Tetrameric Psuedo-Peptide Receptors with Allosteric

Properties

Mee-Kyung Chung,^{*a*} *Stephen J. Lee*,^{*b*} *Marcey L. Waters*^{*a*}* *and Michel R. Gagné*^{*a*}*

^aDepartment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-

3290, USA. ^bUS Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709,

USA

Supporting Information

Contents

Experimental Details (synthesis and physical data of monomers, physical and crystal data of SI-3	tetramers). – SI-5
SI Table 1. Relative yields (%) and amplification factors (A.F.) of tetramer 1a and 1b.	SI-6
SI Table 2. β -turn types and dihedral angles in 1a and 1b .	SI-6
SI Figure 1. Packing diagram of tetramer 1b.	SI-7
SI Figure 2. Plot of 1b vs time as a function of added 3•HFBA addition under the acidic condi-	ition. SI-7
SI Figure 3. Dissociation constant determination for the binding of tetramers 1 and various eq 3 • HFBA at room temperature.	uivalents of SI-8
SI Figure 4. Dissociation constant determination for the binding of tetramers 1 and various eq 3-HFBA under acidic condition at room temperature.	uivalents of SI-9
SI Figure 5. Dissociation constant determination for the binding of tetramer 1b and various of 3 • HFBA under acidic condition at room temperature (10% MeCN-d ₃ /CD ₂ Cl ₂).	equivalents SI-10
SI Figure 6. Stacked ¹ H NMR spectra of the mixtures of 1b (mM), TFAD ($mM = 11.0$ various equivalents of 3 • HFBA in 10% MeCN-d ₃ /CD ₂ Cl ₂ at room temperature.	equiv), and SI-11
SI Figure 7. Variable temperature ¹⁹ F NMR spectra from the combination of 2.5 equiv of (2'-F) and 1b (2.7 mM) in 10% MeCN-d ₃ /CD ₂ Cl ₂ ; and TFAD (12 equiv).	of 3•HFBA SI-12
SI Figure 8 . HRMS spectra of mixtures of (a) 1a , 3 • HFBA and TFAD, and (b) 1b , 3 • HFBA observed by Accurate Mass LC-TOF (Agilent).	and TFAD SI-13
SI Figure 9 . Rates of dynamic exchange for free host 1b and the host-guest complex 1b •[3 room temperature.	3•HFBA] at SI-14
SI Figure 10. ¹ H NMR spectra of monomer D-Pro-α-Me-L-Phe (600.1 MHz, CDCl ₃ , 23 °C).	SI-15
SI Figure 11. ¹³ C NMR spectra of monomer D-Pro-α-Me-L-Phe (150.9 MHz, CDCl ₃ , 23 °C).	SI-16
SI1 Figure 12. ¹ H NMR spectra of tetramer 1a (600.1 MHz, MeCN-d ₃ with TMS, 23 °C).	SI-17
SI Figure 13. ¹ H NMR spectra of tetramer 1a (600.1 MHz, MeOH-d ₄ , 23 °C).	SI-18
SI Figure 14. ¹³ C NMR spectra of tetramer 1a (150.9 MHz, MeOH-d ₄ , 23 °C).	SI-19
SI Figure 15 ¹ H NMR spectra of tetramer 1b (600.1 MHz, MeCN-d ₃ with TMS, 23 °C).	SI-20
SI Figure 16. ¹ H NMR spectra of tetramer 1b (600.1 MHz, 10% MeCN-d ₃ /CD ₂ Cl ₂ , 23 °C).	SI-21
SI Figure 17. ¹³ C NMR spectra of tetramer 1b (150.9 MHz, 10% MeCN-d ₃ /CD ₂ Cl ₂ , 23 °C).	SI-22

Experimental Details

General Methods.

Chemicals were purchased from Aldrich, Fisher Scientific and Chem-Impex International, Inc. and used as received. ¹H and ¹³C NMR spectra of monomers and ¹H, ¹³C, and HSQC NMR spectra of tetramers were recorded on a Bruker DRX 500 spectrometer or a Bruker 600 Cryoprobe spectrometer and processed using TOPSPIN Bruker NMR software (V. 3.0). High resolution mass spectra were obtained on an Agilent Accurate LC-TOF Mass Spectrometer (Agilent Series 6220) operating in positive ion mode with electrospray ionization source (fragmentor = 170V). The data were analyzed using Agilent MassHunter Workstation Software, Qualitative Analysis (V. B.02.00). HPLC analysis was performed on a Hewlett-Packard Series 1100 instrument, using a Halo-C18 column (4.6 x 150 mm, 2.7 µm) with gradient elution (methanol/water) at a flow rate of 0.45 mL/min and at 55 °C. The injection volume for a 5 mM Dynamic combinatorial library (DCL) reaction was typically 3.5 µL. UV absorbance chromatograms were recorded at wavelengths of 220 nm and 289 nm. The data were analyzed using Agilent Chemstation. The isolation of tetramers was performed on a modified semi-preparative HPLC (Agilent Series 1200 LC instrument), using an Agilent Zorbax Eclipse XDB-C18 PrepHT Cartridge column (21.2 x 250 mm, 7 µm) with isocratic methanol/water elution (no additive) at a flow rate of 9 mL/min and at 55 °C. The eluent was monitored by UV absorbance chromatogram at a wavelength of 289 nm and the corresponding tetramers were collected with a fraction collector. X-ray crystallographic analyses of tetramers 1a and 1b were performed on a Bruker-AXS SMART APEX-II system equipped with a graphite monochromator: please contact Dr. Peter S. White (pwhite@email.unc.edu) for correspondence regarding X-ray analyses.

Synthesis of monomers

D-Pro-Aib and D-Pro- α -Me-L-Phe were prepared using previously reported methods. ¹ A coupling reaction using HBTU, HOBt and Et₃N in DMF from D-Pro precursor and methyl esters of Aib or α -Me-L-Phe, followed by the subsequent treatment with hydrazine monohydrate in methanol at ambient temperature resulted the corresponding D-Pro-Aib (previously reported) and D-Pro- α -Me-L-Phe (New) monomers. The total isolated yields for the two step reactions were 43-48%.

(i) *Physical data of D-Pro-* α *-Me-L-Phe* ¹H NMR (600.1 MHz, CDCl₃, 23 °C): δ = 8.36 (s, 1H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.30 – 7.27 (m, 3H), 7.16 (d, *J* = 8.1 Hz, 2H), 6.58 (s, 1H), 5.40 (s, 1H), 4.42 (dd, *J* = 7.9, 5.6 Hz, 1H), 3.85 (d, *J* = 4.2 Hz, 1H), 3.54 – 3.46 (m, 3H), 3.32 (s, 6H), 2.98 (d, *J* = 13.7 Hz, 1H), 2.25 (m, 1H), 2.14 (m, 1H), 2.06 (m, 1H), 1.86 (m, 1H), 1.59 (s, 3H). ¹³C NMR (150.9 MHz, CDCl₃, 23 °C): δ = 173.6, 171.3, 170.9, 140.5, 135.6, 135.4, 130.3, 128.5, 127.2, 127.1, 126.7, 102.3, 61.5, 60.1, 52.7, 50.5, 43.0, 28.2, 25.5, 23.7. HRMS (ESI): calcd for C₂₅H₃₃N₄O_{5⁺} [M+H]⁺ 469.2445, found 469.2456.

¹ Voshell, S. M.; Lee, S. J.; Gagné, M. R. J. Am. Chem. Soc. 2006, 128, 12422-12423.

Synthesis of tetramers and generation of 1a and 1b crystals for X-ray analysis

Several 5 mM DCL solutions were prepared on a 20 mL scale. Each was prepared by dissolving the D-Pro-Aib and D-Pro- α -Me-L-Phe (100.0 µmol) in 100% acetonitrile (20 mL) and subsequently adding trifluoroacetic acid (50 equiv, 5000 µmol) and the guest (-)-cytidine (10 equiv, 1000 µmol). The solutions were allowed to sit for several days until a steady state was reached (typically 7-10 days) prior to LC analyses. Once they reached their steady state, triethylamine (50 equiv, 5000 µmol) was added to neutralize the acid. The solutions were combined and the volatiles were removed in vacuo. The minimum amount of 80% methanol/chloroform solution was added to the resulting mixture and then filtered. This solution was eluted on the semi-preparative HPLC with various methanol/water isocratic solutions to isolate the tetramers. Recrystallization of **1a** from methanol/water by slow evaporization at RT for a few weeks offered crystals suitable for the X-ray analysis. For the tetramer **1b**, recrystallization from methanol/chloroform by slow evaporization at RT resulted in crystals suitable for the X-ray analysis.

Physical data of tetramer 1a and 1b: both are new compounds

(ii) Physical data of **1a** ¹H NMR (600.1 MHz, MeCN-d₃, 23 °C): $\delta = 10.69$ (s, 1H), 7.94 (s, 1H), 7.40 (s, 1H), 7.37 (d, J = 8.2 Hz, 2H), 6.90 (d, J = 7.9 Hz, 2H), 4.34 (t, J = 8.1 Hz, 1H), 3.75 (m, 1H), 3.38 (m, 1H), 2.12 - 2.03 (m, 3H), 1.77 (m, 1H), 1.53 (s, 3H), 1.48 (s, 3H). ¹H NMR (600.1 MHz, MeOH-d₄, 23 °C): $\delta = 7.93$ (s, 1H), 7.45 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 7.0 Hz, 2H), 4.47 (t, J = 8.4 Hz, 1H), 3.90 (m, 1H), 3.42 (m, 1H), 2.20 - 2.13 (m, 3H), 1.79 (m, 1H), 1.60 (s, 3H), 1.55 (s, 3H). ¹³C NMR (150.9 MHz, MeOH-d₄, 23 °C): $\delta = 174.7$, 174.6, 171.0, 148.3, 138.5, 138.2, 129.1, 128.1, 63.2, 57.9, 51.9, 30.0, 27.8, 27.5, 24.0. HRMS (ESI): calcd for C₆₈H₈₁N₁₆O₁₂⁺ [M+H]⁺ 1313.6214, found 1313.6215. (iii) Physical data of **1b** ¹H NMR (600.1 MHz, MeCN-d₃, 23 °C): $\delta = 10.67$ (s, 1H), 8.17 (s, 1H), 7.54

(iii) Physical data of **10** ⁻H NMR (600.1 MHz, MeCN-d₃, 25 ⁻C): $\delta = 10.67$ (s, 1H), 8.17 (s, 1H), 7.54 (d, J = 7.9 Hz, 2H), 7.38 – 7.27 (m, 5H), 7.21 (d, J = 13.5 Hz, 1H), 6.90 (s, 1H), 4.30 (t, J = 7.9 Hz, 1H), 3.67 (m, 1H), 3.42 (m, 2H), 3.10 (d, J = 13.5 Hz, 1H), 2.28 (m, 1H), 2.01 (m, 1H), 1.89 (m, 1H), 1.81 (m, 1H), 1.40 (m, 3H). ¹H NMR (600.1 MHz, 10% MeCN-d₃/CD₂Cl₂, 23 °C): $\delta = 10.59$ (s, 1H), 7.94 (s, 1H), 7.40 – 7.21 (m, 9H), 6.56 (s, 1H), 4.24 (m, 1H), 3.68 (m, 1H), 3.40 (m, 1H), 3.30 (d, J = 13.4 Hz, 1H), 2.20 (m, 1H), 2.08 (m, 1H), 1.88 (m, 1H), 1.72 (m, 1H), 1.51 (m, 3H). ¹³C NMR (150.9 MHz, 10% MeCN-d₃/CD₂Cl₂, 23 °C): $\delta = 172.0$, 170.4, 146.6, 137.2, 136.8, 135.8, 131.0, 128.8, 128.0, 127.6, 127.1, 63.0, 60.4, 51.1, 44.5, 29.4, 26.3, 22.9. HRMS (ESI): calcd for C₉₂H₉₇N₁₆O₁₂⁺ [M+H]⁺ 1617.7466, found 167.7425.

Crystal data of tetramer 1a and 1b

(i) Crystal data of **1a**: Identification code **X1007002**, (C₆₈H₈₀N₁₆O₁₂), M = 1313.48 g/mol, crystal dimensions 0.414 x 0.198 x 0.076 mm³, orthorhombic, space group P2₁2₁2₁, cell parameters a = 22.2194(6) Å, b = 26.8073(8) Å, c = 30.7909(8) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 18340.4(9) Å³, T = 100.0 K, Z = 8, $\rho_{calcd} = 0.951$ g cm⁻³, μ (MoK α) = 0.549 mm⁻¹. 40540 reflections were measured (1.65° ≤ $2\Theta \le 126.06^{\circ}$), 13600 unique ($R_{int} = 0.0996$) which were used all calculations. Index ranges are - 24≤h≤25, 0≤k≤29 and 0≤l≤35. Using Olex2, the structure was solved with the XM structure program using Dual Space and refined with the XL refinement package using Least Squares minimization. The

final $R_1 = 0.0692$, $wR_2 = 0.1673$ for I>2 σ (I) and $R_1 = 0.1005$, $wR_2 = 0.1830$ for all data. GOF = 0.868, max/min residual density 0.248/-0.254 e⁻Å⁻³.

(ii) Crystal data of **1b**: Identification code **X1204022** (**MKC-5073**), $C_{98}H_{120}N_{16}O_{18}$, M = 1810.09, crystal dimensions 0.367 x 0.232 x 0.216 mm, tetragonal, space group P4₃2₁2, cell parameters a = 15.4204(2) Å, b = 15.4204(2) Å, c = 43.9852(6) Å, $\alpha = 90.00^{\circ}$, $\beta = 90.00^{\circ}$, $\gamma = 90.00^{\circ}$, V = 10459.2(3) Å, T = 100.0 K, Z = 4, $\rho_{calcd} = 1.150$ mg mm⁻³, $\mu = 0.655$ mm⁻¹, radiation CuK α , $\lambda = 1.54178$ Å. 71295 reflections were measured (6.074° $\leq 2\Theta \leq 133.198^{\circ}$), 9227 unique (R_{int} = 0.0431, R_{sigma} = 0.0234) were used in all calculations. Index ranges are -18≤h≤17, -18≤k≤18 and -52≤l≤52. Using Olex2, the structure was solved with the XM structure program using Dual Space and refined with the XL refinement package using Least Squares minimization. The final R₁ = 0.0663, wR₂ = 0.1836 for I>2\sigma(I) and R₁ = 0.0717, wR₂ = 0.1884 for all data, GOF = 1.058; max/min residual density 0.56/-0.31 e⁻Å⁻³. Flack parameter = 0.10(8).

SI Table 1. Relative yields (%) and amplification factors (A.F.) of tetramers **1a** and **1b** obtained from their corresponding dynamic combinatorial libraries (DCLs).

D-Pro-Aib ($\mathbf{R} = Me$), D-Pro- α -Me-L-Phe ($\mathbf{R} = Bn$)

Tetramer Guest		Yield (%)ª	A. F. ^b	
10	2	86	1.5	
Ia	3	76	1.4	
1b	2	73	3.3	
	3	63	2.9	

^aRelative yields obtained from HPLC-UV (289 nm) traces of DCLs formed from D-Pro-Aib or D-Pro- α -Me-L-Phe. ^bThe amounts of tetramers **1a** and **1b** in the corresponding untemplated DCLs were 56 and 22 % yields, respectively.

			1a	1b		
		angles	type	angles	type	
β-1	Φ_{i+1}	61.2		60.0		
	$\Psi_{i\!+\!1}$	-145.3	TT/a	-128.4	TT/a	
	$\Phi_{i\!+\!2}$	-59.1	$\Pi^{\prime u}$	-55.8	11	
	$\Psi_{i\!+\!2}$	-31.3		-31.4		
β-2	Φ_{i+1}	59.2		61.2		
	$\Psi_{i\!+\!1}$	-168.2	Deviated II'b	-132.6	11/2	
	$\Phi_{i\!+\!2}$	-49.2		-61,4	11""	
	$\Psi_{i\!+\!2}$	-53.6		-17.8		
β-3	Φ_{i+1}	50.0	П' ^а	60.0		
	$\Psi_{i\!+\!1}$	-136.3		-128.4	TT/a.c	
	$\Phi_{i\!+\!2}$	-48.8		-55.8	Π^{rug}	
	$\Psi_{i\!+\!2}$	-38.3		-31.5		
β-4	Φ_{i+1}	60.8		61.2		
	$\Psi_{i\!+\!1}$	-147.9	II′ ^a	-132.6	TT/a.d	
	$\Phi_{i\!+\!2}$	-63.4		-61.4	11, 1, 2	
	$\Psi_{i\!+\!2}$	-15.1		-17.8		

SI Table 2. β -turn types and dihedral angles in 1a and 1b.

^aUsing normal cutoffs of 40° for deviation from standard angles, with one angle allowed deviated by 50°, these β turns can be classified as type II' (standard mean dihedral angles: Φ_{i+1} , 60°; Ψ_{i+1} , -126°; Φ_{i+2} , -91°; Ψ_{i+2} , 1°). See the ref.: Hutchinson, E. G.; Thornton, J. M. *Protein Sci.* **1994**, *3*, 2207-2216. ^bUsing the same cutoffs (normal cutoffs of 40° for deviation from standard angles, with one angle allowed extensively deviated by 50°), this β -turn cannot be classified as type II'. However, this β -turn can be classified as type II' when normal cutoffs of 45° for deviation from standard angles are employed: that is, deviated type II'. ^cBy symmetry, dihedral angles and the turn type are the same as the β -1 turn. ^dBy symmetry, dihedral angles and turn type are the same as the β -2 turn.

SI Figure 1. Packing diagram of tetramer **1b** showing how the prolines (space-filled shapes) of one molecule (gray) intrude into the binding cavity of another. Phenyl groups of the binding cavity are shown as space-filled shapes.

SI Figure 2. Plot of the contents **1b** in solution vs time as a function of added **3**•**HFBA** under acidic conditions: (a) 11.0 and (b) 22.2 equiv of TFAD addition.

(a) 1a and 3·HFBA

(i) 1:1 host-guest scenario

$$H + G \longrightarrow H-G$$

$$K_{eq} = \frac{[H-G]}{[H][G]} \quad [H-G] = K_{eq}[H][G]$$

$$K_D = \frac{[H][G]}{[H-G]} \quad [H][G] = K_D[H-G]$$

[H-G] and [H][G]: linear relationship.

(ii) 1:2 host-guest scenario

$$H + 2G \longrightarrow H-G_2$$

$$K_{eq} = \frac{[H-G_2]}{[H][G]^2} \quad [H-G_2] = K_{eq}[H][G]^2$$

$$K_D = \frac{[H][G]^2}{[H-G_2]} \quad [H][G]^2 = K_D[H-G_2]$$

$$[H] G \downarrow and [H][G]^2; \text{ linear relationship}$$

Since only [H][G] and [H-G] display linear relationships for **1** and **3**•**HFBA**, the binding is consistent with a 1:1 stiochiometry: $K_D = 19$ and 22 mM for **1a** and **1b**, respectively.

SI Figure 3. Dissociation constant determination for the binding of tetramers **1** and various equivalents of **3·HFBA** at room temperature. The data were obtained from the ratio of the host-guest methyl and free host methyl in ¹H NMR spectra of the mixture of tetramers **1** and **3·HFBA** (100% MeCN-d₃).

(a) 1a and 3·HFBA

(i) 1:1 host-guest scenario

$$H + G \longleftarrow H-G$$

$$K_{eq} = \frac{[H-G]}{[H][G]} \quad [H-G] = K_{eq}[H][G]$$

$$K_D = \frac{[H][G]}{[H-G]} \quad [H][G] = K_D[H-G]$$

[H-G] and [H][G]: linear relationship.

(ii) 1:2 host-guest scenario

$$H + 2G \longrightarrow H-G_2$$

$$K_{eq} = \frac{[H-G_2]}{[H][G]^2} \quad [H-G_2] = K_{eq}[H][G]^2$$

$$K_D = \frac{[H][G]^2}{[H-G_2]} \quad [H][G]^2 = K_D[H-G_2]$$

$$[H-G_2] \text{ and } [H][G]^2; \text{ linear relationship.}$$

Since only [H][G] and [H-G] display linear relationships for 1 and 3-HFBA, the binding is consistent with a 1:1 binding stoichiometry: $K_D = 2.4$ and 3.8 mM for **1a** and **1b**, respectively.

SI Figure 4. Dissociation constant determination for the binding of tetramers 1 and various equivalents of 3•HFBA under acidic condition at room temperature. The data were obtained from the ratio of the hostguest methyl and free host methyl in ¹H NMR spectra of the mixture of tetramers 1, 3•HFBA, and TFAD (11.0 equiv/host) (100% MeCN-d₃).

(i) 1:1 host-guest scenario

$$H + G \longrightarrow H-G$$

$$K_{eq} = \frac{[H-G]}{[H][G]} \quad [H-G] = K_{eq}[H][G]$$

$$K_D = \frac{[H][G]}{[H-G]} \quad [H][G] = K_D[H-G]$$

[H-G] and [H][G]: linear relationship.

(ii) 1:2 host-guest scenario

$$H + 2G \longrightarrow H-G_2$$

$$K_{eq} = \frac{[H-G_2]}{[H][G]^2} \quad [H-G_2] = K_{eq}[H][G]^2$$

$$K_D = \frac{[H][G]^2}{[H-G_2]} \quad [H][G]^2 = K_D[H-G_2]$$

 $[H-G_2]$ and $[H][G]^2$: linear relationship.

Since only [H][G] and [H-G] display linear relationships for **1b** and **3·HFBA**, the binding is consistent with a 1:1 solchiometry: $K_D = 1.4$ mM for **1b**.

SI Figure 5. Dissociation constant determination for the binding of tetramer **1b** and various equivalents of **3**•**HFBA** under acidic condition at room temperature (10% MeCN-d₃/CD₂Cl₂). The data were obtained from the ratio of the host-guest methyl and free host methyl in ¹H NMR spectra of the mixture of tetramers **1**, **3**•**HFBA**, and TFAD (11.0 equiv/host).

▲: H¹, H², H³, and H^a signals of **3·HFBA** in (f). •: Newly generated peaks after the addition of **3·HFBA** to the mixture of **1b** and TFAD in 10%MeCN-d₃/CD₂Cl₂, which are corresponding to Host-Guest adduct signals.

SI Figure 6. Stacked ¹H NMR spectra of the mixtures of **1b** (1.8 mM), TFAD (19.8 mM = 11.0 equiv), and various equivalents of **3•HFBA** in 10% MeCN-d₃/CD₂Cl₂ at room temperature ((a) – (e)). The equivalents of **3•HFBA** are (a) 0.0 equiv, (b) 3.1 equiv, (c) 10.8 equiv, (d) 13.2 equiv and (e) 20.1 equiv. (f) ¹H NMR spectrum of **3•HFBA** (4.3 mM) and TFAD (20.8 mM) in 10% MeCN-d₃/CD₂Cl₂ at room temperature.

SI Figure 7. Variable temperature ¹⁹F NMR spectra from the combination of 2.5 equiv of **3•HFBA** (2'-F) and **1b** (2.7 mM) in 10% MeCN-d₃/CD₂Cl₂; and TFAD (12 equiv). The upfield resonance at -55 °C corresponds to free **3•HFBA**.

SI Figure 8. HRMS spectra of mixtures of (a) 1a, 3•HFBA and TFAD, and (b) 1b, 3•HFBA and TFAD observed by Accurate Mass LC-TOF (Agilent). Insets are the extended regions indicating $[H•G]^+$ and $[H•G_2]^{2+}$.

(a) ¹H NMR spectrum of the host-guest methyls (Me_a & Me_b) and the free host methyl (**1b** Me).

Relative intensity of the corresponding methyl signal was computed by first normalizing the integral and then subtracting the value at $t_m=0$.

(b) Typical dynamic exchange plots for a system exchanging between two states.

Exchange plot from the **1b** methyl to Me_b in **1b**•[**3**•**HFBA**]. Solution was prepared from **1b** (4.0 mM in 10%MeCN-d₃/CD₂Cl₂), **3**•**HFBA** (2.2 equiv) and TFAD (12 equiv). Under these conditions the host speciates as follows: 61% **1b**•[**3**•**HFBA**] and 39% **1b**.

Exchange plot from the **1b** methyl to Me_b in **1b**•[**3**•**HFBA**]. Solution was prepared from **1b** (4.0 mM in 10%MeCN-d₃/CD₂Cl₂), **3**•**HFBA** (4.3 equiv) and TFAD (12 equiv). Under these conditions the host speciates as follows: 74% **1b**•[**3**•**HFBA**] and 26% **1b**.

(c) Rates of dynamic exchange of the methyl groups of free host **1b** and the host-guest complex **1b**•[**3**•**HFBA**] at room temperature.

	Rates (s ⁻¹) of 1b methyl to 1b •[3•HFBA] methyls (Me _a &Me _b)		Rates (s ⁻¹) of 1b•[3•HFBA] methyls (Me _a & Me _b) to 1b methyl			Rates (s ⁻¹) between two methyls (Me _a & Me _b) of 1b•[3•HFBA]			
Guest	1b Me to Me _a	1b Me to Me _b	Ave	Me _a to 1b Me	Me _b to 1b Me	Ave	Me _a to Me _b	Me _b to Me _a	Ave
2.1 eq	0.56	0.50	0.53 ±0.036	0.48	0.51	0.49 ±0.018	1.00	1.03	1.02 ±0.024
4.3 eq.	1.28	1.01	1.14 ±0.187	0.45	0.47	0.46 ±0.017	1.30	1.45	1.37 ±0.105

SI Figure 9. Rates of dynamic exchange for free host **1b** and the host-guest complex **1b**•[**3**•**HFBA**] at room temperature. Exchange rates were computed by the relative intensity plots of the relevant methyl signals (eg. (b)) of each species as a function of t_m (mixing time) in a series of 1D EXSY experiments. Due to the limited sample concentrations, 1D EXSY experiments were processed instead of the more time-consuming 2D EXSY experiments. The pulse sequence for the 1D EXSY experiments (90°-t₁-90°-t_m-90°-t₂ pulse sequence with a choice of t_1 's) was reported in the following publication (Perrin, C. L.; Engler, R. E. *J. Am. Chem. Soc.* **1997**, *119*, 585-591).

SI Figure 10. ¹H NMR spectra of monomer D-Pro-α-Me-L-Phe (600.1 MHz, CDCl₃, 23 °C).

SI Figure 11. ¹³C NMR spectra of monomer D-Pro-α-Me-L-Phe (150.9 MHz, CDCl₃, 23 °C).

SI Figure 12. ¹H NMR spectra of tetramer 1a (600.1 MHz, MeCN-d₃ with TMS, 23 °C).

SI Figure 13. ¹H NMR spectra of tetramer 1a (600.1 MHz, MeOH-d₄, 23 °C).

SI Figure 14. ¹³C NMR spectra of tetramer 1a (150.9 MHz, MeOH-d₄, 23 °C).

SI Figure 15. ¹H NMR spectra of tetramer 1b (600.1 MHz, MeCN-d₃ with TMS, 23 °C).

SI Figure 16. ¹H NMR spectra of tetramer 1b (600.1 MHz, 10% MeCN-d₃/CD₂Cl₂, 23 °C).

SI Figure 17. ¹³C NMR spectra of tetramer 1b (150.9 MHz, 10% MeCN-d₃/CD₂Cl₂, 23 °C).