was treated with 1 atmosphere of ammonia at room temperature leading to the crystallization of **3** after a few minutes. After solubilization of the crystals by addition of DCM, the reaction mixture was filtered under an argon atmosphere (leading to the immediate transformation of **3** to **4**) and layered with pentane at room temperature giving the ammonia-adduct **4** as colorless crystals in 48% yield. Single crystals suitable for X-Ray diffraction analysis were obtained by slow diffusion of pentane into a dichloromethane solution of **4** at room temperature. m.p.; 139 - 145 °C.

¹H NMR (500 MHz, CD₂Cl₂, 20 °C, δ): 1.13 (s, 3H, CH_{3Mes}), 2.24 (d, 3H, J_{HP} = 1.9 Hz, CH_{3Mes}), 2.41 (s, 3H, CH_{3Mes}), 4.93 (s br., 3H, H_{NH3}), 6.63 (s, 1H, CH_{Mes}), 6.89 (s, 1H, CH_{Mes}), 7.21 (m, 2H, H_{Ph}), 7.30 (m, 2H, H_{Ph}), 7.35 (m, 2H, H_{Ph}), 7.53 (m, 1H, H_{Ph}), 7.58 (m, 2H, H_{Ph}), 7.67 (m, 1H, H_{Ph}), 7.71 – 7.77 (m, 2H, H_{Naphth}), 7.77 – 7.85 (m, 2H, H_{Naphth}), 8.03 (ddd, 1H, ³J_{HH} = 7.5.Hz, ⁴J_{HH} = 1.8 Hz, J_{HP} = 1.5 Hz, H_{Naphth}), 8.29 (ddd, 1H, ³J_{HH} = 7.8.Hz, ⁴J_{HH} = 1.4 Hz, J_{HP} = 1.7 Hz, H_{Naphth}).

¹³C {¹H} NMR (126 MHz, CD₂Cl₂, 20 °C, δ): 20.9 (s br., CH_{3Mes}), 25.7 (s, CH_{3Mes}), 25.8 (s, CH_{3Mes}), 120.0 (d, 2C, ¹J_{CF} = 321.8 Hz, CF₃), 121.8 (d, ¹J_{CP} = 63.1 Hz, P-C_{Ph}), 122.5 (d, ¹J_{CP} = 50.9 Hz, P-C_{Ph}), 125.7 (d, ¹J_{CP} = 68.0 Hz, P-C_{Naphth}), 127.4 (d, J_{CP} = 1.7 Hz, CH_{arom}), 127.6 (d, J_{CP} = 9.4 Hz, CH_{arom}), 129.5 (d, J_{CP} = 2.0 Hz, CH_{arom}), 129.6 (d, 2C, J_{CP} = 11.1 Hz, CH_{Ph}), 130.8 (d, J_{CP} = 2.3 Hz, CH_{Mes}), 131.1 (d, 2C, J_{CP} = 10.9 Hz, CH_{Ph}), 131.2 (s br., CH_{Mes}), 131.6 (d, J_{CP} = 13.8 Hz, CH_{arom}), 131.9 (d, J_{CP} = 1.5 Hz, CH_{arom}), 132.7 (d, 2C, J_{CP} = 10.0 Hz, CH_{Ph}), 133.2 (d, J_{CP} = 2.9 Hz, CH_{arom}), 133.3 (d, J_{CP} = 10.3 Hz, C_{quat.Naphth}), 133.5 (d, 2C, J_{CP} = 8.5 Hz, CH_{Ph}), 133.6 (d, J_{CP} = 3.0 Hz, CH_{arom}), 143.7 (d, J_{CP} = 29.5 Hz, C_{quat.Naphth}), 144.0 (d, J_{CP} = 5.9 Hz, C_{quat.Mes}), 147.7 (br., B-C_{Naphth}). one quaternary carbon in alpha position of boron is not observed.

¹¹B {¹H} NMR (96 MHz, CD₂Cl₂, 20 °C, δ) = -2.1.

³¹P {¹H} NMR (203 MHz, CD₂Cl₂, 20 °C, δ): 3.9.

[Ph₂P-Naphth-B(OPEt₃)₂][(NTf₂)₂] 6

<u>Preparation of 5:</u> Acid bis(trifluoromethanesulfonyl)imidic (51.2 mg, 0.182 mmol, 0.95 eq.) was added on a solution of $1 (X = NTf_2)$ (138.5 mg, 0.192 mmol) in dichloromethane (1.5 mL) at room temperature and the resulting yellow solution was heated at 70 °C for 2 days. Then the solution was concentrated and the colorless oil thus obtained was washed with pentane (3 times 1 mL). After removal of the volatiles under vaccum, the expected compound was obtained as a colorless oil with a yield of 56 %.

¹H NMR (500 MHz, CD₂Cl₂, 20 °C, δ): 7.46 - 7.54 (m, 2H, H_{arom.}), 7.56 - 7.62 (m, 2H, H_{arom.}), 7.62 - 7.68 (m, 2H, H_{arom.}), 7.68 - 7.79 (m, 3H, H_{arom.}), 7.79 - 7.86 (m, 1H, H_{arom.}), 7.86 - 7.93 (m, 2H, H_{arom.}), 7.94 - 7.99 (m, 1H, H_{arom.}), 8.17 - 8.25 (m, 2H, H_{arom.}), 8.34 (m, 1H, H_{arom.}).

 ${}^{31}P{}^{1}H} NMR (202 MHz, CD_2Cl_2, 20 °C, \delta): -3.3.$

¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 20 °C, δ): = 9.3.

<u>Preparation of 6</u>: Triethylphosphine oxide (36.3 mg, 0.271 mmol, 2.5 eq.) was added to a solution of **5** (95.6 mg, 0.108 mmol) in dichloromethane (2 mL) at room temperature under stirring. The product was precipitated as a colorless oil from the reaction mixture by adding pentane and the mother liquor was removed via syringe. The oil was dried under vacuum giving the expected compound in 86 % yield. HRMS (ESI): exact mass (monoisotopic) calcd for $[C_{34}H_{46}BO_2P_3]^{2+}$, $[M^{2+}/2]$, 294.6420; found, 294.6424.

¹H NMR (500 MHz, C₂DCl₂, 20 °C, δ): 0.87 (dt, 18H, ³J_{HP} = 19.5 Hz, ³J_{HH} = 7.7 Hz, CH₃), 1.79 (m, 12H, CH₂), 7.63 – 7.71 (m, 8H, H_{Ph}), 7.73 - 7.79 (m, 2H, H_{Ph}), 7.90 – 8.00 (m, 3H, H_{Naphth}), 8.17 – 8.27 (m, 2H, H_{Naphth}), 8.42 (d br., 1H, ³J_{HH} = 8.4 Hz, H_{Naphth}).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 20 °C, δ): 15.3 (d, 6C, ²J_{CP} = 4.8 Hz CH₃), 17.8 (d, 6C, ¹J_{CP} = 62.2 Hz CH₂), 120.4 (q, 4C, ¹J_{CF} = 321.9 Hz, CF₃), 120.9 (d, 2C, ¹J_{CP} = 69.2 Hz, P-C_{Ph}), 121.0 (d, ¹J_{CP} = 59.1 Hz, P-C_{Naphth}), 128.6 (d, J_{CP} = 9.3 Hz, CH_{Naphth}), 129.4 (d, J_{CP} = 3.0 Hz, CH_{Naphth}), 130.6 (d, J_{CP} = 1.6 Hz, CH_{Naphth}), 130.8 (d, J_{CP} = 11.8 Hz, CH_{Naphth}), 130.9 (d, 4C, J_{CP} = 11.2 Hz, CH_{Ph}), 133.3 (d, 4C, J_{CP} = 9.5 Hz, CH_{Ph}), 133.4 (d, J_{CP} = 8.7 Hz, C_{quat.}), 134.2 (s, J_{CP} = 11.5 Hz, CH_{Naphth}), 134.4 (d, 2C, ⁴J_{CP} = 2.8 Hz, CH_{p-Ph}), 134.8 (d, J_{CP} = 2.6 Hz, CH_{Naphth}), 138.5 (br., B-C), 144.1 (d, J_{CP} = 24.3 Hz, C_{quat.}).

³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 20 °C, δ): -8.7 (br., Ph₂P), 90.8 (d, ³J_{PP} = 14.5 Hz, OPEt₃).

¹¹B{¹H} NMR (96 MHz, CD₂Cl₂, 20 °C, δ): = 8.6.

¹⁹F{¹H} NMR (283 MHz, CD₂Cl₂, 20 °C, δ): -78.9.

Phosphino-bromoborane 7-Br

A *n*-BuLi solution (1.6 M in hexanes, 2.32 mL, 3.73 mmol) was added dropwise to a 1-iodo-8diisopropylphosphinonaphtalene solution (1.38 g, 3.73 mmol) in diethylether (10 mL) at -50 °C. After stirring 1 h at this temperature, the solution was filtered off and the resulting yellow solid was dissolved in 10 mL of toluene. The solution was then cooled down to -78 °C and dibromomesitylborane (1.13 g, 3.91 mmol) in solution in toluene (10 mL) was added dropwise at the same temperature. The reaction mixture was allowed to warm to room temperature overnight. The resulting mixture was then filtered over celite and the volatiles were removed under vacuum. The residue was dissolved in dichloromethane and colorless crystals of the expected compound were obtained at -20 °C in 56% yield. HRMS (Cl, CH₄): exact mass (monoisotopic) calcd for $[C_{25}H_{32}BPBr]^+$, $[M-H]^+$, 451.1362; found, 451.1355; m.p.: 184.5 – 197.6 °C.

¹H NMR (500 MHz, CDCl₃, 20 °C, δ): 0.82 (dd, 3H, ³*J*_{HP} = 16.2 Hz, ³*J*_{HH} = 7.0 Hz, CH_{3*i*Pr}), 1.14 (dd, 3H, ³*J*_{HP} = 13.7 Hz, ³*J*_{HH} = 7.2 Hz, CH_{3*i*Pr}), 1.20 (dd, 3H, ³*J*_{HP} = 14.4 Hz, ³*J*_{HH} = 7.0 Hz, CH_{3*i*Pr}), 1.23 (s, 3H, CH_{3*p*-Mes}), 1.45 (dd, 3H, ³*J*_{HP} = 15.8 Hz, ³*J*_{HH} = 7.1 Hz, CH_{3*i*Pr}), 2.21 (s, 3H, CH_{3*o*-Mes}), 2.53 (m, 1H, CH_{*i*Pr}), 2.80 (m, 1H, CH_{*i*Pr}), 2.83 (s, 3H, CH_{3*o*-Mes}), 6.52 (s, 1H, H_{m-Mes}), 6.91 (s, 1H, H_{m-Mes}), 7.54 (m, 1H, H_{Naphth}), 7.62 (m, 1H, H_{Naphth}), 7.66 (dd, 1H, *J*_{PH} = 7.8 Hz, ³*J*_{HH} = 6.7 Hz, H_{Naphth}), 7.75 (d, 1H, ³*J*_{HH} = 8.1 Hz, H_{Naphth}), 8.03 (d, 1H, ³*J*_{HH} = 8.1 Hz, H_{Naphth}), 8.06 (d, 1H, ³*J*_{HH} = 7.9 Hz, H_{Naphth}).

¹³C{¹H} NMR (126 MHz, CDCl₃, 20 °C, δ): 17.7 (d, ²*J*_{CP} = 2.6 Hz, CH_{3*i*Pr}), 17.7 (s, CH_{3*i*Pr}), 18.2 (d, ²*J*_{CP} = 4.2 Hz, CH_{3*i*Pr}), 18.4 (s, CH_{3*i*Pr}), 20.8 (s, CH_{3*o*-Mes}), 22.8 (d, ¹*J*_{CP} = 27.9 Hz, CH_{*i*Pr}), 26.4 (d, ¹*J*_{CP} = 25.3 Hz, CH_{*i*Pr}), 26.9 (s, CH_{3*p*-Mes}), 28.5 (s, CH_{3*o*-Mes}), 124.8 (d, *J*_{CP} = 1.2 Hz, CH_{Naphth}), 125.3 (d, *J*_{CP} = 7.8 Hz, CH_{Naphth}), 126.9 (d, ¹*J*_{CP} = 54.6 Hz, P-C_{Naphth}), 127.8 (s, CH_{Naphth}), 128.5 (d, *J*_{CP} = 2.0 Hz, CH_{Naphth}), 130.1 (s, CH_{*m*-Mes}), 130.2 (s, CH_{*m*-Mes}), 131.4 (d, *J*_{CP} = 2.3 Hz, CH_{Naphth}), 132.3 (d, *J*_{CP} = 8.7 Hz, C_{quat}.), 134.2 (d, *J*_{CP} = 13.2 Hz, CH_{Naphth}), 136.4 (d, *J*_{CP} = 2.8 Hz, C_{quat}.), 136.7 (br., C_{quat}.), 141.7 (d, *J*_{CP} = 8.0 Hz, C_{quat}.), 142.8 (d, *J*_{CP} = 24.8 Hz, C_{quat}.), 144.1 (s, C_{quat}.), 155.2 (br., C_{quat}.).

¹¹B{¹H} NMR (160 MHz, CDCl₃, 20 °C, δ): -1.5.

³¹P{¹H} NMR (203 MHz, CDCl₃,20 °C, δ): 14.1.

[*i*Pr₂P-Naphth-BMes][NTf₂] 7 (X = NTf₂)

Dichloromethane (2mL) was added at -78 °C on a neat mixture of **7-Br** (78.8 mg, 0.17 mmol) and silver bis(trifluoromethanesulfonyl)imide (67.5 mg, 0.17 mmol, 1 eq.) giving a bright yellow solution and a white precipitate. The reaction mixture was then allowed to warm up to room temperature. The solution was then filtered and the silver salt was washed with dichloromethane (0.5 mL). The volatiles were removed under reduced pressure at room temperature giving **7 (X = NTf₂)** as a yellow oil with a yield of 78 %. HRMS (CI, CH₄): exact mass (monoisotopic) calcd for $[C_{25}H_{31}BP^+]$, $[M]^+$, 372.2293; found, 372.2285, exact mass (monoisotopic) calcd for $[C_2NO_4S_2F_6^-]$, 279.9173; found 279.9186.

¹H NMR (500 MHz, CD₂Cl₂, 20 °C, δ): 1.17 (dd, 6H, ³J_{HP} = 18.7 Hz, ³J_{HH} = 7.0 Hz, CH_{3iPr}), 1.37 (dd, 6H, ³J_{HP} = 17.8 Hz, ³J_{HH} = 7.0 Hz, CH_{3iPr}), 2.22 (s, 6H, CH_{3o-Mes}), 2.40 (s, 3H, CH_{3p-Mes}), 3.13 (dsept, 2H, ³J_{HP} = 10.0 Hz, ³J_{HH} = 7.0 Hz, CH_{iPr}), 7.06 (s, 2H, H_{m-Mes}), 7.95 (ddd, 1H, J_{HP} = 0.7 Hz, ³J_{HH} = 8.1 Hz, ³J_{HH} = 7.1 Hz, H_{Naphth}), 7.99 (ddd, 1H, J_{HP} = 3.2 Hz, ³J_{HH} = 8.3 Hz, ³J_{HH} = 7.1 Hz, H_{Naphth}), 8.23 (ddd, 1H, J_{HP} = 8.0 Hz, ³J_{HH} = 7.1 Hz, ⁴J_{HH} = 0.9 Hz, H_{Naphth}), 8.31 (dd, 1H, ³J_{HH} = 7.1 Hz, ⁴J_{HH} = 1.0 Hz, H_{Naphth}), 8.43 (ddd, 1H, J_{HP} = 1.0 Hz, ³J_{HH} = 8.3 Hz, ⁴J_{HH} = 0.9 Hz, H_{Naphth}), 8.57 (ddd, 1H, J_{HP} = 1.1 Hz, ³J_{HH} = 8.1 Hz, ⁴J_{HH} = 1.0 Hz, H_{Naphth}).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 20 °C, δ): 17.2 (s, 2C, CH_{3*i*Pr}), 17.4 (d, 2C, J_{CP} = 3.1 Hz, CH_{3*i*Pr}), 21.5 (s, CH_{3*p*-Mes}), 23.7 (d, 2C, J_{CP} = 31.3 Hz, CH_{*i*Pr}), 24.6 (s, 2C, CH_{3*o*-Mes}), 119.1 (d, ¹ J_{CP} = 66.0 Hz, P-C_{Naphth}), 120.3 (q, 2C, ¹ J_{CF} = , CF₃), 128.7 (d, J_{CP} = 9.6 Hz, CH_{Naphth}), 129.2 (d, J_{CP} = 2.4 Hz, CH_{Naphth}), 129.7 (s, 2C, CH_{*m*-Mes}), 132.6 (d, J_{CP} = 2.9 Hz, CH_{Naphth}), 133.0 (d, J_{CP} = 8.6 Hz, C_{quat.Naphth}), 133.4 (br. s, B-C_{Mes}), 133.9 (d, J_{CP} = 2.6 Hz, CH_{Naphth}), 139.8 (s, CH_{Naphth}), 140.3 (d, 2C, J_{CP} = 3.5 Hz, C_{*o*-Mes}), 140.5 (d, J_{CP} = 11.6 Hz, CH_{Naphth}), 141.9 (br. s, B-C_{Naphth}), 143.8 (d, ⁵ J_{CP} = 1.6 Hz, C_{*p*-Mes}), 149.6 (d, J_{CP} = 19.4 Hz, C_{quat.Naphth}).

¹¹B{¹H} NMR (96 MHz, CD₂Cl₂, 20 °C, δ): 75.4.

³¹P{¹H} (202 MHz, CD₂Cl₂, 20 °C, δ): 19.3.

¹⁹F{¹H} NMR (282 MHz, CDCl₃, 20 °C, δ): -78.8.

[*i*Pr₂P-Naphth-BMes][GaBr₄] 7 (X = GaBr₄)

Toluene (1 mL) was added on a neat mixture of **7-Br** (20 mg, $4.4.10^{-2}$ mmol) and gallium tribromide (13.7 mg, $4.4.10^{-2}$ mmol, 1 eq.) at room temperature leading to the precipitation of a bright yellow oil. After 10 minutes of stirring at the same temperature, the mother liquor was removed via seringe and the oil was dried under vaccum giving the expected compound as a yellow solid with a yield of 39 %. Crystals suitable for X-Rays diffraction analysis were grown from a saturated solution in dichloromethane at -20 °C. HRMS (ESI): exact mass (monoisotopic) calcd for $[C_{25}H_{31}BP]^+$, $[M]^+$, 372.2293; found, 372.2290, exact mass (monoisotopic) calcd for $[GaBr_4]^-$, 384.5989; found 384.5981.

¹H NMR (500 MHz, CD₂Cl₂, 20 °C, δ): 1.19 (dd, 6H, ³J_{HP} = 18.6 Hz, ³J_{HH} = 7.0 Hz, CH_{3iPr}), 1.40 (dd, 6H, ³J_{HP} = 17.7 Hz, ³J_{HH} = 7.1 Hz, CH_{3iPr}), 2.23 (s, 6H, CH_{3o-Mes}), 2.40 (s, 3H, CH_{3p-Mes}), 3.13 (dsept, 2H, ³J_{HP} = 9.3 Hz, ³J_{HH} = 7.1 Hz, CH_{iPr}), 7.1 (s, 2H, H_{m-Mes}), 7.97 (m, 1H, H_{Naphth}), 8.00 (m, 1H, H_{Naphth}), 8.23 (dd, 1H, J_{HP} = 6.9 Hz, ³J_{HH} = 7.1 Hz, H_{Naphth}), 8.32 (d, 1H, ³J_{HH} = 6.9 Hz, H_{Naphth}), 8.45 (d, 1H, ³J_{HH} = 8.3 Hz, H_{Naphth}), 8.58 (d, 1H, ³J_{HH} = 8.2 Hz, H_{Naphth}).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 20 °C, δ): 17.4 (s, 2C, CH_{3*i*P}), 17.7 (d, 2C, $J_{CP} = 3.1$ Hz, CH_{3*i*P}), 21.6 (s, CH_{3*p*-Mes}), 23.9 (d, 2C, $J_{CP} = 31.1$ Hz, CH_{*i*Pr}), 24.7 (s, 2C, CH_{3*o*-Mes}), 119.0 (d, ¹ $J_{CP} = 65.7$ Hz, P-C_{Naphth}), 128.8 (d, $J_{CP} = 9.6$ Hz, CH_{Naphth}), 129.4 (d, $J_{CP} = 2.5$ Hz, CH_{Naphth}), 129.7 (s, 2C, CH_{*m*-Mes}), 132.6 (d, $J_{CP} = 2.9$ Hz, CH_{Naphth}), 133.0 (d, $J_{CP} = 8.5$ Hz, C_{quat}.), 133.3 (br. s, C_{quat}.), 134.0 (d, $J_{CP} = 2.6$ Hz, CH_{Naphth}), 139.9 (d, $J_{CP} = 0.9$ Hz, CH_{Naphth}), 140.3 (d, ³ $J_{CP} = 3.3$ Hz, C_{*o*-Mes}), 140.6 (d, $J_{CP} = 11.6$ Hz, CH_{Naphth}), 141.9 (br. s, C_{quat}.), 143.9 (d, ⁵ $J_{CP} = 1.7$ Hz, C_{*p*-Mes}), 149.6 (d, $J_{CP} = 19.6$ Hz, C_{quat}.).

¹¹B{¹H} NMR (96 MHz, CD₂Cl₂, 20 °C, δ): 77.9.

³¹P{¹H} (202 MHz, CD₂Cl₂, 20 °C, δ): 19.2.

iPr₂P-Naphth-B(H)(NTf₂) 8 and [8]₂

A NMR tube containing a solution of **7** ($X = NTf_2$) (216 mg, 0.331 mmol) in CD₂Cl₂ (0.3 mL) was pressurized with H₂ (3 bars) and the solution was heated for 2 days at 80 °C leading to a colorless solution and a grey precipitate. ³¹P NMR monitoring of the reaction showed the formation of a mixture of compound **8** and [**8**]₂ (2.5 / 1). After filtration, the mixture of compounds was crystallized twice (to get rid of the mesitylene, the compound hydrolysing under prolonged vacuum) from a saturated solution of dichloromethane at room temperature (yield = 10 %).

8

¹H NMR (500 MHz, C₂DCl₂, 20 °C, δ): 0.85 (dd, ³J_{HP} = 14.9 Hz, ³J_{HH} = 7.0 Hz, 3H, CH_{3iPr}), 1.24 (dd, ³J_{HP} = 16.0 Hz, ³J_{HH} = 7.0 Hz, 3H, CH_{3iPr}), 1.59 (dd, ³J_{HP} = 16.7 Hz, ³J_{HH} = 7.3 Hz, 3H, CH_{3iPr}), 1.67 (dd, ³J_{HP} = 14.5 Hz, ³J_{HH} = 7.3 Hz, 3H, CH_{3iPr}), 2.55 (dsept, ³J_{HP} = 12.2 Hz, ³J_{HH} = 7.0 Hz, 1H, CH_{iPr}), 3.04 (dsept, ³J_{HP} = 10.6 Hz, ³J_{HH} = 7.3 Hz, 1H, CH_{iPr}), 4.15 (br., 1H, B-H), 7.57 - 7.63 (m, 2H, H_{Naphth}), 7.74 (d br., 1H, ³J_{HH} = 6.7 Hz, H_{Naphth}), 7.81 (d, 1H, ³J_{HH} = 8.4 Hz, H_{Naphth}), 7.83 (m, 1H, H_{Naphth}), 8.06 (d br., 1H, J_{HH} = 8.2 Hz, H_{Naphth}).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 20 °C, δ): 17.6 (s, 2C, CH_{3*i*Pr}), 18.7 (d, ²J_{CP} = 3.6 Hz, CH_{3*i*Pr}), 19.1 (s, CH_{3*i*Pr}), 23.9 (d, ¹J_{CP} = 31.1 Hz, CH_{*i*Pr}), 119.8 (q, 2C, ¹J_{CF} = 325.2 Hz, CF₃), 126.1 (d, J_{CP} = 8.9 Hz, CH_{Naphth}), 126.3 (s, CH_{Naphth}), 127.3 (d, ¹J_{CP} = 59.4 Hz, P-C_{Naphth}), 128.1 (s, CH_{Naphth}), 129.3 (s, CH_{Naphth}), 130.6 (d, J_{CP} = 14.5 Hz, CH_{Naphth}), 131.9 (s, CH_{Naphth}), 132.5 (d, J_{CP} = 9.2 Hz, C_{quat}.), 144.4 (d, J_{CP} = 23.1 Hz, C_{quat}.), the quaternary carbon in alpha position at boron is not observed.

¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 20 °C, δ): = -8.4.

 ${}^{31}P{}^{1}H} NMR (202 MHz, CD_2Cl_2, 20 °C, \delta): 17.2.$

¹⁹F{¹H} NMR (283 MHz, CD₂Cl₂, 20 °C, δ): -78.2.

[8]2

¹H NMR (500 MHz, C₂DCl₂, 20 °C, δ): 0.99 – 1.14 (m, 6H, CH_{3iPr}), 1.30 – 1.43 (m, 6H, CH_{3iPr}), 2.77 (m, 2H, CH_{iPr}), 4.57 (br., 1H, B-H), 7.63 – 7.68 (m, 2H, H_{Naphth}), 7.77 (m, 1H, H_{Naphth}), 7.87 (d, 1H, ³J_{HH} = 8.2 Hz, H_{Naphth}), 8.12 (d, 1H, ³J_{HH} = 8.1 Hz, H_{Naphth}), one naphthyl proton was not observed.

¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 20 °C, δ): = -1.2.

³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 20 °C, δ): 20.6.

¹⁹F{¹H} NMR (283 MHz, CD₂Cl₂, 20 °C, δ): -78.2.

NMR spectra

[Ph₂P-Naphth-BNPh₂][GaBr₄] 2

Figure 1. ${}^{31}P{}^{1}H$ NMR spectrum of 2 (203 MHz, 20 °C) in CD₂Cl₂

Figure 2. ^1H NMR spectrum of 2 (500 MHz, 20 °C) in CD_2Cl_2

Figure 4. ¹³C{¹H} NMR spectrum of 2 (126 MHz, 20 °C) in CD₂Cl₂

Figure 5. ¹³C{¹H} NMR spectrum of 2 (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 1

Figure 6. ¹³C{¹H} NMR spectrum of 2 (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 2

Figure 7. ¹³C{¹H} NMR spectrum of 2 (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 3

Figure 8. ¹¹B{¹H} NMR spectrum of 2 (96 MHz, 20 °C) in CD₂Cl₂

Ph₂P-Naphth-B(Mes)(NH₂) 3

Figure 9. ³¹P{¹H} NMR spectrum of **3** (203 MHz, 20 °C) in CD₂Cl₂

Figure 12. ¹¹B{¹H} NMR spectrum of 3 (96 MHz, 20 °C) in CD₂Cl₂

Figure 13. ^{13}C { ^{1}H } NMR spectrum of 3 (126 MHz, 20 °C) in CD₂Cl₂

Figure 14. ¹³C {¹H} NMR spectrum of 3 (126 MHz, 20 °C) in CD₂Cl₂: aliphatic region

[ppm]

Figure 17. ${}^{13}C$ { ${}^{1}H$ } NMR spectrum of 3 (126 MHz, 20 °C) in CD₂Cl₂: aromatic region 3

[Ph₂P-Naphth-B(Mes)(NH₃)][NTf₂] 4

Figure 18. ${}^{31}P{}^{1}H$ NMR spectrum of 4 (203 MHz, 20 °C) in CD₂Cl₂

Figure 19. ^1H NMR spectrum of 4 (500 MHz, 20 °C) in CD_2Cl_2

Figure 20. ¹H NMR spectrum of 4 (500 MHz, 20 °C) in CD₂Cl₂; aliphatic region

Figure 21. ¹H NMR spectrum of 4 (500 MHz, 20 °C) in CD₂Cl₂; aromatic region

Figure 22. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 4 (126 MHz, 20 °C) in CD_2Cl_2

Figure 23. ${}^{13}C{}^{1}H$ NMR spectrum of 4 (126 MHz, 20 °C) in CD₂Cl₂; aliphatic region 1

Figure 24. ¹³C{¹H} NMR spectrum of 4 (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 1

Figure 25. ¹³C{¹H} NMR spectrum of 4 (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 2

Figure 26. ¹³C{¹H} NMR spectrum of 4 (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 3

Figure 27. ¹¹B{¹H} NMR spectrum of **4** (96 MHz, 20 °C) in CD₂Cl₂

Ph₂P-Naphth-B(NTf₂)₂ 5

*Signals attributed to Mes-H

Figure 32. ¹⁹F{¹H} NMR spectrum of 5 (282 MHz, 20 °C) in CD₂Cl₂

[Ph₂P-Naphth-B(OPEt₃)₂][(NTf₂)₂] 6

Figure 34. ${}^{31}P{}^{1}H$ NMR spectrum of 6 (203 MHz, 20 °C) in CD₂Cl₂; low fields

Figure 35. ¹H NMR spectrum of 6 (500 MHz, 20 °C) in CD₂Cl₂

Figure 36. ¹H NMR spectrum of 6 (500 MHz, 20 °C) in CD₂Cl₂; aliphatic region

Figure 37. ¹H NMR spectrum of 6 (500 MHz, 20 °C) in CD₂Cl₂; aromatic region

Figure 38. ¹³C{¹H} NMR spectrum of 6 (126 MHz, 20 °C) in CD₂Cl₂

Figure 39. ¹³C{¹H} NMR spectrum of 6 (126 MHz, 20 °C) in CD₂Cl₂; aliphatic region

Figure 40. ¹³C{¹H} NMR spectrum of 6 (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 1

Figure 42. ¹³C{¹H} NMR spectrum of 6 (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 3

Figure 43. ${}^{11}B{}^{1}H{}$ NMR spectrum of 6 (96 MHz, 20 °C) in CD₂Cl₂

Figure 44. $^{19}\text{F}\{^1\text{H}\}$ NMR spectrum of 6 (282 MHz, 20 °C) in CD_2Cl_2

*i*Pr₂P-Naphth-B(Mes)(Br) 7-Br

Figure 46. ¹H NMR spectrum of 7-Br (500 MHz, 20 °C) in CDCl₃

Figure 47. ¹H NMR spectrum of 7-Br (500 MHz, 20 °C) in CDCl₃; aliphatic region

Figure 48. ¹H NMR spectrum of **7-Br** (500 MHz, 20 °C) in CDCl₃; aromatic region

Figure 50. ¹³C{¹H} NMR spectrum of 7-Br (126 MHz, 20 °C) in CDCl₃; aliphatic region

Figure 52. ${}^{11}B{}^{1}H{}$ NMR spectrum of 7-Br (160 MHz, 20 °C) in CDCl₃

[*i*Pr₂P-Naphth-BMes][NTf₂] 7 (X = NTf₂)

Figure 53. ³¹P{¹H} NMR spectrum of **7 (X = NTf₂)** (203 MHz, 20 °C) in CD₂Cl₂

Figure 54. ¹H NMR spectrum of **7 (X = NTf₂)** (500 MHz, 20 °C) in CD₂Cl₂

Figure 55. ¹H NMR spectrum of 7 (X = NTf₂) (500 MHz, 20 °C) in CD₂Cl₂; aliphatic region

Figure 56. ¹H NMR spectrum of 7 (X = NTf₂) (500 MHz, 20 °C) in CD₂Cl₂; aromatic region

Figure 58. ¹³C{¹H} NMR spectrum of 7 (X = NTf₂) (126 MHz, 20 °C) in CD_2CI_2 ; aliphatic region

Figure 59. ¹³C{¹H} NMR spectrum of 7 (X = NTf₂) (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 1

Figure 60. ¹³C{¹H} NMR spectrum of 7 (X = NTf₂) (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 2

Figure 61. ¹³C{¹H} NMR spectrum of **7 (X = NTf₂)** (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 3

Figure 62. ¹¹B{¹H} NMR spectrum of **7 (X = NTf₂)** (96 MHz, 20 °C) in CD₂Cl₂

Figure 63. ¹⁹F{¹H} NMR spectrum of **7 (X = NTf₂)** (282 MHz, 20 °C) in CDCl₃

[*i*Pr₂P-Naphth-BMes][GaBr₄] 7 (X = GaBr₄)

Figure 64. ³¹P{¹H} NMR spectrum of **7 (X = GaBr**₄) (203 MHz, 20 °C) in CD₂Cl₂

Figure 65. ¹H NMR spectrum of **7 (X = GaBr**₄) (500 MHz, 20 °C) in CD₂Cl₂

Figure 66. ¹H NMR spectrum of 7 (X = GaBr₄) (500 MHz, 20 °C) in CD₂Cl₂; aliphatic region

Figure 67. ¹H NMR spectrum of 7 (X = GaBr₄) (500 MHz, 20 °C) in CD₂Cl₂; aromatic region

Figure 68. ¹³C{¹H} NMR spectrum of 7 (X = GaBr₄) (126 MHz, 20 °C) in CD₂Cl₂

Figure 69. ¹³C{¹H} NMR spectrum of 7 (X = GaBr₄) (126 MHz, 20 °C) in CD_2Cl_2 ; aliphatic region

Figure 70. ¹³C{¹H} NMR spectrum of 7 (X = GaBr₄) (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 1

Figure 71. ¹³C{¹H} NMR spectrum of 7 (X = GaBr₄) (126 MHz, 20 °C) in CD₂Cl₂; aromatic region 2

Figure 72. ¹¹B{¹H} NMR spectrum of **7 (X = GaBr**₄) (96 MHz, 20 °C) in CD₂Cl₂

*i*Pr₂P-Naphth-B(H)(NTf₂) 8 and [8]₂

Figure 73. ${}^{31}P{}^{1}H$ NMR spectrum of compound 8 and [8]₂ (202 MHz, 20 °C) in CD₂Cl₂

^ASignal attributed to 8

^BSignal attributed to [8]₂

*Non-attributed impurity

Figure 74. ¹¹B{¹H} NMR spectrum of compound 8 and [8]₂ (160 MHz, 20 °C) in CD₂Cl₂

^ASignal attributed to 8

^BSignal attributed to [8]₂

Figure 75. ¹H NMR spectrum of compound 8 and [8]₂ (500 MHz, 20 °C) in CD₂Cl₂

^ASignal attributed to **8**

^BSignal attributed to [8]₂

^ASignal attributed to 8: CH_{3/Pr}

^BSignal attributed to [8]₂: CH_{3iPr}

^ASignal attributed to **8:** CH_{iPr}

^BSignal attributed to [8]₂: CH_{iPr}

Figure 78. ¹H NMR spectrum of compound 8 and [8]₂ (500 MHz, 20 °C) in CD₂Cl₂: zoom 3; B-<u>H</u> signals

Figure 79. ¹H NMR spectrum of compound 8 and [8]₂ (500 MHz, 20 °C) in CD₂Cl₂: zoom 4

^ASignal attributed to **8:** CH_{Naphth}

^BSignal attributed to [8]₂: CH_{Naphth}

Figure 80. Stacked ¹H (bottom) and ¹H{¹¹B} (top) NMR spectra of compound **8** and **[8]**₂ (500 MHz, 20 $^{\circ}$ C) in CD₂Cl₂

^ASignal attributed to **8:** B-<u>H</u> signal

^BSignal attributed to [8]₂: B-<u>H</u> signal

Figure 81. From bottom to top: ¹H, ¹H{¹¹B} bb, ¹H{¹¹B} -1.2 ppm, ¹H{¹¹B} -8.4 ppm, NMR spectra of compound **8** and **[8]**₂ (500 MHz, 20 °C) in CD_2CI_2

^ASignal attributed to **8:** B-<u>H</u> signal

^BSignal attributed to [8]₂: B-<u>H</u> signal

Figure 82. [1H, 1H] ROESY NMR spectrum of compound 8 and [8]₂ (500 MHz, 20 °C) in CD₂Cl₂

Figure 83. [1H, 1H] ROESY NMR spectrum of compound 8 and [8]₂ (500 MHz, 20 °C) in CD₂Cl₂: zoom

^xExchange correlation spot between 8 and [8]₂

Figure 85. ${}^{13}C{}^{1}H$ NMR spectrum of compound 8 and [8]₂ (126 MHz, 20 °C) in CD₂Cl₂: zoom 1

^ASignal attributed to 8

Figure 86. ¹³C{¹H} NMR spectrum of compound 8 and [8]₂ (126 MHz, 20 °C) in CD₂Cl₂: zoom 2

^ASignal attributed to 8

^ASignal attributed to 8

Figure 88. Stacked ${}^{13}C{}^{1}H$ (bottom) and ${}^{13}C{}^{1}H,{}^{31}P$ (top) NMR spectra of compound 8 and [8]₂ (126 MHz, 20 °C) in CD₂Cl₂: zoom 1

Figure 89. Stacked ${}^{13}C{}^{1}H$ (bottom) and ${}^{13}C{}^{1}H,{}^{31}P$ (top) NMR spectra of compound 8 and [8]₂ (126 MHz, 20 °C) in CD₂Cl₂: zoom 2

Figure 90. Stacked ${}^{13}C{}^{1}H$ (bottom) and ${}^{13}C{}^{1}H,{}^{31}P$ (top) NMR spectra of compound 8 and [8]₂ (126 MHz, 20 °C) in CD₂Cl₂: zoom 3

Figure 91. 2D [¹H, ¹³C] HSQC NMR spectrum of compound 8 and [8]₂ in CD₂Cl₂

Figure 93. 2D [¹H, ¹³C] HSQC NMR spectrum of compound 8 and [8]₂ in CD₂Cl₂: zoom2

Figure 94. 2D [¹H, ¹³C] HMBC NMR spectrum of compound 8 and [8]₂ in CD₂Cl₂

Figure 95. 2D [¹H, ¹³C] HMBC NMR spectrum of compound 8 and [8]₂ in CD₂Cl₂: zoom1

Crystallographic data

The data were collected at low temperature (173(2)K or 193(2)K) on a Bruker-AXS APEX II QUAZAR diffractometer equipped with a 30W air-cooled microfocus source (**3**, **7** and **8**) or on a Bruker-AXS PHOTON100 D8 VENTURE diffractometer (**2** and **4**), using MoK α radiation ($\lambda = 0.71073$ Å). Phi- and omega- scans were used. An empirical absorption correction with SADABS was applied.³ The structures were solved by direct methods (SHELXS-97)⁴ and refined using the least-squares method on $F^{2[2]}$. All non-H atoms were refined with anisotropic displacement parameters. The H atoms on carbon atoms were refined isotropically at calculated positions using a riding model. For **3**, **4** and **8**, the N-bound and B-bound H atoms were located in a difference Fourier maps and the H atom bonded to B atom was refined freely. The standard N-H distances in **3** and **4** were fixed accordingly.

2 : C₃₄H₂₆BBr₄GaNP, M = 879.66, monoclinic, $P2_1/n$, a = 12.5932(11) Å, b = 14.1435(11) Å, c = 19.2716(16) Å, $a = 90^{\circ}$, $\beta = 107.068(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 3281.3(5) Å³, Z = 4, crystal size 0.40 x 0.40 x 0.32 mm³, 136889 reflections collected (6435 independent, R_{int} = 0.0355), 380 parameters, R1 [I>2 σ (I)] = 0.080, wR2 [all data] = 0.248, largest diff. peak and hole: 2.98 and -3.172 eÅ⁻³.

3 : C₃₁H₂₉BNP, M = 457.33, monoclinic, $P2_1/n$, a = 6.9184(3) Å, b = 22.8078(12) Å, c = 16.1979(8) Å, $a = 90^{\circ}$, $\beta = 101.927(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 2500.7(2) Å³, Z = 4, crystal size 0.18 x 0.04 x 0.02 mm³, 38483 reflections collected (5074 independent, R_{int} = 0.0384), 318 parameters, R1 [I>2\sigma(I)] = 0.0399, wR2 [all data] = 0.1028, largest diff. peak and hole: 0.287 and -0.270 eÅ⁻³.

4 : C₃₃H₃₀BF₆N₂O₄PS₂, *M* = 738.49, triclinic, *P*1, \overline{a} = 8.9898(4) Å, *b* = 12.2194(6) Å, *c* = 15.5624(8) Å, α = 91.453(2)°, β = 91.387(2)°, γ = 106.552(2)°, *V* = 1637.28(14) Å³, *Z* = 2, crystal size 0.55 x 0.04 x 0.04 mm³, 20842 reflections collected (6352 independent, R_{int} = 0.0775), 455 parameters, *R*1 [I>2 σ (I)] = 0.0818, *wR*2 [all data] = 0.2558, largest diff. peak and hole: 0.571 and -0.551 eÅ⁻³.

7 : C₂₅H₃₁BBr₄Ga P, M = 762.60, monoclinic, $P2_1/n$, a = 12.2483(4) Å, b = 15.5100(5) Å, c = 15.3013(5) Å, $a = 90^{\circ}$, $\beta = 90.0940(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 2906.80(16) Å³, Z = 4, crystal size 0.18 x 0.10 x 0.08 mm³, 28885 reflections collected (5108 independent, R_{int} = 0.0462), 296 parameters, R1 [I>2 σ (I)] = 0.0382, wR2 [all data] = 0.0972, largest diff. peak and hole: 1.845 and -1.392 eÅ⁻³.

8 : C₁₈H₂₁BF₆NO₄PS₂, M = 535.26, orthorhombic, Pbcn, a = 30.337(3) Å, b = 7.7017(6) Å, c = 19.3533(17) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 4521.8(7) Å³, Z = 8, crystal size 0.20 x 0.04 x 0.04 mm³, 39674 reflections collected (4797 independent, R_{int} = 0.1124), 307 parameters, R1 [I>2\sigma(I)] = 0.0517, wR2 [all data] = 0.1524, largest diff. peak and hole: 0.431 and -0.439eÅ⁻³.

³ SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

⁴ Sheldrick, G. M., **2008**, Acta Cryst. A64, 112.

Computational details

Calculations were carried out with the Gaussian09⁵ program at the DFT level of theory using the hybrid functional B3PW91.⁶ B3PW91 is Becke's 3 parameter functional, with the non-local correlation provided by the Perdew 91 expression. All the atoms have been described with a 6-31G(d,p) double- ζ basis set.⁷. Geometry optimizations were carried out in gas phase on the cationic complexes (without taking into account counter-anion, experimentally : ion-pair without any interaction cation/counter-anion) without any symmetry restriction. The nature of the *minima* was verified with analytical frequency calculations. All total energies (in kcal/mol), ΔE , and Gibbs Free energies, ΔG , have been zero-point energy (ZPE) and temperature corrected using unscaled density functional frequencies.

⁵ Gaussian 09, Revision **D.01**, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.

⁶ a) A. D. Becke, J. Chem. Phys., **1993**, 98, 5648-5652; b) K. Burke, J. P. Perdew, Y. Wang, *Electronic Density Functional Theory: Recent Progress and New Directions*, Eds.: J. F. Dobson, G. Vignale, M. P. Das, Plenum Press, New York, **1998**.

⁷ P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta*, **1973**, 28, 213-222.

Z-matrices and energies (in au)

Initial reactant [Ph₂P-naphthyl-BMes]⁺(1)

С	1.38033000	-0.27747000	-0.00502600
Р	0.85943700	-0.55064300	0.09403600
С	1.73662800	1.93513300	-0.14345700
Ċ	2.22951500	0.62569600	0.10550100
Ċ	2.64161700	3.02819300	-0.19645700
Ĉ	0.33003900	2.11654100	-0.35839500
Č	-2.90113400	1.16767900	0.60430500
Č	-2 05266500	0.65030100	-0.41020800
B	-0 52502700	0.84163800	-0.31916700
C	-4 86695100	0.35606400	-0.59968100
C	-2 63853800	-0.01/18300	-1 5199/900
C	-6 35939200	0.22533000	-0.71916300
н	-6.76473500	1.00958000	-1 36966600
п п	-0.70473300	0.72561500	-1.30900000
п	-0.04300900	-0.75501500	-1.13800700
Г	-0.63169000	1 20002200	1.25194600
C U	-2.35964300	1.80908300	1.85811900
H	-2.12611500	1.05012000	2.61461300
H	-1.44328000	2.37761700	1.68204000
Н	-3.09465800	2.48/5/400	2.298/2/00
С	-1.79288800	-0.50148700	-2.66/80100
Н	-1.47749400	0.33224100	-3.30691400
Н	-0.88566300	-1.01316400	-2.33074100
Η	-2.34524200	-1.20194500	-3.29910200
С	-4.02210500	-0.14549400	-1.59476300
С	-4.28248900	1.00317200	0.48987000
Н	-4.45676900	-0.64308700	-2.45909400
Н	-4.92156200	1.38955600	1.28096500
С	-0.13344800	3.40113600	-0.63241500
С	0.75312200	4.49369400	-0.68188200
С	2.10630300	4.31397300	-0.46687400
С	4.02206200	2.77205700	0.00499200
С	4.47842700	1.49048900	0.22864000
С	3.58138400	0.39927100	0.27207300
Н	5.53949400	1.30984000	0.36782000
Н	3.96606000	-0.60515400	0.42476800
Н	4.72404200	3.60068700	-0.03018600
Н	2.78085100	5.16503900	-0.51320800
Н	0.36981600	5.48626800	-0.89652900
Н	-1.19298800	3.56000800	-0.81383400
Ĉ	0.50196800	-1.19215300	1.75130400
Ĉ	1.48211000	-1.21673000	2,75217100
Č	-0 78704600	-1 68330500	2 01346900
Ĉ	1 17433200	-1 74078300	4 00438600
н	2 47453400	-0.82154700	2 561/11/00
C II	-1 08027900	-2 21264800	3 26779100
с u	1 55860500	1 64348200	1 24952100
C C	0 10101300	2 24076400	1.24952100
с u	1 03272400	1 75701100	4.20100400
п u	1.932/3400	-1./3/01100	4./0088400
п	-2.0/58/800	-2.39318/00	5.47006200
п	-0.33021200	-2.04823800	5.23984300
C	1.25589100	-1.92092000	-1.02080800
C	1.92099500	-1.653//000	-2.22629/00
C	0.88690000	-3.23914300	-0./0133900
C	2.21332/00	-2.69407/900	-3.10177700

Н	2.21711500	-0.63887500	-2.47591100
С	1.18565300	-4.27251200	-1.58638500
Н	0.38207500	-3.45714900	0.23433800
С	1.84573500	-4.00200700	-2.78322100
Н	2.73251500	-2.48400000	-4.03171700
Н	0.90538700	-5.29070500	-1.33512800
Н	2.07811300	-4.81134500	-3.46860600

Sum of electronic and zero-point Energies= Sum of electronic and thermal Free Energies= -1562.652351 -1562.715296

Ph₂NH

С	-1.26039000	-0.44365000	0.01897700
С	-1.48862300	0.84502800	0.52745900
Н	-0.66226800	1.42214300	0.92725800
С	-2.77780000	1.36882600	0.54957000
Н	-2.93249600	2.36790300	0.94839300
С	-3.86438600	0.62675600	0.09041100
Н	-4.86672100	1.04295100	0.11469200
С	-3.64356800	-0.66161600	-0.39500700
Н	-4.47660200	-1.26000800	-0.75390100
С	-2.35915200	-1.18994500	-0.43891400
Н	-2.19418000	-2.18848200	-0.83767100
С	1.26038800	-0.44361900	-0.01919700
С	1.48872700	0.84505500	-0.52755200
Н	0.66239600	1.42231200	-0.92724800
С	2.77794800	1.36880000	-0.54952600
Н	2.93264200	2.36791800	-0.94827500
С	3.86444000	0.62663300	-0.09035100
Н	4.86682600	1.04267600	-0.11458000
С	3.64347100	-0.66168700	0.39517700
Н	4.47644400	-1.26008900	0.75421700
С	2.35900100	-1.18991900	0.43899500
Н	2.19391100	-2.18834100	0.83808600
Ν	-0.00003300	-1.03815500	-0.00013300
Н	-0.00006100	-2.04588300	-0.00029300

Sum of electronic and zero-point Energies= -518.274451 Sum of electronic and thermal Free Energies= -518.311315

Mes-H

С	0.91333500	1.04323100	-0.00590600
С	-0.93013700	-1.05658900	-0.00704800
С	-0.44992800	1.33389200	-0.00592000
С	-1.91776600	-2.19435600	0.00871300
Н	-1.94971400	-2.67785700	0.99262200
Н	-2.92975600	-1.84989400	-0.22142600
Н	-1.65056400	-2.96680900	-0.72007000
С	2.85958200	-0.56326000	0.00728300
Н	3.38495000	0.01327800	-0.76164600
Н	3.30754000	-0.29563500	0.97178300
Н	3.06434900	-1.62285800	-0.16870300
С	-0.94177300	2.75793600	0.00790300
Н	-1.37554000	3.01824100	0.98090400
Н	-0.13073400	3.46391600	-0.19086400
Н	-1.72091600	2.91955200	-0.74459400
С	-1.36049900	0.26928000	-0.00869300
С	0.44700400	-1.31289400	-0.00753400
Н	-2.42816000	0.48214800	-0.01588200
Н	0.79602500	-2.34412500	-0.01391100
Н	1.63162700	1.86142500	-0.01084900

Sum of electronic and zero-point Energies= Sum of electronic and thermal Free Energies= Final compound $[Ph_2P$ -naphthyl-BNPh₂]⁺(2)

С	-1.43996700	2.00292900	-0.33551800
С	-0.23891800	2.71447400	-0.05791800
С	0.95164900	1.98273800	0.26452300
С	2.09110500	2.71166700	0.57974700
Н	3.01088300	2.19933500	0.84021700
С	2.08137800	4.12242900	0.56675800
Н	2.98945000	4.66055600	0.82069900
С	0.94240600	4.82226300	0.23199200
Н	0.94990500	5.90886100	0.21776500
С	-0.25685400	4.13698900	-0.08645300
С	-1.47053400	4.79329000	-0.41301800
Н	-1.48818800	5.87942600	-0.44301500
С	-2.61884600	4.07794200	-0.67682800
Н	-3.54072000	4.59877500	-0.91518500
С	-2.61488400	2.66715500	-0.62496900
Н	-3.53530900	2.11999500	-0.80798700
С	-2.28945700	-0.33477100	1.20787600
С	-3.41009600	-1.12996900	0.94709400
Н	-3.61767300	-1.47668700	-0.06004100
С	-4.26507600	-1.47866500	1.99176400
Н	-5.13403900	-2.09700900	1.78873300
С	-4.00866700	-1.03503300	3.28678100
Н	-4.67772700	-1.30989300	4.09651400
С	-2.89564000	-0.23336600	3.54568000
Н	-2.69855500	0.11887100	4.55347200
С	-2.03622300	0.11947200	2.51113500
Н	-1.17778500	0.75408600	2.71804100

C	-1 54404300	-0 67234700	-1 65908200
Ĉ	-1 49240000	-2 07567100	-1 67582700
н	-1 27116300	-2 63326300	-0 77071800
C	-1 73078400	-2 75791900	-2 86499000
н	-1 69619900	-3 84284700	-2 87494900
C	-2 00864500	-2 05404200	-4 03662300
н	-2 19331000	-2 59255900	-4 96125000
C	-2 04837100	-0.66132700	-4 02307500
н	-2 26267400	-0.1116/300	-4.93/32900
C	-1.81682400	0.03375200	-2 83883000
н	-1 8/910800	1 11833000	-2.83350900
C	1 29982200	-1 99285800	0.43530500
C	1.20006300	-2 93652700	-0.46802000
н	2 46777500	-2 61896000	-1 26315100
C	1 43597100	-4 27231600	-0 34191800
н	1 82454700	-5.00132400	-1 04658400
C	0.57668800	-4 67727900	0.68190600
н	0.30102600	-5 72280500	0.77972800
C	0.09379000	-3.73871100	1.59070500
Ĥ	-0.55293000	-4.04834100	2.40599200
Ĉ	0.46211300	-2.39765200	1.47660900
Ĥ	0.12443100	-1.67236100	2.20944700
С	3.08808700	-0.37188200	0.19947600
С	3.92269300	-0.68718000	1.27360100
Н	3.49827600	-1.10422400	2.18184600
С	5.29242100	-0.46077900	1.16735900
Н	5.94197100	-0.70057100	2.00364100
С	5.82860500	0.07003100	-0.00610900
Н	6.89767100	0.24125700	-0.08565400
С	4.99168000	0.37228400	-1.07891000
Н	5.40576900	0.77577900	-1.99793300
С	3.61948200	0.14969700	-0.98104200
Н	2.95891800	0.37751800	-1.81222800
Ν	1.66749100	-0.61173200	0.30253400
Р	-1.19063000	0.22672200	-0.12510600
В	0.75120600	0.44161800	0.24283700

Sum of electronic and zero-point Energies= -1731.062561 Sum of electronic and thermal Free Energies= -1731.125613