# **Electronic Supplementary Information**

# Controlled Formation of Chiral Networks and their Reversible Chiroptical Switching Behavior by UV/Microwave Irradiation

Fei-Long Hu,<sup>*ab*</sup> Hui-Fang Wang,<sup>*a*</sup> Dong Guo,<sup>*c*</sup> Hui Zhang,<sup>*c*</sup> Jian-Ping Lang,\*<sup>*ab*</sup> and Jonathon E. Beves\*<sup>*d*</sup>

<sup>a</sup> College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

<sup>b</sup> State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

<sup>c</sup> Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

<sup>d</sup> School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia

# **Table of Contents**

| Experimental S4                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General methods                                                                                                                                                                          |
| Synthesis                                                                                                                                                                                |
| UV irradiation                                                                                                                                                                           |
| Conversion from 2 to 1 via heating                                                                                                                                                       |
| Conversion from 2 to 1 via microwave irradiation                                                                                                                                         |
| X-ray data collection and structure determination                                                                                                                                        |
| Table S1Summary of crystal data and structure refinement parameters for samples 1M, 1P, 2M, $2P, 2M \rightarrow 1M$ , and $2P \rightarrow 1P$ .S7                                        |
| <b>Table S2</b> Summary of crystal data and structure refinement parameters for the six samplesobtained in the presence of enantiopure $(1R,2R)$ -cyclohexane-1,2-diamine.S8             |
| Table S3       Summary of crystal data and structure refinement parameters for the six samples obtained in the presence of enantiopure (1 <i>S</i> ,2 <i>S</i> )-cyclohexane-1,2-diamine |
| Table S4       Summary of crystal data and structure refinement parameters for the ten randomly-taken crystals of 1 obtained in the absence of cyclohexane-1,2-diamine                   |
| <b>Fig. S1</b> View of the coordination environments of Zn(II) centers in <b>1P</b> (left) or <b>2P</b> (right)S12                                                                       |
| Fig. S2 View of the structure of $[Cd_{16}(L^1)_8(L^2)_8]$ S12                                                                                                                           |
| <b>Fig. S3</b> Schematic representation of the 4-fold interpenetrating network                                                                                                           |
| <b>Fig. S4</b> Solid state CD spectra recorded for six crystals of <b>1</b> obtained in the presence of (1 <i>S</i> ,2 <i>S</i> ) cyclohexane-1,2-diamine                                |
| <b>Fig. S5</b> Solid state CD spectra recorded for six crystals of <b>1</b> obtained in the presence of (1 <i>R</i> ,2 <i>R</i> )cyclohexane-1,2-diamine                                 |
| Fig. S6 CD spectra of the bulk samples of crystals in the presence of enantiopure cyclohexane-1,2-diamine                                                                                |
| <b>Fig. S7</b> CD spectra from the bulk samples in the absence of enantiopure cyclohexane-1,2-diamine or in the presence of the racemic cyclohexane-1,2-diamine                          |

| <b>Fig. S8</b> Solid state CD spectra recorded for the six randomly-taken crystals of 1 obtained in the absence of cyclohexane-1,2-diamine. S15                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Scheme S3</b> Conformations of $L^2$ and $L^3$ ligands                                                                                                                                                                                                                                                  |
| <b>Fig. S9</b> View of the structure of $[Cd_{16}(L^2)_8(L^3)_4]$ S16                                                                                                                                                                                                                                      |
| <b>Fig. S10</b> The Cd···Cd distances before and after the UV irradiation (bottom showing the irradiated one)                                                                                                                                                                                              |
| <b>Fig. S11</b> Single crystal structure showing different distances (3.7 and 4.0 Å) between the olefinic bonds C6=C7 and C14=C15 before cycloaddition reaction. The pair (C6, C7) was disordered into two parallel C=C pairs and a disordered single cyclobutane ring is formed under UV irradiation.     |
| <b>Fig. S12</b> Structural models of two possible photoproducts of bpvpcbdp. The relative free energies (at 298.15K) compared to that product <b>a</b> are listed in insets. For simplicity, the Cd atoms and other auxiliary fragments in the X-ray crystal structures were not taken into consideration. |
| Fig. S13    The TG curves of 1 (upper) and 2 (down).                                                                                                                                                                                                                                                       |
| <b>Fig. S14</b> Experimental and simulated PXRD patterns for 1, 2 and 2 under microwave irradiation for 10 min                                                                                                                                                                                             |
| <b>Fig. S15</b> The IR spectra of the samples <b>1</b> , <b>2</b> , and <b>2</b> under microwave irradiation for 10 min. S19                                                                                                                                                                               |
| <b>Fig. S16</b> The <sup>1</sup> H NMR spectra of the starting material $L^2(up)$ and the ligand (down) extracted from <b>2</b> under microwave irradiation for 10 min ( $d_6$ -DMSO)S20                                                                                                                   |
| <b>Fig. S17</b> The <sup>1</sup> H NMR spectrum of $L^3$ extracted from 2 (CDCl <sub>3</sub> )S21                                                                                                                                                                                                          |
| <b>Fig. S18</b> The positive-ion ESI mass spectrum of $L^3$ in acetonitrile                                                                                                                                                                                                                                |
| Fig. S19The CD spectra for 1P/1M and 2P/2M.S22                                                                                                                                                                                                                                                             |

## Experimental

# **General methods**

Ligands bpa and other metal salts were obtained commercially and used without further purification. The ligand 1,4-bis((E)-2-(pyridin -4-yl)vinyl)benzene ( $L^2$ ) was prepared as reported previously.<sup>1</sup> Elemental analyses (C, H, and N) were performed using a PE 2400 II elemental analyzer. The FT-IR spectra were recorded with a Nicolet Mana-IR 550 spectrometer in dry KBr disks in the 400-4000 cm<sup>-1</sup> range. The thermogravimetric analyses (TGA) were performed using a Mettler TGA/SDTA 851 thermal analyzer under an N<sub>2</sub> atmosphere with a heating rate of 10 °C/min in the temperature region of 20-800 °C. Powder X-ray diffraction (XRD) patterns were collected on a Bruker D8 advance diffractometer using graphite monochromatized Cu Kα radiation ( $\lambda = 1.5406$ Å). The<sup>1</sup>H NMR spectra were recorded at ambient temperature on a Varian UNITYplus-400 spectrometer. The <sup>1</sup>H NMR chemical shifts were referenced to the solvent signal in DMSO-*d*<sub>6</sub> or CDCl<sub>3</sub>. The UV irradiation experiments were conducted with a high-pressure mercury lamp and a radiation with  $\lambda = 365$ nm.Solid state CD spectra were recorded with a JASCO J-810 spectropolarimeter. For the solid state CD spectra, and crystalline samples were ground to fine powders with potassium bromide and compressed into transparent disks and the concentration of each sample was 1.0 mg/200 mg KBr.

#### References

1. H. C. Lin, C. M. Tsai, G. H. Huang, Y. T. Tao, Macromolecules., 2006, 39, 557-568.

### **Synthesis**

{[Cd(L<sup>1</sup>)(L<sup>2</sup>)]<sub>2</sub>}<sub>n</sub> (1). Spontaneous: To a thick Pyrex tube was loaded CdSO<sub>4</sub> (25 mg, 0.12 mmol), (E)-4,4'-(ethene-1,2-diyl)dibenzoic acid (L<sup>1</sup>) (9.8 mg, 0.036 mmol), 1,4-bis((E)-2-(pyridin -4-yl)vinyl)benzene (L<sup>2</sup>) (9 mg, 0.0317 mmol), 2 mL of DMF and H<sub>2</sub>O (v/v = 4:6), and one drop of triethylamine. The tube was sealed and then heated at 145°C for 48h. After it was cooled to room temperature at a rate of 5 °C /h, yellow crystals of 1 (19 mg) were formed, which were collected by filtration, washed with EtOH and Et<sub>2</sub>O, and dried in air. Yield: 90% (based on bpeb). IR (KBr disk): 1620(s), 1581(m), 1502(m), 1401(m), 1228(w), 1179(m), 970(m), 880(w), 780(w), 570(m); Elemental analysis calcd. for C<sub>36</sub>H<sub>26</sub>CdN<sub>2</sub>O<sub>4</sub>: C, 65.22; H, 3.95; N, 4.23. Found: C, 65.11; H, 3.83; N, 4.19.

**Inducing**: To a thick Pyrex tube was loaded CdSO<sub>4</sub> (25 mg, 0.12 mmol), (E)-4,4'-(ethene-1,2-diyl)dibenzoic acid ( $L^1$ ) (9.8 mg, 0.036 mmol), 1,4-bis((E)-2-(pyridin -4-yl)vinyl)benzene ( $L^2$ ) (9 mg, 0.0317 mmol), 2 mL of DMF and H<sub>2</sub>O (v/v = 4:6), (1R,2R) cyclohexane-1,2-diamine or (1S,2S) cyclohexane-1,2-diamine (0.25 mg, 0.0022 mmol, 1.8% w.r.t CdSO<sub>4</sub>). The tube was sealed and then heated at 145 °C for 48h. After it was cooled to room temperature at a rate of 5°C/h, yellow crystals of **1** were formed, which were collected by filtration, washed with EtOH and Et<sub>2</sub>O, and dried in air.

## **UV** irradiation

 ${[Cd(L^1)(L^3)]_2}_n$  (2). Single crystals of 1 (500 mg) in between glass slides were irradiated with a Hg lamp for *ca*. 100 min to form 2 in 100% yield based on 1. IR (KBr disk): 1620(s), 1581(m), 1502(m), 1401(m), 1228(w), 1179(m), 880(w), 780(w).

#### **Conversion from 2 to 1 via heating**

Single crystals of 2 (20 mg) were heating at 200 °C for 8h and the yellow of the crystals turn dark brown.

#### Conversion from 2 to 1 via microwave irradiation

As shown below, single crystals of 2 (20 mg) in crucible were put into microwave oven (Panasonic NN-GM 331H) and then treated with microwave irradiation (moderate heat) in three time interval ( $3 \min + 3 \min + 4 \min$ , 10 min in total, 420 w), yielding dark brown crystals of 1.



Microwave-assisted translation from 2 to 1

**Isolation of L<sup>2</sup> and L<sup>3</sup>.** Crystals of **2** or **1** were placed in a 150 mL flask and immersed in concentrated HNO<sub>3</sub> for one day. NaOH was added to adjust the solution to alkalinity before dichloromethanewas added. The organic phase was separated from the reaction mixture and the aqueous layers were also extracted using CH<sub>2</sub>Cl<sub>2</sub> ( $4 \times 30$  mL). The combined organic extract was concentrated to dryness *in vacuo*. The resulting sample was then washed thoroughly withH<sub>2</sub>Oand dried with anhydrous Na<sub>2</sub>SO<sub>4</sub> to give (L<sup>2</sup>) or (L<sup>3</sup>) as a yellow (L<sup>2</sup>) or pale yellow (L<sup>3</sup>) powder which was used for the <sup>1</sup>H NMR measurement.

X-ray data collection and structure determination. X-ray single-crystal diffraction data for 1 (1P and 1M) and 2 (2P and 2M) were collected on a Bruker Smart CCD diffractometer by using graphite monochromated Mo-K $\alpha$  ( $\lambda = 0.71073$ Å). Cell parameters were refined and the data collected and reduced by using the program Apex II. The crystals structures of 1 (1P and 1M) and 2 (2P and 2M) were solved by direct methods and refined on  $F^2$  by full-matrix least-squares methods with the *SHELXL*-97 program.<sup>2</sup> All non-hydrogen atoms were refined anisotropically. All the H atoms were introduced at the calculated position and included in the structure-factor calculations. The atoms (C6 and C7) which belong to the C=C bonds are disordered with two occupancy. The "eadp" constraint was used to make the equal displacement parameters of C6 and C7.

### References

2. G. M. Sheldrick, *SHELXS-97* and *SHELXL-97*. Program for the refinement of crystal structures, University of Göttingen, Germany. 1997.

**Computational method.** All calculations were performed using Gaussian 09, Revision A.02.<sup>3</sup> The geometry optimizations were optimized using B3LYP functional <sup>4</sup> with the triple zeta basis set

6-311++G(d,p).<sup>5</sup> analytical frequencies were calculated to verify the nature of all stationary points as minima.

#### References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, CT, 2009.
- 4. (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B., 1988, 37, 785-789.
- 5. M. P. Andersson, P. Uvdal, J. Phys. Chem. A., 2005, 109, 2937-2941.

|                                         | <b>1M(</b> 1406667)                                             | 1 <b>P(</b> 1406668)                                            | <b>2M</b> (1406672)                                             | <b>2P(</b> 1406670)                                             | <b>2M→1M(</b> 140<br>6671)                                      | <b>2P→1P(</b> 1406<br>669)                                      |
|-----------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| Emperical formula                       | C <sub>36</sub> H <sub>26</sub> CdN <sub>2</sub> O <sub>4</sub> | C <sub>36</sub> H <sub>26</sub> CdN <sub>2</sub> O <sub>4</sub> | C <sub>36</sub> H <sub>26</sub> CdN <sub>2</sub> O <sub>4</sub> | C <sub>36</sub> H <sub>26</sub> CdN <sub>2</sub> O <sub>4</sub> | C <sub>36</sub> H <sub>26</sub> CdN <sub>2</sub> O <sub>4</sub> | C <sub>36</sub> H <sub>26</sub> CdN <sub>2</sub> O <sub>4</sub> |
| Formula weight                          | 662.99                                                          | 662.99                                                          | 662.99                                                          | 662.99                                                          | 662.99                                                          | 662.99                                                          |
| Crystal system                          | Tetragonal                                                      | Tetragonal                                                      | Tetragonal                                                      | Tetragonal                                                      | Tetragonal                                                      | Tetragonal                                                      |
| Space group                             | P41212                                                          | P4 <sub>3</sub> 2 <sub>1</sub> 2                                | P41212                                                          | P4 <sub>3</sub> 2 <sub>1</sub> 2                                | P41212                                                          | P4 <sub>3</sub> 2 <sub>1</sub> 2                                |
| a/Å                                     | 14.5436(2)                                                      | 14.573(3)                                                       | 14.3664(7)                                                      | 14.3555(3)                                                      | 14.5029(3)                                                      | 14.5230(2)                                                      |
| b/Å                                     | 14.5436(2)                                                      | 14.573(3)                                                       | 14.3664(7)                                                      | 14.3555(3)                                                      | 14.5029(3)                                                      | 14.5230(2)                                                      |
| c/Å                                     | 29.1864(9)                                                      | 28.941(11)                                                      | 29.399(3)                                                       | 29.4087(14)                                                     | 29.2053(13)                                                     | 29.1177(8)                                                      |
| a/°                                     | 90                                                              | 90                                                              | 90                                                              | 90                                                              | 90                                                              | 90                                                              |
| ß/°                                     | 90                                                              | 90                                                              | 90                                                              | 90                                                              | 90                                                              | 90                                                              |
| y/°                                     | 90                                                              | 90                                                              | 90                                                              | 90                                                              | 90                                                              | 90                                                              |
| V/Å <sup>3</sup>                        | 6173.4(2)                                                       | 6146(3)                                                         | 6067.7(7)                                                       | 6060.6(3)                                                       | 6142.9(3)                                                       | 6141.4(2)                                                       |
| $D_c/\mathrm{g~cm}^{-3}$                | 1.427                                                           | 1.431                                                           | 1.447                                                           | 1.449                                                           | 1.434                                                           | 1.434                                                           |
| Ζ                                       | 8                                                               | 8                                                               | 8                                                               | 8                                                               | 8                                                               | 8                                                               |
| $\mu$ (Mo-K $\alpha$ )/mm <sup>-1</sup> | 0.749                                                           | 0.752                                                           | 0.762                                                           | 0.763                                                           | 0.753                                                           | 0.753                                                           |
| Total reflections                       | 16279                                                           | 42086                                                           | 47917                                                           | 92400                                                           | 94309                                                           | 21193                                                           |
| Unique reflections                      | 5445                                                            | 5387                                                            | 5336                                                            | 5333                                                            | 5420                                                            | 5420                                                            |
| No. observations                        | 4700                                                            | 4114                                                            | 4950                                                            | 5015                                                            | 5115                                                            | 4835                                                            |
| No. parameters                          | 403                                                             | 403                                                             | 406                                                             | 407                                                             | 395                                                             | 395                                                             |
| Flack                                   | 0.00(3)                                                         | 0.06(5)                                                         | 0.03(4)                                                         | 0.00(4)                                                         | 0.00(3)                                                         | 0.01(6)                                                         |
| F(000)                                  | 2688                                                            | 2680                                                            | 2672                                                            | 2672                                                            | 2688                                                            | 2688                                                            |
| $R_1^{a}$                               | 0.0359                                                          | 0.0543                                                          | 0.0402                                                          | 0.0355                                                          | 0.0324                                                          | 0.0543                                                          |
| $wR_2^{b}$                              | 0.0733                                                          | 0.1276                                                          | 0.1039                                                          | 0.0907                                                          | 0.0827                                                          | 0.1264                                                          |
| $\mathrm{GOF}^c$                        | 1.042                                                           | 1.106                                                           | 1.084                                                           | 1.018                                                           | 1.095                                                           | 1.149                                                           |

**Table S1**Summary of crystal data and structure refinement parameters for samples1M, 1P, 2M, 2P, 2M $\rightarrow$ 1M, and 2P $\rightarrow$ 1P.

where n = number of reflections and p = total numbers of parameters refined.

|                                         | (1406673)                                                      | (1414979)              | (1406674)              | (1406675)                                                      | (1406676)                        | (1406677)                                                      |
|-----------------------------------------|----------------------------------------------------------------|------------------------|------------------------|----------------------------------------------------------------|----------------------------------|----------------------------------------------------------------|
| Empericalformula                        | $\mathrm{C}_{36}\mathrm{H}_{26}\mathrm{CdN}_{2}\mathrm{O}_{4}$ | $C_{36}H_{26}CdN_2O_4$ | $C_{36}H_{26}CdN_2O_4$ | $\mathrm{C}_{36}\mathrm{H}_{26}\mathrm{CdN}_{2}\mathrm{O}_{4}$ | $C_{36}H_{26}CdN_2O_4\\$         | $\mathrm{C}_{36}\mathrm{H}_{26}\mathrm{CdN}_{2}\mathrm{O}_{4}$ |
| Formula weight                          | 662.99                                                         | 662.99                 | 662.99                 | 662.99                                                         | 662.99                           | 662.99                                                         |
| Crystal system                          | Tetragonal                                                     | Tetragonal             | Tetragonal             | Tetragonal                                                     | Tetragonal                       | Tetragonal                                                     |
| Space group                             | P4 <sub>3</sub> 2 <sub>1</sub> 2                               | $P4_{3}2_{1}2$         | $P4_{3}2_{1}2$         | P4 <sub>3</sub> 2 <sub>1</sub> 2                               | P4 <sub>3</sub> 2 <sub>1</sub> 2 | P4 <sub>3</sub> 2 <sub>1</sub> 2                               |
| a/Å                                     | 14.5318(4)                                                     | 14.5294(3)             | 14.5128(14)            | 14.4791(5)                                                     | 14.4739(3)                       | 14.4958(3)                                                     |
| b/Å                                     | 14.5318(4)                                                     | 14.5294(3)             | 14.5128(14)            | 14.4791(5)                                                     | 14.4739(3)                       | 14.4958(3)                                                     |
| c/Å                                     | 29.1429(15)                                                    | 29.1842(16)            | 29.194(4)              | 29.069(2)                                                      | 29.0695(12)                      | 29.0361(15                                                     |
| α/°                                     | 90                                                             | 90                     | 90                     | 90                                                             | 90                               | 90                                                             |
| β/°                                     | 90                                                             | 90                     | 90                     | 90                                                             | 90                               | 90                                                             |
| γ/°                                     | 90                                                             | 90                     | 90                     | 90                                                             | 90                               | 90                                                             |
| $V/\text{\AA}^3$                        | 6154.2(4)                                                      | 6160.9(4)              | 6149.0(12)             | 6094.2(5)                                                      | 6089.9(3)                        | 6101.3(4)                                                      |
| $D_c/\mathrm{g~cm}^{-3}$                | 1.431                                                          | 1.430                  | 1.432                  | 1.445                                                          | 1.446                            | 1.444                                                          |
| Ζ                                       | 8                                                              | 8                      | 8                      | 8                                                              | 8                                | 8                                                              |
| $\mu$ (Mo-K $\alpha$ )/mm <sup>-1</sup> | 0.751                                                          | 0.750                  | 0.752                  | 0.759                                                          | 0.759                            | 0.758                                                          |
| Total reflections                       | 44194                                                          | 44250                  | 85258                  | 39120                                                          | 48397                            | 27150                                                          |
| Unique reflections                      | 5430                                                           | 5435                   | 5421                   | 5376                                                           | 5332                             | 5384                                                           |
| No. observations                        | 4839                                                           | 4663                   | 5041                   | 4688                                                           | 4641                             | 4445                                                           |
| No. parameters                          | 395                                                            | 425                    | 395                    | 395                                                            | 395                              | 395                                                            |
| F(000)                                  | 2688                                                           | 2688                   | 2688                   | 2688                                                           | 2688                             | 2688                                                           |
| Flack                                   | 0.02(4)                                                        | 0.03(11)               | -0.03(4)               | 0.01(4)                                                        | 0.02(6)                          | 0.08(10)                                                       |
| $R_1^a$                                 | 0.0366                                                         | 0.0956                 | 0.0394                 | 0.0402                                                         | 0.0543                           | 0.0933                                                         |
| $wR_2^{b}$                              | 0.0879                                                         | 0.2303                 | 0.1045                 | 0.0950                                                         | 0.1354                           | 0.2252                                                         |
| $GOF^{c}$                               | 1.061                                                          | 1.071                  | 1.106                  | 1.072                                                          | 1.098                            | 1.207                                                          |

**Table S2**Summary of crystal data and structure refinement parameters for the sixsamples obtained in the presence of enantiopure (1R,2R) cyclohexane-1,2-diamine.

.

|                          | (1414980)              | (1414981)              | (1414982)                                                               | (1414983)              | (1414984)                | (1414985)              |
|--------------------------|------------------------|------------------------|-------------------------------------------------------------------------|------------------------|--------------------------|------------------------|
| Emperical                | $C_{36}H_{26}CdN_2O_4$ | $C_{36}H_{26}CdN_2O_4$ | $\mathrm{C}_{36}\mathrm{H}_{26}\mathrm{C}d\mathrm{N}_{2}\mathrm{O}_{4}$ | $C_{36}H_{26}CdN_2O_4$ | $C_{36}H_{26}CdN_2O_4\\$ | $C_{36}H_{26}CdN_2O_4$ |
| formula                  |                        |                        |                                                                         |                        |                          |                        |
| Formula weight           | 662.99                 | 662.99                 | 662.99                                                                  | 662.99                 | 662.99                   | 662.99                 |
| Crystal system           | Tetragonal             | Tetragonal             | Tetragonal                                                              | Tetragonal             | Tetragonal               | Tetragonal             |
| Space group              | $P4_{1}2_{1}2$         | $P4_{1}2_{1}2$         | $P4_{1}2_{1}2$                                                          | $P4_{1}2_{1}2$         | $P4_{1}2_{1}2$           | $P4_{1}2_{1}2$         |
| a/Å                      | 14.4838(3)             | 14.4458(4)             | 14.4171(3)                                                              | 14.5097(3)             | 14.5222(9)               | 14.5387(16)            |
| $b/{ m \AA}$             | 14.4838(3)             | 14.4458(4)             | 14.4171(3)                                                              | 14.5097(3)             | 14.5222(9)               | 14.5387(16             |
| $c/\text{\AA}$           | 29.2182(11)            | 29.3447(13)            | 29.1929(14)                                                             | 28.8452(14)            | 29.245(3)                | 29.246(6)              |
| $\alpha/^{\circ}$        | 90                     | 90                     | 90                                                                      | 90                     | 90                       | 90                     |
| $\beta/^{\circ}$         | 90                     | 90                     | 90                                                                      | 90                     | 90                       | 90                     |
| γ/°                      | 90                     | 90                     | 90                                                                      | 90                     | 90                       | 90                     |
| $V/\text{\AA}^3$         | 6129.4(3)              | 6123.7(4)              | 6067.8(3)                                                               | 6072.8(3)              | 6167.6(8)                | 6181.8(16)             |
| $D_c/\mathrm{g~cm}^{-3}$ | 1.437                  | 1.438                  | 1.451                                                                   | 1.450                  | 1.428                    | 1.425                  |
| Ζ                        | 8                      | 8                      | 8                                                                       | 8                      | 8                        | 8                      |
| μ                        | 0.754                  | 6.051                  | 0.762                                                                   | 0.761                  | 0.750                    | 0.748                  |
| $(Mo-K\alpha)/mm^{-1}$   |                        |                        |                                                                         |                        |                          |                        |
| Total reflections        | 19423                  | 13673                  | 24957                                                                   | 29129                  | 55563                    | 37936                  |
| Unique                   | 5406                   | 6004                   | 5349                                                                    | 5351                   | 7507                     | 5372                   |
| reflections              |                        |                        |                                                                         |                        |                          |                        |
| No. observations         | 4182                   | 2801                   | 4011                                                                    | 4412                   | 4351                     | 3453                   |
| No. parameters           | 395                    | 395                    | 395                                                                     | 400                    | 388                      | 407                    |
| <i>F</i> (000)           | 2688                   | 2688                   | 2688                                                                    | 2688                   | 2688                     | 2688                   |
| Flack                    | 0.03(7)                | -0.022(17)             | 0.04(7)                                                                 | 0.05(6)                | 0.08(6)                  | -0.01(9)               |
| $R_1^{a}$                | 0.0694                 | 0.0690                 | 0.0689                                                                  | 0.0649                 | 0.0771                   | 0.0913                 |
| $wR_2^{b}$               | 0.1740                 | 0.1765                 | 0.1653                                                                  | 0.1590                 | 0.1865                   | 0.2052                 |
| $\mathrm{GOF}^{c}$       | 1.094                  | 1.026                  | 1.057                                                                   | 1.035                  | 1.082                    | 1.153                  |

| Table S3   | Summary of crystal data and structure refinement parameters for the six   |
|------------|---------------------------------------------------------------------------|
| samples of | btained in the presence of enantiopure $(1S,2S)$ cyclohexane-1,2-diamine. |

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| \Sigma |F_{o}|. {}^{b}wR_{2} = \{\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2} \}^{1/2}. {}^{c} \text{ GOF} = \{\Sigma w ((F_{o}^{2} - F_{c}^{2})^{2}) / (n-p) \}^{1/2},$ where n = number of reflections and p = total numbers of parameters refined.

| Empericalformula                        | 1(1424577)<br>C36H26CdN2O4 | C <sub>36</sub> H <sub>26</sub> CdN <sub>2</sub> O <sub>4</sub> | 3(1424579)<br>C <sub>36</sub> H <sub>26</sub> CdN <sub>2</sub> O <sub>4</sub> | C <sub>36</sub> H <sub>26</sub> CdN <sub>2</sub> O <sub>4</sub> | C36H26CdN2O4                     | 6(1424582)<br>C <sub>36</sub> H <sub>26</sub> CdN <sub>2</sub> O <sub>4</sub> |
|-----------------------------------------|----------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------|
| Formula weight                          | 662.99                     | 662.99                                                          | 662.99                                                                        | 662.99                                                          | 662.99                           | 662.99                                                                        |
| Crystal system                          | Tetragonal                 | Tetragonal                                                      | Tetragonal                                                                    | Tetragonal                                                      | Tetragonal                       | Tetragonal                                                                    |
| Space group                             | $P4_{3}2_{1}2$             | P4 <sub>3</sub> 2 <sub>1</sub> 2                                | P4 <sub>1</sub> 2 <sub>1</sub> 2                                              | $P4_{3}2_{1}2$                                                  | P4 <sub>1</sub> 2 <sub>1</sub> 2 | $P4_{1}2_{1}2$                                                                |
| a/Å                                     | 14.5486(2)                 | 14.4860(8)                                                      | 14.4896(3)                                                                    | 14.4789(4)                                                      | 14.5067(3)                       | 14.4975(2)                                                                    |
| b/Å                                     | 14.5486(2)                 | 14.4860(8)                                                      | 14.4896(3)                                                                    | 14.4789(4)                                                      | 14.5067(3)                       | 14.4975(2)                                                                    |
| c/Å                                     | 29.1966(11)                | 28.911(3)                                                       | 29.1167(10)                                                                   | 29.007(2)                                                       | 28.8880(16)                      | 29.1189(11)                                                                   |
| α/°                                     | 90                         | 90                                                              | 90                                                                            | 90                                                              | 90                               | 90                                                                            |
| β/°                                     | 90                         | 90                                                              | 90                                                                            | 90                                                              | 90                               | 90                                                                            |
| γ/°                                     | 90                         | 90                                                              | 90                                                                            | 90                                                              | 90                               | 90                                                                            |
| $V/Å^3$                                 | 6179.8(3)                  | 6066.8(8)                                                       | 6113.0(3)                                                                     | 6080.9(5)                                                       | 6079.3(4)                        | 6120.1(3)                                                                     |
| $D_c/\mathrm{g~cm}^{-3}$                | 1.425                      | 1.452                                                           | 1.441                                                                         | 1.448                                                           | 1.449                            | 1.439                                                                         |
| Ζ                                       | 8                          | 8                                                               | 8                                                                             | 8                                                               | 8                                | 8                                                                             |
| $\mu$ (Mo-K $\alpha$ )/mm <sup>-1</sup> | 0.748                      | 0.762                                                           | 0.756                                                                         | 0.760                                                           | 0.761                            | 0.755                                                                         |
| Total reflections                       | 23775                      | 10408                                                           | 13575                                                                         | 24969                                                           | 17458                            | 16218                                                                         |
| Unique reflections                      | 5453                       | 5252                                                            | 5388                                                                          | 5358                                                            | 5338                             | 5267                                                                          |
| No. observations                        | 4829                       | 3129                                                            | 4226                                                                          | 4082                                                            | 3803                             | 4264                                                                          |
| No. parameters                          | 406                        | 394                                                             | 394                                                                           | 394                                                             | 400                              | 394                                                                           |
| <i>F</i> (000)                          | 2688                       | 2688                                                            | 2688                                                                          | 2688                                                            | 2688                             | 2688                                                                          |
| Flack                                   | 0.05(8)                    | -0.01(8)                                                        | -0.05(8)                                                                      | 0.11(7)                                                         | 0.07(9)                          | 0.00(8)                                                                       |
| $R_1^a$                                 | 0.0862                     | 0.0746                                                          | 0.0780                                                                        | 0.0682                                                          | 0.0824                           | 0.0791                                                                        |
| $wR_2^{b}$                              | 0.1943                     | 0.1821                                                          | 0.1939                                                                        | 0.1664                                                          | 0.2165                           | 0.1967                                                                        |
| $\mathrm{GOF}^{c}$                      | 1.142                      | 1.018                                                           | 1.102                                                                         | 1.108                                                           | 1.069                            | 1.100                                                                         |

**Table S4** Summary of crystal data and structure refinement parameters for the ten randomly-taken crystals of **1** obtained in the absence of cyclohexane-1,2-diamine (to be continued).

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|$ .  ${}^{b}wR_{2} = \{\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}\}^{n/2}$ .  ${}^{c}$  GOF =  $\{\Sigma w((F_{o}^{2} - F_{c}^{2})^{2})/(n-p)\}^{n/2}$ where n = number of reflections and p = total numbers of parameters refined.

|                                         | 7(1429404)                                                              | <b>8</b> (1424583)                                                      | <b>9</b> (1424584)       | <b>10</b> (1424585)    |
|-----------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------|------------------------|
| Empericalformula                        | $\mathrm{C}_{36}\mathrm{H}_{26}\mathrm{C}d\mathrm{N}_{2}\mathrm{O}_{4}$ | $\mathrm{C}_{36}\mathrm{H}_{26}\mathrm{C}d\mathrm{N}_{2}\mathrm{O}_{4}$ | $C_{36}H_{26}CdN_2O_4\\$ | $C_{36}H_{26}CdN_2O_4$ |
| Formula weight                          | 662.99                                                                  | 662.99                                                                  | 662.99                   | 662.99                 |
| Crystal system                          | Tetragonal                                                              | Tetragonal                                                              | Tetragonal               | Tetragonal             |
| Space group                             | P41212                                                                  | P4 <sub>3</sub> 2 <sub>1</sub> 2                                        | $P4_{1}2_{1}2$           | $P4_{3}2_{1}2$         |
| a/Å                                     | 14.4906(3)                                                              | 14.5803(4)                                                              | 14.5474(2)               | 14.5616(3)             |
| <i>b</i> /Å                             | 14.4906(3)                                                              | 14.5803(4)                                                              | 14.5474(2)               | 14.5616(3)             |
| c/Å                                     | 29.1148(11)                                                             | 29.181(2)                                                               | 29.2215(9)               | 29.1530(8)             |
| a/°                                     | 90                                                                      | 90                                                                      | 90                       | 90                     |
| $\beta/^{\circ}$                        | 90                                                                      | 90                                                                      | 90                       | 90                     |
| γ/°                                     | 90                                                                      | 90                                                                      | 90                       | 90                     |
| $V/\text{\AA}^3$                        | 6113.5(3)                                                               | 6203.3(5)                                                               | 6184.1(2)                | 6181.6(2)              |
| $D_c/\mathrm{g~cm}^{-3}$                | 1.438                                                                   | 1.420                                                                   | 1.424                    | 1.425                  |
| Ζ                                       | 8                                                                       | 8                                                                       | 8                        | 8                      |
| $\mu$ (Mo-K $\alpha$ )/mm <sup>-1</sup> | 0.756                                                                   | 0.745                                                                   | 0.748                    | 0.748                  |
| Total reflections                       | 13777                                                                   | 18752                                                                   | 20134                    | 21429                  |
| Unique reflections                      | 5395                                                                    | 5451                                                                    | 5454                     | 5450                   |
| No. observations                        | 3995                                                                    | 4500                                                                    | 4798                     | 4810                   |
| No. parameters                          | 394                                                                     | 394                                                                     | 406                      | 394                    |
| <i>F</i> (000)                          | 2688                                                                    | 2688                                                                    | 2688                     | 2688                   |
| Flack                                   | 0.03(8)                                                                 | -0.01(4)                                                                | 0.02(5)                  | 0.12(10)               |
| $R_1^a$                                 | 0.0792                                                                  | 0.0465                                                                  | 0.0500                   | 0.0983                 |
| $wR_2^{b}$                              | 0.1930                                                                  | 0.0965                                                                  | 0.1156                   | 0.2214                 |
| $\mathrm{GOF}^{c}$                      | 1.094                                                                   | 1.067                                                                   | 1.097                    | 1.154                  |

**Table S4**Summary of crystal data and structure refinement parameters for the tenrandomly-taken crystals of 1 obtained in the absence of cyclohexane-1,2-diamine.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|.$   ${}^{b}wR_{2} = \{\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}\}^{1/2}.$   ${}^{c}$  GOF =  $\{\Sigma w ((F_{o}^{2} - F_{c}^{2})^{2}) / (n-p)\}^{1/2},$  where n = number of reflections and p = total numbers of parameters refined.

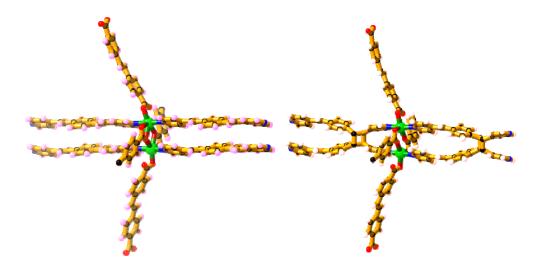



Fig. S1 View of the coordination environments of Zn(II) centers in 1P (left) or 2P (right).

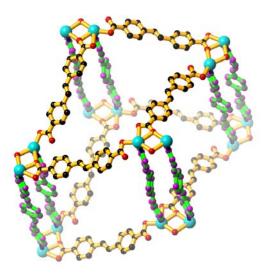



Fig. S2 View of the structure of  $[Cd_{16}(L^1)_8(L^2)_8]$ .

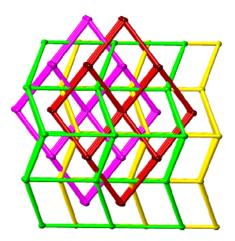
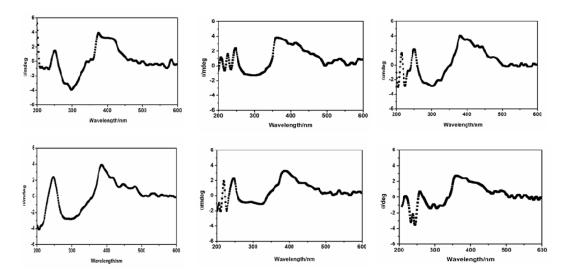
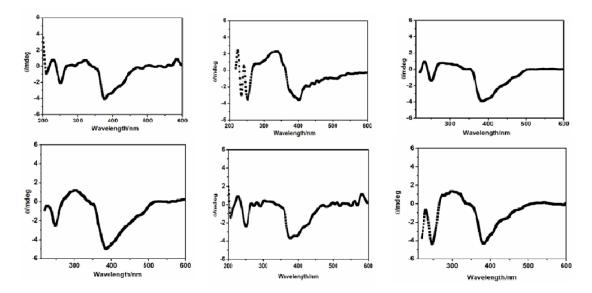





Fig. S3 Schematic representation of the 4-fold interpenetrating network.



**Fig. S4** Solid state CD spectra recorded for six crystals of **1** obtained in the presence of (1*S*,2*S*) cyclohexane-1,2-diamine.



**Fig. S5** Solid state CD spectra recorded for six crystals of **1** obtained in the presence of (R,R) cyclohexane-1,2-diamine.

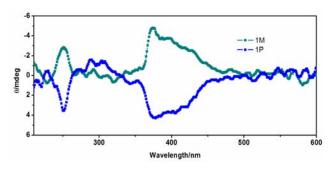
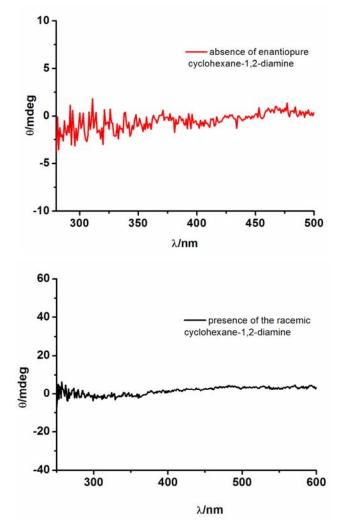




Fig. S6 CD spectra of the bulk samples of crystals in the presence of enantiopure cyclohexane-1,2-diamine.



**Fig. S7** CD spectra from the bulk samples in the absence of enantiopure cyclohexane-1,2-diamineor in the presence of the racemic cyclohexane-1,2-diamine.

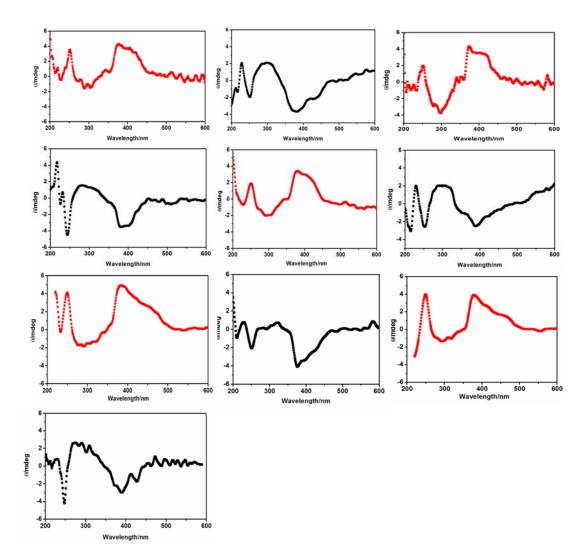
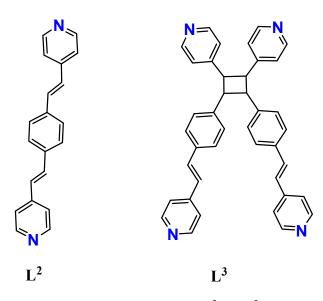




Fig. S8 Solid state CD spectra recorded for the six randomly-taken crystals of 1 obtained in the absence of cyclohexane-1,2-diamine.



**Scheme S3** Conformations of  $\mathbf{L}^2$  and  $\mathbf{L}^3$  ligands.

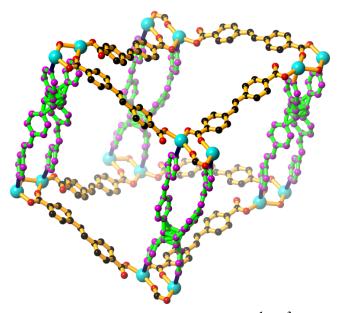
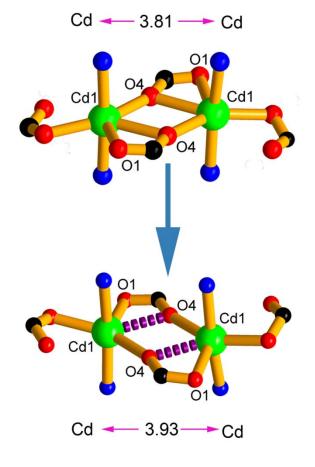
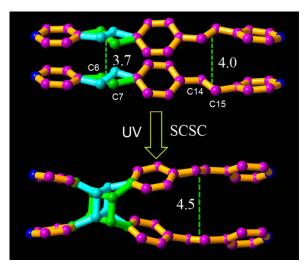





Fig. S9 View of the structure of  $[Cd_{16}(L^3)_8(L^3)_4]$ .



**Fig. S10** The Cd ··· Cd distances before and after the UV irradiation (bottom showing the irradiated one).



**Fig. S11** Single crystal structure showing different distances (3.7 and 4.0 Å) between the olefinic bonds C6=C7 and C14=C15 before cycloaddition reaction. The pair (C6, C7) was disordered into two parallel C=C pairs and a disordered single cyclobutane ring is formed under UV irradiation.

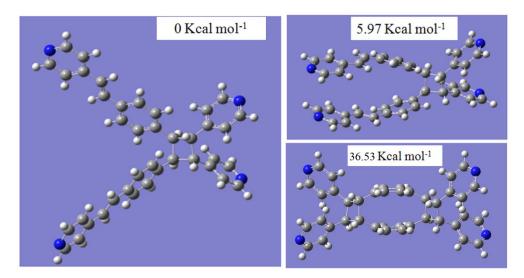



Fig. S12 Structural models of two possible photoproducts of L<sup>2</sup>. The relative free energies (at 298.15K) compared to that product a are listed in insets. For simplicity, the Cd atoms and other auxiliary fragments in the X-ray crystal structures were not taken into consideration.

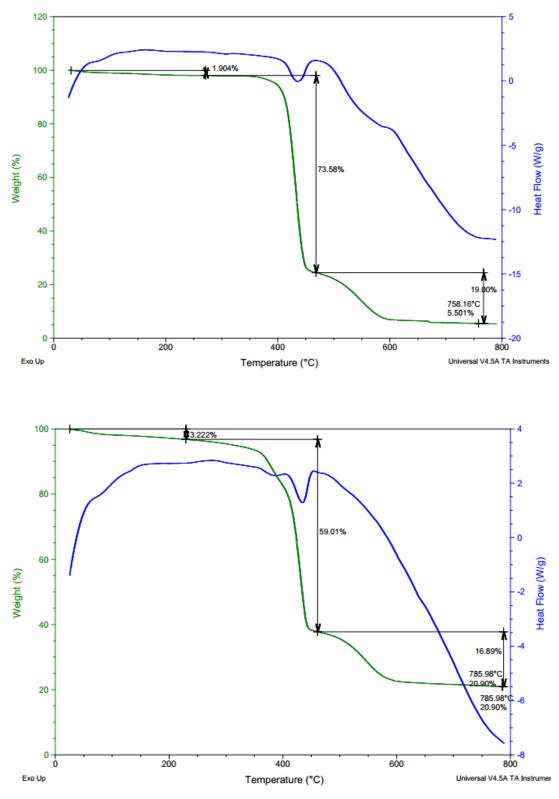



Fig. S13 The TG curves of 1 (upper) and 2 (down).

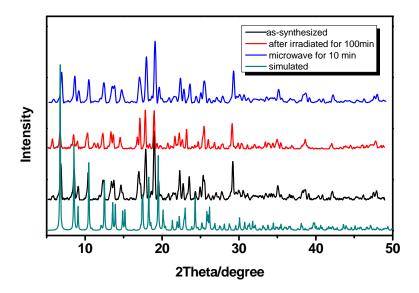
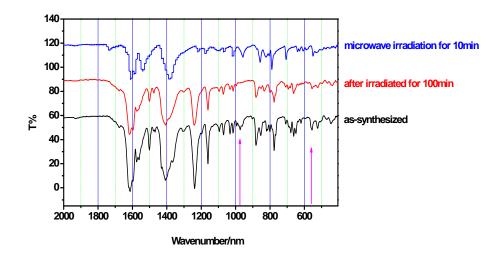
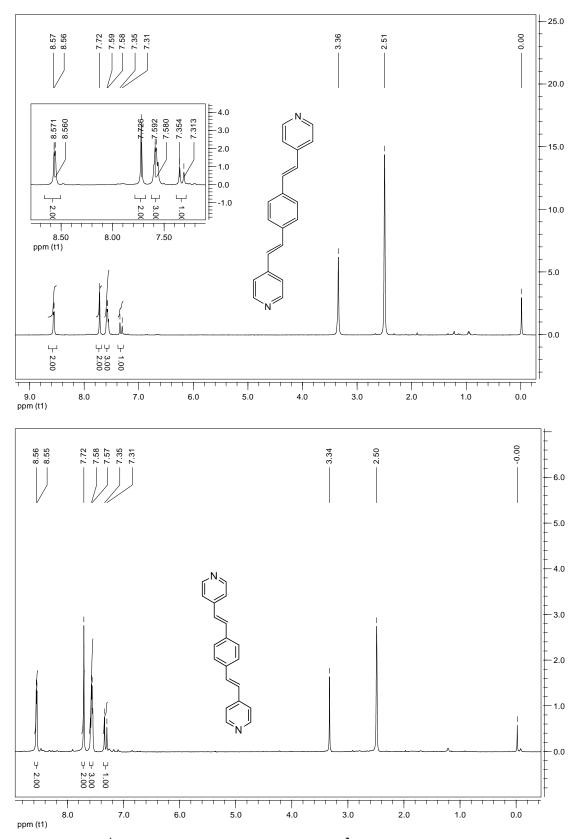
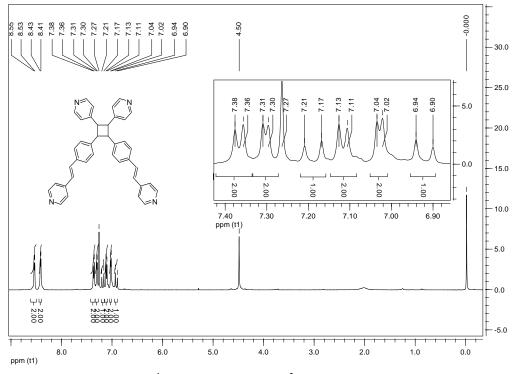
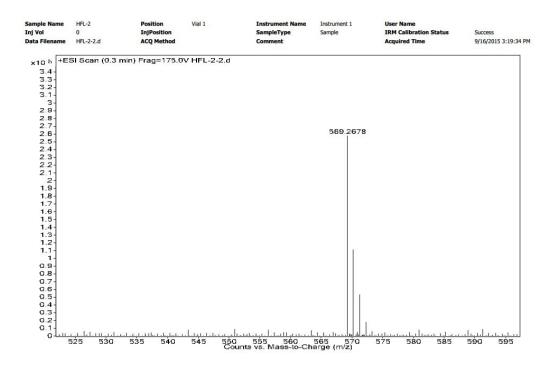



Fig. S14 Experimental and simulated PXRD patterns for 1, 2 and 2 under microwave irradiation for 10min.



Fig. S15 The IR spectra of the samples 1, 2, and 2 under microwave irradiation for 10min.



**Fig. S16** The <sup>1</sup>H NMR spectra of the starting material  $L^2$  (up) and the ligand (down) extracted from 2 under microwave irradiation for 10 min ( $d_6$ -DMSO).



**Fig. S17** The <sup>1</sup>H NMR spectrum of  $L^3$  extracted from 2 (CDCl<sub>3</sub>).



**Fig. S18** The positive-ion ESI mass spectrum of  $L^3$  in acetonitrile.

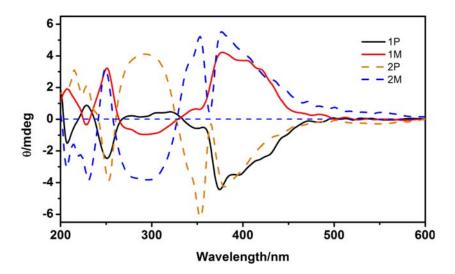



Fig. S19 The CD spectra for 1P/1M and 2P/2M.