Supporting Information

Carbene-catalyzed desymmetrization of 1,3-diols: access to optically enriched tertiary alkyl chlorides

Bao-Sheng Li,^{+,a} Yuhuang Wang,^{+,a} Rupert S. J. Proctor,^a Zhichao Jin^a and Yonggui Robin Chi^{a,b}*

¹Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

²Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China

robinchi@ntu.edu.sg

Table of contents

1. General Information	S2
2. General procedure for preparation of substrates 1 and 2	S2
3. Screening of conditions and general procedure for syntheses of products 3	S4
4. General procedure for the synthetic applicability	S5
5. Determination of the absolute configuration of the products 3 and 4	S7
6. Characterization of key compounds 1, 2 and 3	S8
7. References	S22
8. ¹ H and ¹³ C NMR spectra for key compounds	S23
9. HPLC spectra for products	S139

1. General Information

All reactions were carried out under standard conditions using N2 as shielding gas with magnetic stirring. Analytical thin layer chromatography (TLC) was performed with TLC plates. All reactions and column chromatography were monitored by thin layer chromatography with UV light at 254 nm and colorized with ethanol solution of phosphomolybdic acid, followed by heating using a heat gun. All products could be purified by column chromatography using ethyl acetate and hexane as eluent. Organic solutions were concentrated by rotary evaporation. All solvents were freshly distilled before use. ¹H and ¹³C NMR chemical shifts are reported in CDCl₃ solution of the compound by Bruker AV-300 MHz or Bruker AV-400 MHz instruments and marked in ppm relative to tetramethylsilane (TMS) (0) and CDCl₃ (77.0 ppm) as standard. The following abbreviations are used to describe peak patterns where appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m =multiplet. Coupling constants (J) are reported in Hertz (Hz). High resolution mass spectral analysis (HRMS) was performed on Waters Q-TOF Premier mass spectrometer. The determination of ee was performed via chiral phase HPLC analysis using Shimadzu LC-20AD HPLC workstation. Optical rotations were measured using a 1 mL cell with a 1 cm path length on a Jasco P1030 digital polarimeter and are reported as follows: $\left[\alpha\right]_{20}^{D}$. The dr values of the products were determined by the corresponding ¹H NMR spectra. The absolute configuration of products could be confirmed according to the optical rotations of known compounds.

2. General procedure for preparation of substrates 1 and 2

All substrates were prepared according to literature¹ (1j) or following general procedure (1a-1i and 2a-2p) from different starting materials (the specific starting material, please see the related data part of substrate).

Under nitrogen atmosphere, to a suspension of sodium hydride (60% suspension in oil, 1.5 equiv) in THF (0.3mmol/mL) was added triethyl phosphonoacetate (1.8 equiv) dropwise at 0 °C, then the resulting mixture was stirred for 30 min at 0 °C. Ketone **s1** (1 equiv, 1 M in THF solution) was added dropwise to the resulting mixture and the reaction was allowed to reflux overnight. After cooling to room temperature, the reaction was quenched with saturated NH₄Cl, the organic phase was separated and the aqueous solution was extracted with Et₂O. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford the corresponding (*E*)-isomer **s2**.

To a stirred suspension of LiAlH₄ (1.2 equiv) in Et_2O (3 ml per mmol) was added (*E*)-isomer s2 (1 equiv, 1 M in Et_2O solution) dropwise at 0 °C, then the resulting mixture was stirred for 30 min at 0 °C. The reaction was then cautiously quenched with ethyl acetate at

0 °C, then 15% NaOH solution (1 ml per gram of LiAlH₄) was added follow by the addition of another portion of water (1 ml per gram of LiAlH₄). The resulting mixture was allowed to stir for 1 h to form a white suspension. Anhydrous MgSO₄ was added and the suspension was stirred for another 30 min. The solid was removed by filtration using celite and the filtrate was concentrated to give the corresponding alcohol **s3** that was used without further purification.

To a stirred solution of alcohol s3 (1 equiv) in Et₂O (1.0 mmol/mL) was added PBr₃ (0.5 equiv) dropwise at 0 °C, then the reaction was allowed to warm to room temperature and stirred. After the reaction was completed, it was cautiously treated with 20% NaOH (2 M) at 0 °C. The organic layer containing the corresponding bromide compound s4 was separated, washed with brine, dried over anhydrous Na₂SO₄ and kept over solid sodium hydrate for the next step.

To a dried flask with a magnetic stir bar was added dimethyl chloromalonate (1 equiv) and dried THF (0.3 M). The solution was cooled to 0 °C follow by the addition of sodium hydride (60% suspension in oil, 1 equiv). The resulting mixture was allowed to stir at rt for 30 min. Then bromide s4 (1.1 equiv) was added and the reaction mixture was allowed to stir overnight at rt. The reaction mixture was quenched by saturated NH₄Cl solution, the organic phase was separated and the aqueous phase was extracted with Et₂O three times. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford diester s5.

To a stirred solution of diester **s5** (1 equiv) in MeOH (0.25 M) was added NaBH₄ (4 equiv), the resulting mixture of which was stirred at 0 °C for 15 min and then allowed to warm to room temperature and stirred for 6 h. After the reaction was completed, the mixture was quenched with saturated NH₄Cl, the solvent was evaporated and the aqueous solution was extracted with Et₂O. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford the corresponding diol.

3. Screening of conditions and general procedure for syntheses of products 3

entry ^a	Sol.	T (°C)	base	Lewis acid	3a yield (%)	3a er $(\%)^c$
1	THF	0	Cs ₂ CO ₃	-	95	81:19
2	CHCl ₃	0	Cs ₂ CO ₃	-	94	65:35
3	DCM	0	Cs ₂ CO ₃	-	92	68:32
4	Tol.	0	Cs ₂ CO ₃	-	86	84:16
5	Dioxane	0	Cs ₂ CO ₃	-	70	67:33
6	1,2-DCM	0	Cs ₂ CO ₃	-	88	69:31
7	Et ₂ O	0	Cs ₂ CO ₃	-	92	77:23
8	THF	0	K ₂ CO ₃	-	<20%	-
9	THF	0	DBU	-	<20%	-
10	THF	0	Et ₃ N	-	86	50:50
11	THF	r.t.	Cs ₂ CO ₃		>90	75:25
12	THF	-20	Cs ₂ CO ₃		>90	90:10
13	THF	-25	Cs ₂ CO ₃		>90	92:8
14	THF	-30	Cs ₂ CO ₃		>90	92.5:7.5
15	THF	-35	Cs ₂ CO ₃		>90	92.5:7.5
15	THF	-45	Cs ₂ CO ₃		>90	95:5
16	THF	-55	Cs ₂ CO ₃		>90 ^b	93.5:6.5
18	THF	-65	Cs ₂ CO ₃		>90 ^b	87.5:12.5
19	THF	-70	Cs ₂ CO ₃		>90 ^b	90:10
20	THF	-45	Cs ₂ CO ₃	LiCl	75	79:21
21	THF	-45	Cs ₂ CO ₃	Sc(OTf) ₃	90	82:28
22	THF	-45	Cs ₂ CO ₃	Yb(OTf) ₃	92	88:26
23	THF	-45	Cs ₂ CO ₃	Cu(OTf) ₂	85	72:28
24	THF	-45	Cs ₂ CO ₃	Mg(OTf) ₂	87	87:13
25	THF	-45	Cs ₂ CO ₃	Zn(OTf) ₂	93	87:13

^{*a*}All reactions of **1a** (0.10 mmol, 20.1 mg) with aldehyde **2** (0.2 mmol, 31.2 mg) were carried out in presence of catalyst of 5 mol% **E** and Cs_2CO_3 of 10 mol% in THF (1.0 mL) for 16 h. ^{*b*}Catalyst **E** of 2 mol% and Cs_2CO_3 of 5 were used (48 h). ^cIsolated yield. ^{*d*}Er of **3a** was determined by chiral HPLC analysis. General procedure for synthesis of product 3: Under N₂ atmosphere, oxidant (0.1 mmol), triazolium salt A-F (0.01 mmol) and Cs₂CO₃ (0.015 mmol, 4.9 mg) were dissolved in freshly distilled THF stirred at room temperature for 5 minutes. Then, the yellow solution was slowly added into a solution of the 1,3-diol 1 (0.10 mmol, 0.10 M) and 1-naphthaldehyde (0.15 mmol) in THF at the specified temperature (-45 °C) as shown in Chart 1 and Chart 2 in the text. The resulting mixture was stirred under constant temperature for 12 h. The solvent was removed under reduced pressure and the crude residue was purified *via* column chromatography on silica gel to afford the desired *mono*-esterification product **3**.

4. General procedure for the synthetic applicability

The procedure for synthesis of 6: The solution of 3a (2.0 mmol, 1.0 equive) in acetone was cooled to 0 $^{\circ}$ C. Jones reagent (1.6 mL, 1.67 M in water) was added dropwise and the reaction mixture was stirred at 0 $^{\circ}$ C for 2h. Then the water was added and the mixture was extracted with ether. The combined organic layers were dried with Na₂SO₄. The resulting solution was concentrated by vacuum pump. The acid 6 could be obtained in 90% yield through isolation by silica gel column chromatography.

The procedure for synthesis of 7: Under a nitrogen atmosphere, a solution of 6 (0.3 mmol, 110 mg, 1.0 equiv) in DCM (4.0 mL, 0.05 M) was added to AlCl₃ (0.6 mmol, 79 mg, 2.0 equiv) at 0 °C. After the full conversion of 6, the reaction was quenched with H₂O. Then the organic phase was separated, and the aqueous phase was extracted with Et_2O three times. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford product 7 in 70% yield.

The procedure for synthesis of 11: To the solution of crude product 3e (0.4 mmol, 194 mg, 1.0 equiv) in THF was added TBAF (105 mg, 1.0 equiv) and the reaction was treated with H₂O after full conversion of reaction by TLC monitoring. The organic phase was separated, and the aqueous phase was extracted with DCM three times. The combined organic layers were washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography to afford phenol product 10.

To a solution of phenol **10** in DCM (0.1 M) was added PDAI (130 mg, 1 equiv) at 0 °C. After the reaction was stirred at 0 °C for 1h, the saturated $Na_2S_2O_3$ was added to quench reaction. The final system was quenched with ethyl acetate three times. The combined organic layers were concentrated under vacuum and the product **11** could be obtained in 40% total yield for two steps by column chromatography.

5. Determination of the absolute configuration of the products 3 and 4

The absolute configuration of the products 3 and 4 was determined by correlation with a known compound as follows.¹

absolute configuration of our synthetic compounds could be confirmed.

The procedure for synthesis of 12: To a stirred solution of 3j (0.7 mmol, 236 mg, 1 equiv) in DCM (0.5 mmol/ml) was added imidazole (, 2.2 equiv, 104.7 mg) at 0 °C. Then, TBDPSCl was added to the reaction system and the reaction was stirred for 2 h. The reaction was subsequently quenched with H₂O, the organic layer was separated and the aqueous phase was extracted with DCM. The combined organic layers were washed with brine, dried over anh. Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give product 12 in 95% yield.

Under a nitrogen atmosphere, to a stirred solution of **12** (0.4 mmol, 230 mg, 1 equiv) in THF (0.25 mmol/ml) was added LiBH₄ (2 N in THF solution, 2.2 equiv) dropwise at 0 °C, and the reaction mixture was allowed to stir at that temperature for 12 h. Subsequently, the reaction was quenched by sat. NH₄Cl, the organic phase was separated, and the aqueous phase was extracted with Et₂O three times. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford product **13** in 89% yield.

Under a nitrogen atmosphere, to a stirred solution of **13** (0.2 mmol, 84 mg, 1 equiv) in DCM (0. 5 mmol/ml) was added AcCl (2.0 equiv) dropwise at 0 °C. Subsequently, Et₃N was added to stir at that temperature for 1 h. After that, the reaction was quenched with H₂O, the organic phase was separated, and the aqueous phase extracted with DCM three times. The combined organic layers were washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure to afford the residue **14**.

To the solution of crude product **14** (1.0 equiv) in THF was added TBAF (1.0 equiv,) and the reaction was treated with H_2O after full conversion of reaction by TLC monitoring. The organic phase was separated, and the aqueous phase was extracted with DCM three times. The combined organic layers were washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography to afford product **15** in 81% total yield for two steps.

6. Characterization of key compounds 1, 2 and 3 2-benzyl-2-chloropropane-1,3-diol (1a)

Ch According to general procedure, the title compound (1.61 g) could be obtained in 80% yield for two steps from diethyl chloromalonate (10 mmol, 1.94 g). White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.27 (m, 5H), 3.73 (s, 2H), 3.14 (s, 2H), 2.87 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 135.0, 130.8, 128.2, 127.1, 76.6, 65.9, 41.1; HRMS (ESI) calcd. For C₁₀H₁₄ClO₂ [M+H]⁺: 201.0677, Found: 201.0679. IR v (cm⁻¹) 3269, 2947, 1455, 1119, 1074, 701.

2-chloro-2-(4-methylbenzyl)propane-1,3-diol (1b)

CH CH 1b

14

According to general procedure, the title compound (1.76 g) could be obtained in 82% yield for two steps from diethyl chloromalonate (10 mmol, 1.94 g). White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.12 (d, J = 7.6 Hz, 2H), 7.20 (d, J = 7.6 Hz, 2H), 3.74 (s, 4H), 3.14 (s, 2H), 2.34 (s, 3H), 2.29 (s, 2H); ¹³C NMR

(100 MHz, CDCl₃): δ 136.8, 132.0, 130.6, 128.9, 66.2, 40.8, 21.1; HRMS (ESI) calcd. For C₁₁H₁₆ClO₂ [M+H]⁺: 215.0833, Found: 215.0840. IR v (cm⁻¹) 3222, 1452, 1118, 1066, 767, 699.

2-chloro-2-(4-(trifluoromethyl)benzyl)propane-1,3-diol (1c)

According to general procedure, the title compound (1.88 g) could be obtained in 70% yield for two steps from diethyl chloromalonate (10 mmol, 1.94 g). White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 3.77-3.68 (m, 4H), 3.20 (s, 2H), 3.13 (s, 2H), 2.87 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 139.1, 131.3, 129.5, 129.2, 125.5, 125.1, 125.0, 125.0, 125.0, 122.8, 75.7, 65.7, 40.5; HRMS (ESI) calcd. For C₁₁H₁₃ClF₃O₂ [M+H]⁺: 269.0551, Found: 269.0556. IR v (cm⁻¹) 2923, 1746, 1437, 1325.

2-chloro-2-(4-methoxybenzyl)propane-1,3-diol (1d)

-OH According to general procedure, the title compound (1.71 g) could be obtained in 74% yield for two steps from diethyl chloromalonate (10 mmol, 1.94 g). White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, *J* = 8.4 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 3.77 (s, 3H), 3.71 (d, *J* = 3.6 Hz, 2H), 3.13

(s, 2H), 3.07 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 158.5, 131.8, 127.0, 113.5, 65.7, 55.1, 40.1; HRMS (ESI) calcd. For C₁₁H₁₆ClO₃ [M+H]⁺: 231.0782, Found: 231.0789. IR v (cm⁻¹) 3303, 2931, 1614, 1250, 1085, 849.

2-(4-((tert-butyldimethylsilyl)oxy)benzyl)-2-chloropropane-1,3-diol (1e)

Following the literature procedure², the corresponding (bromomethyl)benzene could be obtained. According to the general procedure, the title compound could be obtained as a white solid in 73% overall yield from (bromomethyl)benzene compound. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (d, *J* = 8.5 Hz, 2H), 6.78 (d, *J* = 8.5 Hz, 2H), 3.72 (d, *J* = 6.0 Hz, 2H), 3.71 (d, *J* = 6.7 Hz, 2H), 3.10 (s, 2H), 2.41 (t, *J* = 6.5 Hz, 2H), 0.98 (s, 9H), 0.19 (s, 6H); ¹³C NMR

(100 MHz, CDCl₃): δ 154.9, 131.9, 127.8, 119.9, 77.6, 66.2, 40.6, 25.8, 18.3, -4.3. HRMS (ESI) calcd. For C₁₆H₂₈ClO₃Si [M+H]⁺: 331.1491, Found: 331.1497. IR v (cm⁻¹) 2954, 1472, 1254, 1059, 778.

2-(4-(1,3-dioxolan-2-yl)benzyl)-2-chloropropane-1,3-diol (1f)

Following the literature procedure³, the corresponding (bromomethyl)benzene could be obtained. According to the general procedure, the title compound could be obtained as a white solid in 78% overall yield from the bromomethylbenzene compound. ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.80 (s, 1H), 4.18-4.10 (m, 2H), 4.08-4.00 (m, 2H), 3.73 (d, J = 6.0 Hz, 2H), 3.71 (d, J = 6.6 Hz, 2H), 3.19 (s, 2H), 2.17 (t, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 136.8, 136.4, 131.0, 126.5, 103.7, 77.0, 66.2, 65.5, 41.0. HRMS (ESI) calcd. For C₁₃H₁₈ClO₄ [M+H]⁺: 273.0888, Found: 273.0886. IR v (cm⁻¹) 3308, 2931, 1696, 1389, 1090, 854.

2-(3-(1,3-dioxolan-2-yl)benzyl)-2-chloropropane-1,3-diol (1g)

According to the procedure of **1f**, the title compound could be obtained as a white solid in 15% overall yield from the bromomethylbenzene compound. ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.38 (m, 2H), 7.36-7.32 (m, 2H), 5.80 (s, 1H), 4.18-4.09 (m, 2H), 4.08-3.99 (m, 2H), 3.72 (d, *J* = 6.0 Hz, 2H), 3.71 (d, *J* = 6.8 Hz, 2H), 3.18 (s, 2H), 2.48 (t, *J* = 6.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 137.9, 135.5, 131.9, 129.0, 128.4, 125.4, 103.8, 66.3, 65.5, 41.1. HRMS (ESI) calcd. For C₁₃H₁₈ClO₄ [M+H]⁺: 273.0888, Found: 273.0884. IR v (cm⁻¹) 2926, 1694, 1386, 1087, 708, 583.

2-chloro-2-(naphthalen-1-ylmethyl)propane-1,3-diol (1h)

According to the general procedure, the title compound could be obtained as a white solid in 85% overall yield. ¹H NMR (400 MHz, CDCl₃): δ 7.84-7.77 (m, 4H), 7.48-7.46 (m, 3H), 3.79-3.77 (m, 4H), 3.53 (s, 2H), 2.19 (t, J = 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 133.9, 133.3, 132.7, 132.5, 129.6, 128.9, 127.7, 127.6, 126.1, 125.8, 77.4, 66.3, 41.2; HRMS (ESI) calcd. For C₁₄H₁₆ClO₂ [M+H]⁺: 251.0833, Found: 251.0842. IR v (cm⁻¹) 3291, 2917, 1266, 1066, 1017, 754.

2-chloro-2-(thiophen-2-ylmethyl)propane-1,3-diol (1i)

^{CI} OH The diol was obtained in 86% yield over two steps as a white solid OH from the bromide compound. ¹H NMR (400 MHz, CDCl₃): δ 7.22 (t, J S_{11} = 3.3 Hz, 1H), 6.97 (d, J = 3.4 Hz, 2H), 3.83-3.73 (m, 4H), 3.40 (s, 2H), 2.44 (t, J = 6.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 136.5, 128.3, 126.9, 125.3, 76.1, 66.3, 35.6. HRMS (ESI) calcd. For C₈H₁₂ClO₂S [M+H]⁺: 207.0241, Found: 207.0247. IR v (cm⁻¹) 3323, 1438, 1118, 1062, 710, 695.

(E)-2-chloro-2-(2-methyl-3-phenylallyl)propane-1,3-diol (2b)

 $rac{Cl}{DH}$ Following the literature procedure⁴, the corresponding

(E)-(3-bromo-2-methylprop-1-en-1-yl)benzene could be obtained. Then according to the general procedure, the diol was obtained in 81% overall yield as a white solid from bromide compound. ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.31 (m, 2H), 7.28-7.21 (m, 3H), 6.44 (s, 1H), 3.86 (d, *J* = 3.8 Hz, 4H); 2.76 (s, 2H), s.45 (brs, 2H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.7, 133.3, 131.2, 129.1, 128.3, 126.7, 77.0, 66.9, 46.1, 20.6. HRMS (ESI) calcd. For C₁₃H₁₈ClO₂ [M+H]⁺: 241.0990, Found: 241.0990. IR v (cm⁻¹) 3319, 1494, 1124, 961,679, 671.

2-chloro-2-(2-phenylallyl)propane-1,3-diol (2c)

The preparation of allyl bromide followed the literature procedure⁵. The residue was purified by column chromatography to afford diol as a white solid in 76% overall yield from the allyl bromide compound. ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.38 (m, 2H), 3.37-3.27 (m, 3H), 5.42 (d, *J* = 1.4 Hz, 1H), 5.31 (s, 1H), 3.64 (d, *J* = 6.4 Hz, 1H), 3.63 (d, *J* = 7.0 Hz, 1H), 3.12 (s, 2H), 2.07 (t, *J* = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143, 142.1, 128.8, 128.0, 126.5, 119.7, 40.8, 77.1, 66.8. HRMS (ESI) calcd. For C₁₂H₁₅ClO₂ [M+H]⁺: 226.0750, Found: 226.0755. IR v (cm⁻¹) 2933, 1624, 1431, 1071, 904, 697.

(Z)-2-chloro-2-(2-phenylbut-2-en-1-yl)propane-1,3-diol (2d)

Following the literature procedure,⁵ the allyl alcohol could be obtained. According to general procedure, the diol was obtained in 78% overall yield as a white solid form the allyl bromide. ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.36 (m, 2H), 7.29-7.26 (m, 1H), 7.25-7.21 (m, 2H), 5.80 (q, *J* = 7.0 Hz, 1H), 3.57 (s, 4H), 2.98 (s, 2H), 2.08 (brs, 2H), 1.66 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.5, 135.2, 128.8, 128.6, 128.5, 127.2, 77.6, 66.9, 44.4, 15.1. HRMS (ESI) calcd. For C₁₃H₁₈ClO₂ [M+H]⁺: 241.0990, Found: 241.0998. IR v (cm⁻¹) 3293, 2931, 1439, 1267, 1062, 703.

(E)-2-chloro-2-(3-phenylbut-2-en-1-yl)propane-1,3-diol (2e)

Following the literature procedure⁶, the allyl bromide could be obtained. Then according to general procedure the diol was obtained in 74% overall yield as a white solid from the allyl bromide. ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.37 (m, 2H), 7.36-7.30 (m, 2H), 7.29-7.24 (m, 1H), 5.88 (t, *J* = 7.1 Hz, 1H), 3.84 (d, *J* = 4.6 Hz, 4H), 2.77 (d, *J* = 7.4 Hz, 2H), 2.47 (t, *J* = 6.1 Hz, 2H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 139.1, 128.4, 127.2, 125.9, 121.2, 77.5, 66.9, 34.7, 16.5. HRMS (ESI) calcd. For C₁₃H₁₈ClO₂ [M+H]⁺: 241.0990, Found: 241.0998. IR v (cm⁻¹) 3345, 2929, 1419, 1069, 734, 695.

(E)-2-chloro-2-(3-phenylpent-2-en-1-yl)propane-1,3-diol (2f)

Following the literature procedure,⁷ the allyl alcohol could be obtained. Then the allyl bromide could be prepared following general procedure A. Following the general procedure B, the diol could be obtained in 72% yield overall yield as a white solid from allyl bromide. ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.22 (m, 5H), 5.76-5.68 (m, 1H), 3.85 (s, 4H), 2.77 (d, *J* = 6.6

Hz, 2H), 2.60-2.50 (m, 2H), 2.24 (brs, 2H), 1.02-0.92 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.8, 142.6, 128.4, 127.2, 126.6, 120.7, 77.2, 66.9, 34.3, 23.3, 13.4. HRMS (ESI) calcd. For C₁₄H₂₀ClO₂ [M+H]⁺: 255.1146, Found: 255.1144. IR v (cm⁻¹) 3303, 2931, 1614, 1250, 1085, 849.

2-chloro-2-(3,3-diphenylallyl)propane-1,3-diol (2g)

^{Ph} ^{Ph} ^{Ph} ^{Ph} ^{Ph} ^{2g} ^{Ph} ^{Ph} ^{2g} ^{Ph} ^{Ph} ^{2g} ^{Ph} ^{Ph} ^{2g} ^{Ph} ^{Ph} ^{Ph} ^{2g} ^{Ph} ^{Ph}

(E)-2-chloro-2-(3,4,4-trimethylpent-2-en-1-yl)propane-1,3-diol (2h)

Following the general procedure, the diol could be obtained in 11% overall yield as a white solid from the corresponding ketone. ¹H NMR (400 MHz, CDCl₃): δ 5.33 (t, J = 7.2 Hz, 1H), 3.77 (d, J = 6.5 Hz, 4H), 2.56 (d, J = 7.3 Hz, 2H), 2.25 (t, J = 6.5 Hz, 2H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 147.8, 114.2, 78.1, 67.1, 36.7, 34.3, 29.2, 13.3. HRMS (ESI) calcd. For C₁₁H₂₂ClO₂ [M+H]⁺: 221.1303, Found: 221.1308. IR v (cm⁻¹) 3389, 1423, 1112, 1049, 827, 652.

(E)-2-chloro-2-(2-(2,3-dihydro-1H-inden-1-ylidene)ethyl)propane-1,3-diol (2i)

Following the general procedure, the diol could be obtained in 15% overall yield as a white solid from the corresponding ketone. δ 7.50-7.48 (m, 1H), 7.27-7.18 (m, 3H), 6.04-5.99 (m, 1H), 3.86-3.84 (m, 4H), 3.03-2.99 (m, 2H), 2.80-2.75 (m, 4H), 2.17-2.14 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 146.5, 141.1, 128.2, 126.6, 125.5, 120.3, 111.9, 77.8, 67.1, 35.7, 30.1, 28.3. HRMS (ESI) calcd. For $C_{14}H_{18}ClO_2$ [M+H]⁺: 253.0990, Found: 253.0998. IR v (cm⁻¹) 3295, 2954, 1480, 1283, 1032, 692.

(E)-2-chloro-2-(2-(3,4-dihydronaphthalen-1(2H)-ylidene)ethyl)propane-1,3-diol (2j)

он Followir он overall y NMR (4 7.12-7.0

Following the general procedure, the diol was obtained in 18% overall yield as a white solid from the corresponding ketone. ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.56 (m, 1H), 7.19-7.14 (m, 2H), 7.12-7.08 (m, 2H), 6.10 (t, *J* = 7.4 Hz, 1H), 3.84 (d, *J* = 5.6 Hz, 4H),

2.82-2.75 (m, 4H), 2.54 (t, J = 5.6 Hz, 2H), 2.22-2.12 (m, 2H), 1.88-1.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 138.3, 137.7, 136.0, 129.0, 127.2, 126.2, 124.1, 117.0, 77.5, 66.9, 34.1, 30.5, 27.0, 23.3. HRMS (ESI) calcd. For C₁₅H₂₀ClO₂ [M+H]⁺: 267.1146, Found: 267.1147. IR v (cm⁻¹) 3290, 2935, 1483, 1263, 1032, 672.

(E)-2-chloro-2-(2-(chroman-4-ylidene)ethyl)propane-1,3-diol (2k)

O 2k

Following the general procedure, the diol was obtained in 12% overall yield as a white solid from the corresponding ketone. ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* = 7.7 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 6.90 (t, *J* = 7.5 Hz, 1H), 6.84 (d, *J* = 7.9 Hz, 1H), 6.14

(t, J = 7.4 Hz, 1H), 4.21 (d, J = 5.4 Hz, 2H), 3.84 (d, J = 11.8 Hz, 2H), 3.80 (d, J = 11.8 Hz, 2H), 2.76 (d, J = 7.7 Hz, 2H), 2.71 (t, J = 4.7 Hz, 2H), 2.05 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 154.5, 132.5, 129.1, 124.1, 122.5, 120.9, 117.6, 115.1, 77.3, 66.7, 66.4, 33.5, 26.2. HRMS (ESI) calcd. For C₁₄H₁₈ClO₃ [M+H]⁺: 269.0939, Found: 269.0935. IR v (cm⁻¹) 3398, 1578, 1208, 1106, 905, 744.

2-chloro-2-(2-cyclohexylideneethyl)propane-1,3-diol (2l)

Following the general procedure, the diol was obtained in 12% overall yield as a white solid from the corresponding ketone. ¹H NMR (400 MHz, CDCl₃): δ 5.18 (t, J = 7.5 Hz, 1H), 3.77 (d, J = 5.8 Hz, 4H), 2.56 (d, J = 7.6 Hz, 2H), 2.21-2.18 (m, 6H), 1.57-1.49 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 144.5, 114.1, 77.8, 67.0, 37.6, 33.4, 29.2, 28.7, 27.8, 26.9. HRMS (ESI) calcd. For C₁₁H₂₀ClO₂ [M+H]⁺: 219.1146, Found: 219.1140. IR v (cm⁻¹) 3304, 2958, 1458, 1274, 1065, 654.

2-chloro-2-(cyclohex-1-en-1-ylmethyl)propane-1,3-diol (2m)

(Z)-2-(4-((tert-butyldimethylsilyl)oxy)but-2-en-1-yl)-2-chloropropane-1,3-diol (2n)

^{OTBS CI} - OH Following the general procedure, the diol product was obtained in 21% yield over four steps as a white solid from the corresponding known allyl bromide. ¹H NMR (400 MHz, CDCl₃): δ 5.93-5.78 (m, 2H), 4.19 (d, J = 6.9 Hz, 2H), 3.77 (d, J = 7.3 Hz, 2H), 3.76 (d, J = 7.0 Hz, 2H), 3.26 (t, J = 7.1 Hz, 2H), 2.74 (d, J = 7.2 Hz, 2H), 0.90 (s, 9H), 0.11 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 131.1, 128.8, 75.3, 67.2, 58.5, 32.1, 26.0, 18.5, -5.1. HRMS (ESI) calcd. For C₁₃H₂₈ClO₃Si₂ [M+H]⁺: 295.1491, Found: 295.1497. IR v (cm⁻¹) 3337, 2954, 1510, 1250, 921, 643.

2-allyl-2-chloropropane-1,3-diol (20)

^{Cl} Following the general procedure, the diol could be obtained from the = 20^{-0H} Following allyl bromide in 30% total yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 5.95-5.85 (m, 1H), 5.23 (d, J = 14.4 Hz, 1H), 5.18 (d, J = 4.4 Hz, 1H), 3.53 (s, 2H), 3.79-3.72 (dd, J = 12.0 Hz, 16.0 Hz, 4H), 3.42 (s, 2H), 2.57 (d, J = 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 131.8, 119.5, 75.2, 66.1, 39.7; HRMS (ESI) calcd. For C₆H₁₂ClO₂ [M+H]⁺: 151.0520, Found: 151.0527. IR v (cm⁻¹) 2936, 1642, 1433, 1058, 924, 655.

2-chloro-2-(3-phenylprop-2-yn-1-yl)propane-1,3-diol (2p)

Following the general procedure, using 3-phenyl-2-propyl-1-ol as the starting material, the diol was obtained in 26% overall yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.39 (m, 2H), 7.33-7.27 (m, 2H), 3.77 (d, J = 4.8 Hz, 4H), 3.03 (s, 2H), 2.38 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 131.8, 128.4, 128.4, 123.0, 84.0, 83.9, 74.8, 66.8, 27.5. HRMS (ESI) calcd. For C₁₂H₁₄ClO₂ [M+H]⁺: 225.0677, Found: 225.0679. IR v (cm⁻¹) 3306, 2930, 1489, 1270, 1058, 692.

2-chloro-2-ethylpropane-1,3-diol (2q)

Following the general procedure, using 3-phenyl-2-propyl-1-ol as the starting material, the diol was obtained in 18% overall yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 3.82-3.74 (m, 4H), 2.78 (s, 2H), 1.88-1.82 (dd, *J* = 7.2 Hz, 14.8 Hz, 2H), 1.06-1.02 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 177.5, 77.3, 77.0, 76.7, 66.3, 28.1, 8.0. HRMS (ESI) calcd. For C₅H₁₂ClO₂ [M+H]⁺: 139.0520, Found: 139.0526. IR v (cm⁻¹) 3304, 2958, 1274, 1065, 754.

2-chloro-2-phenethylpropane-1,3-diol (2r)

Following the general procedure, using 3-phenyl-2-propyl-1-ol as the starting material, the diol was obtained in 20% overall yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.28 (m, 2H), 7.23-7.19 (m, 3H), 3.89-3.80 (m, 4H), 2.84-2.80 (m, 2H), 2.17-2.08 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 141.3, 128.6, 128.4, 77.2, 67.0, 37.3, 30.2. HRMS (ESI) calcd. For C₁₁H₁₆ClO₂ [M+H]⁺: 215.0833, Found: 215.0838. IR v (cm⁻¹) 3316, 2928, 1488, 1260, 1058, 690.

2-chloro-2-isobutylpropane-1,3-diol (2s)

Following the general procedure, using 3-phenyl-2-propyl-1-ol as the starting material, the diol was obtained in 18% overall yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 3.82-3.74 (dd, *J* = 7.6 Hz, 14.8 Hz, 2H), 2.83 (s, 2H), 1.97-1.88 (m, 1H), 1.74 (d, *J* = 7.6 Hz, 2H), 1.01 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 77.2, 66.8, 43.7, 24.7, 24.1. HRMS (ESI) calcd. For C₇H₁₆ClO₂ [M+H]⁺: 167.0833, Found: 167.0838. IR v (cm⁻¹) 3308, 2988, 1276, 1065, 756.

6. Characterization of products 3 and 4

2-benzyl-2-chloro-3-hydroxypropyl 1-naphthoate (3a)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.95 (d, J = 8.8 Hz, 1H), 8.26 (d, J = 7.2 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 6.67-6.30 (m, 1H), 7.59-7.52 (m, 2H), 7.36-7.26 (m, 5H), 4.65 (d, J = 12.0 Hz, 1H), 4.59 (t, J = 11.6 Hz, 1H), 3.77 (d, J = 7.2 Hz, 2H), 3.28 (s, 2H), 2.63 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 134.6, 134.1, 133.9, 131.5, 130.9, 130.7, 128.7, 128.3, 128.1, 127.3, 126.4, 126.1, 125.7, 124.5, 73.5, 66.2, 65.7, 41.7; HRMS (ESI) calcd. For C₂₁H₂₀ClO₃ [M+H]⁺: 355.1095, Found: 355.1090. [α]²⁰_D = 14.0 (c = 13.0 mg/mL, CHCl₃). IR v (cm⁻¹) 34755, 2932, 1743, 1554, 1256, 1042. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 95:5, flow rate = 0.75 mL/min), retention time: t₁ = 11.1 min, t₂ = 13.5 min.

2-chloro-3-hydroxy-2-(4-methylbenzyl)propyl 1-naphthoate (3b)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 1.2 Hz, 1H), 8.23 (d, J = 1.2 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.93-7.62 (m, 1H), 7.57-7.50 (m, 2H), 7.24-7.21 (m, 2H), 7.13-7.11 (d, J = 7.6 Hz, 2H), 4.63 (d, J = 11.6 Hz, 1H), 4.49 (d, J = 12.0 Hz, 1H), 3.77 (d, J = 6.0 Hz, 2H), 3.23 (s, 2H), 2.56 (t, J = 7.2

Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta 167.20$, 136.9, 134.0, 133.9, 131.4, 130.7, 130.6, 129.0, 128.6, 128.1, 126.4, 126.1, 125.7, 124.5, 73.7, 66.2, 65.7, 41.3; HRMS (ESI) calcd. For C₂₂H₂₂ClO₃ [M+H]⁺: 369.1252, Found: 369.1257. [α]²⁰_D = 60.0 (*c* = 18.0 mg/mL, CHCl₃). IR v (cm⁻¹) 3447, 2920, 1718, 1511, 1278, 1017. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: t₁ = 11.6 min, t₂ = 13.8 min.

2-chloro-3-hydroxy-2-(4-(trifluoromethyl)benzyl)propyl 1-naphthoate (3c)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.93 (d, J = 8.4 Hz, 1H), 8.23 (d, J = 2.4 Hz, 1H), 8.08 (d, J = 1.2 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.67-7.25 (m, 7H), 4.66 (d, J = 11.6 Hz, 2H), 4.49 (d, J = 12.0 Hz, 2H), 3.79-3.70 (m, 2H), 3.30 (s, 2H), 2.74 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 138.6, 134.3, 133.9, 131.4, 131.3,

130.7, 128.7, 128.2, 126.5, 125.8, 125.6, 125.2, 125.2, 124.5, 72.7, 66.2, 65.4, 41.2; HRMS (ESI) calcd. For $C_{22}H_{19}ClF_3O_3$ [M+H]⁺: 423.0969, Found: 423.0960. [α]²⁰_D = 40.0 (c = 11.0 mg/mL, CHCl₃). IR v (cm⁻¹) 3592, 1721, 1334, 1110, 1017, 784. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: t₁ = 12.3 min, t₂ = 15.3 min.

2-chloro-3-hydroxy-2-(4-methoxybenzyl)propyl 1-naphthoate (3d)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.95 (d, J = 8.4 Hz, 1H), 8.26 (d, 0.8 Hz, 1H), 8.24 (d, J = 0.8 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.66-7.62 (m, 1H), 7.58-7.26 (m, 2H), 7.25 (d, J = 4.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 4.63 (d, J = 12.0 Hz, 1H), 4.49 (d, J = 12.0

Hz, 1H), 3.79 (s, 3H), 3.76 (d, J = 8.4 Hz, 2H), 3.21 (s, 2H), 2.66 (t, J = 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 158.9, 134.1, 133.9, 131.9, 131.4, 130.6, 128.7, 128.1, 126.5, 126.4, 126.1, 125.7, 124.5, 113.7, 73.9, 66.2, 65.6, 55.2, 40.8; HRMS (ESI) calcd. For C₂₂H₂₂ClO₄ [M+H]⁺: 385.1201, Found: 385.1208. [α]²⁰_D = 30.0 (c = 15.0 mg/mL, CHCl₃). The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: t₁ = 15.6 min, t₂ = 18.3 min.

2-(4-((tert-butyldimethylsilyl)oxy)benzyl)-2-chloro-3-hydroxypropyl 1-naphthoate (3e)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.95 (d, J = 8.8 Hz, 1H), 8.25 (d, J = 1.2 Hz, 1H), 8.23 (d, J = 1.2 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.88-7.59 (m, 1H), 7.54-7.47 (m, 2H), 7.18 (d, J = 8.8 Hz, 6H), 6.79 (d, J = 8.4 Hz, 2H), 4.60 (d, J = 12.0 Hz, 1H),

4.47 (d, J = 12.0 Hz, 1H), 3.74 (s, 2H), 3.18 (s, 2H), 0.98 (s, 9H), 0.19 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta 167.1$, 154.8, 134.0, 133.8, 131.8, 131.4, 130.6, 128.6, 128.0, 127.1, 126.3, 126.0, 125.6, 124.5, 119.8, 73.7, 66.2, 65.6, 40.8, 25.6, 18.1; HRMS (ESI) calcd. For $C_{27}H_{34}CIO_4Si [M+H]^+$: 485.1909, Found: 485.1908. $[\alpha]^{20}_{D} = 20.0$ (c = 4.0 mg/mL, CHCl₃). IR v (cm⁻¹) 1721, 1511, 1242, 1195, 1016, 782. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: t₁ = 28.1 min, t₂ = 28.6 min.

2-(4-(1,3-dioxolan-2-yl)benzyl)-2-chloro-3-hydroxypropyl 1-naphthoate (3f)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 0.8 Hz, 1H), 8.24 (d, J = 0.8 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.92-7.63 (m, 1H), 7.58-7.52 (m, 2H), 7.45 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 5.80 (s, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.49 (d, J = 12.0 Hz, 1H), 4.15-4.05 (m, 2H), 3.75 (s, 2H), 3.28 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2,

137.0, 135.6, 134.1, 133.9, 131.4, 131.0, 130.7, 128.7, 128.1, 126.5, 126.4, 126.0, 125.6, 124.5, 103.5, 73.3, 66.2, 65.5, 65.3, 41.4; HRMS (ESI) calcd. For $C_{24}H_{24}ClO_5$ [M+H]⁺: 427.1307, Found: 427.1307. [α]²⁰_D = 36.0 (*c* = 8.0 mg/mL, CHCl₃). IR v (cm⁻¹) 2919, 1714, 1511, 1240, 1077, 781. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: t₁ = 24.9 min, t₂ = 38.4 min.

2-(3-(1,3-dioxolan-2-yl)benzyl)-2-chloro-3-hydroxypropyl 1-naphthoate (3g)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.95 (d, *J* = 8.4 Hz, 1H), 8.26 (d, *J* = 7.2 Hz, 1H), 8.10 (d, *J* = 4.0 Hz, 1H), 7.89 (d, *J* = 11.6 Hz, 1H), 7.67-7.63 (m, 1H), 7.60-7.51 (m, 2H), 7.47-7.26 (m, 1H), 5.79 (s, 1H), 4.69-4.61 (m, 1H), 4.54-4.49 (m, 1H), 4.09-4.00 (m, 4H), 3.99-3.74 (m, 2H), 3.79 (s, 2H); ¹³C NMR

(100 MHz, CDCl₃): δ 167.2, 138.1, 134.7, 134.1, 133.9, 131.8, 131.5, 130.7, 128.9, 128.7, 128.4, 128.1, 126.4, 126.0, 125.7, 125.5, 124.5, 103.5, 73.4, 66.2, 65.7, 65.3, 41.6; HRMS (ESI) calcd. For C₂₄H₂₄ClO₅ [M+H]⁺: 427.1307, Found: 427.1305. [α]²⁰_D = 36.0 (*c* = 9.0 mg/mL, CHCl₃). IR v (cm⁻¹) 2919, 1719, 1241, 1133, 1016, 782. The er value was determined by HPLC (Chiralcel ID, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: t₁ = 43.7 min, t₂ = 52.2 min.

2-chloro-3-hydroxy-2-(naphthalen-1-ylmethyl)propyl 1-naphthoate (3h)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.95 (d, J = 8.8 Hz, 1H), 8.24 (d, J = 0.8 Hz, 1H), 8.22 (d, J = 0.8 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.91-7.78 (m, 4H), 7.66-7.44 (m, 6H), 4.69 (d, J = 11.6 Hz, 1H),

4.52 (t, J = 12.0 Hz, 1H), 3.80 (d, J = 7.2 Hz, 2H), 3.43 (s, 2H), 2.72-2.68 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ167.3, 134.1, 133.9, 133.2, 132.6, 132.2, 131.4, 130.7, 129.8, 128.9, 128.7, 128.1, 127.8, 127.8, 127.6, 126.4, 126.1, 126.0, 125.9, 125.7, 124.5, 77.3, 77.0, 76.7, 73.7, 66.4, 65.7, 41.8; HRMS (ESI) calcd. For C₂₄H₂₄ClO₅ [M+H]⁺: 427.1307, Found: 427.1304. $\left[\alpha\right]^{20}$ = 35.0 (c = 6.0 mg/mL, CHCl₃). IR v (cm⁻¹) 2923, 1510, 1241, 1195, 1133, 781. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: $t_1 = 15.7$ min, $t_2 = 18.4$ min.

2-chloro-3-hydroxy-2-(thiophen-2-ylmethyl)propyl 1-naphthoate (3i)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, J = 8.8 Hz, 1H), 8.27 (d, J = 0.8 Hz, 1H), 8.25 (d, J = 0.8 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.91-7.62 (m, 3H), 7.57-7.51 (m, 2H), 7.25-7.01 (m, 1H), 7.00-6.97 (m, 2H), 4.65 (d, J = 11.6. Hz, 1H), 4.54 (d, J = 11.6 Hz, 1H), 3.81 (d, J = 7.6 Hz, 2H), 3.54-3.46 (m, 1H), 2.64 (t, J = 7.2 Hz, 1H); ¹³C

NMR (100 MHz, CDCl₃): δ 167.1, 135.8, 134.1, 133.9, 131.4, 130.7, 128.6, 128.4, 128.1, 126.9, 126.4, 126.0, 125.6, 125.3, 124.5, 72.8, 66.1, 65.8, 36.1; HRMS (ESI) calcd. For $C_{19}H_{18}ClO_3S [M+H]^+$: 361.0660, Found: 361.0660. $[\alpha]^{20}_{D} = 30.0 \ (c = 18.0 \text{ mg/mL}, \text{ CHCl}_3).$ IR v (cm⁻¹) 1719, 1510, 1195, 1132, 1014, 781. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: t₁ = 13.3min, $t_2 = 16.4$ min.

2-benzyl-2-fluoro-3-hydroxypropyl 1-naphthoate (3j)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.91 (d, J = 8.8 Hz, 1H), 8.22 (d, J = 7.2 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.65-7.49 (m, 3H), 7.49-7.25 (m, 5H), 4.63-4.55 (dd, J = 12.0 Hz, 19.2 1H), 4.49-4.42 (dd, J = 12.4 Hz, 19.2 1H), 3.75 (d, J = 19.2 Hz, 2H), 3.20 (d, J = 19.2 Hz, 2H), 2.23 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta 167.3$, 134.6,

134.5, 134.0, 133.9, 131.4, 130.6, 130.4, 128.6, 128.5, 128.1, 127.1, 126.4, 126.2, 125.6, 124.4, 97.3, 95.5, 64.5, 64.2, 63.4, 63.1, 38.9, 38.6; HRMS (ESI) calcd. For C₂₁H₂₀FO₃ $[M+H]^+$: 339.1391, Found: 339.1390. $[\alpha]^{20}_{D} = 4.8$ (c = 14.0 mg/mL, CHCl₃), IR v (cm⁻¹) 3067, 1751, 1690, 1275, 1160, 695. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: $t_1 = 24.7 \text{ min}$, $t_2 = 29.2$ min.

(E)-2-chloro-2-(hydroxymethyl)-5-phenylpent-4-en-1-yl 1-naphthoate (4a)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.93 (d, *J* = 8.4 Hz, 1H), 8.25 (d, J = 7.6 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.66-7.49 (m, 3H), 7.38-7.22 (m, 5H), 6.56 (d, J = 16.0 Hz, 1H), 4.74 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 3.84 (d, J = 7.2Hz, 2H), 2.87 (d, J = 7.6 Hz, 2H), 2.56 (t, J = 7.2 Hz, 1H); ¹³C NMR

(100 MHz, CDCl₃): 8167.2, 136.8, 134.9, 134.0, 133.8, 131.4, 130.7, 128.6, 128.6, 128.1, 127.6, 126.4, 126.3, 126.0, 125.6, 124.5, 122.8, 73.3, 66.5, 66.2, 39.6; HRMS (ESI) calcd. For $C_{23}H_{22}ClO_3$ [M+H]⁺: 381.1252, Found: 381.1252. $[\alpha]^{20}_{D} = 26.0$ (c = 5.0mg/mL, CHCl₃). IR v (cm⁻¹) 3453, 2949, 1718, 1195, 1015, 782. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 95:5, flow rate = 0.75 mL/min), retention time: $t_1 = 21.7 \text{ min}, t_2 = 25.6 \text{ min}.$

(E)-2-chloro-2-(hydroxymethyl)-4-methyl-5-phenylpent-4-en-1-yl1-naphthoate (4b)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.92 (d, J = 8.8 Hz, 1H), 8.26 (d, *J* = 0.8 Hz, 1H), 8.24 (d, *J* = 0.8 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.91-7.49 (m, 3H), 7.34-7.21 (m, 5H), 6.47 (s, 1H), 4.76 (d, J = 12.0 Hz, 1H), 4.63 (d, J = 11.6 Hz, 1H), 3.87-3.85 (dd, J = 2.8 Hz, 8.0 Hz, 2H), 2.90-2.81 (m, 2H), 2.66 (t, J = 7.2 Hz, 1H), 2.08 (d, J = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 137.5, 134.0, 133.9, 132.6, 131.6, 131.4, 130.6, 128.9, 128.6, 128.1, 128.1, 126.6, 126.4, 126.1, 125.7, 124.5, 73.5, 66.6, 66.4, 46.4, 20.6; HRMS (ESI) calcd. For C₂₄H₂₄ClO₃ [M+H]⁺: 395.1408, Found: 395.1408. $[\alpha]^{20}_{D} = 22.0$ (c = 4.0 mg/mL, CHCl₃). IR v (cm⁻¹) 3453, 2921, 1510, 1241, 1016, 782. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: t1 $= 10.6 \text{ min}, t_2 = 11.8 \text{ min}.$

2-chloro-2-(hydroxymethyl)-4-phenylpent-4-en-1-yl 1-naphthoate (4c)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.87 (d, *J* = 8.4 Hz, 1H), 8.16 (d, J = 0.8 Hz, 1H), 8.14 (d, J = 0.8 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H),7.61-7.47 (m, 3H), 7.40-7.37 (m, 2H), 7.28-7.22 (m, 3H), 5.44 (d, *J* = 1.2. Hz, 1H), 5.33 (s, 1H), 4.50 (d, J = 11.6.0 Hz, 1H), 4.41 (d, J = 11.6 Hz, 1H), 3.70 (s, 1H), 3.27-3.18 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ

166.9, 142.9, 141.7, 133.9, 133.8, 131.6, 131.4, 130.6, 128.6, 128.5, 128.0, 127.8, 126.4, 126.3, 125.7, 124.4, 119.8, 73.5, 66.4, 66.3, 41.1; HRMS (ESI) calcd. For C₂₃H₂₂ClO₃ $[M+H]^+$: 381.1252, Found: 381.1255. $[\alpha]^{20}_{D} = 165.0$ (c = 24.0 mg/mL, CHCl₃). IR v (cm⁻¹) 3482, 2920, 1718, 1195, 1016, 782. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: $t_1 = 11.1 \text{ min}$, $t_2 = 12.6$ min.

(Z)-2-chloro-2-(hydroxymethyl)-4-phenylhex-4-en-1-yl 1-naphthoate (4d)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.87 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.64-7.48 (m, 3H), 7.30-7.17 (m, 6H), 5.83-5.80 (dd, J = 7.2 Hz, 13.6 Hz, 1H), 4.45-4.37 (dd, J = 11.6 Hz, 22.0 Hz, 2H), 3.64 (d, J = 8.8 Hz, 1H), 3.10 (d, J = 3.2 Hz, 2H), 2.22 (t, J = 7.6 Hz, 1H), 1.65 (d, J =

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.93 (d, J = 8.8 Hz, 1H),

6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ166.8, 140.1, 134.9, 133.8, 131.4, 130.6, 128.8, 128.7, 128.6, 128.3, 127.9, 127.0, 126.3, 126.2, 125.8, 124.4, 74.2, 66.5, 66.5, 44.7, 15.0; HRMS (ESI) calcd. For $C_{24}H_{24}ClO_3$ [M+H]⁺: 395.1408, Found: 395.1404. [α]²⁰_D = 94.0 (c = 12.0 mg/mL, CHCl₃). IR v (cm⁻¹) 1719, 1241, 1132, 780, 702. The er value was determined by HPLC (Chiralcel OD, hexane/isopropanol = 95:5, flow rate = 0.75 mL/min), retention time: $t_1 = 22.2 \text{ min}, t_2 = 25.3 \text{ min}.$

(E)-2-chloro-2-(hydroxymethyl)-5-phenylhex-4-en-1-yl 1-naphthoate (4e)

8.23 (d, J = 7.2 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.65-7.47 (m, 3H), 7.40-7.23 (m, 5H), 5.96 (t, J = 7.6 Hz, 1H), 4.47 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 3.85 (d, J = 6.0 Hz, 2H), 2.89-2.85 (m, 1H), 2.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 143.4, 139.3, 134.0, 133.9, 131.4, 130.6, 128.6, 128.2, 128.1, 127.1, 126.4, 126.1, 125.8, 125.6, 124.5, 120.6, 74.0, 66.5, 66.4, 35.1, 16.5; HRMS (ESI) calcd. For C₂₄H₂₄ClO₃ [M+H]⁺: 395.1408, Found: 395.1409. [α]²⁰_D = 74.0 (c = 15.0 mg/mL, CHCl₃). IR v (cm⁻¹) 3485, 2944, 1733, 1165, 1017, 782. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 95:5, flow rate = 0.75 mL/min), retention time: t₁ = 19.0 min, t₂ = 20.1 min.

(E)-2-chloro-2-(hydroxymethyl)-5-phenylhept-4-en-1-yl 1-naphthoate (4f)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.93 (d, J = 8.8 Hz, 1H), 8.24 (d, J = 7.2 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.65-7.48 (m, 3H), 7.37-7.25 (m, 6H), 5.80 (t, J = 7.6 Hz, 1H), 4.63 (d, J = 11.6 Hz, 1H), 3.85 (d, J = 7.2 Hz, 1H), 2.90-2.87 (dd, J =

3.2 Hz, 7.6 Hz, 2H), 2.61-2.52 (m, 3H), 0.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 146.1, 142.4, 134.0, 133.9, 131.4, 130.7, 128.6, 128.3, 128.1, 127.1, 126.5, 126.4, 126.1, 125.6, 124.5, 120.1, 73.8, 66.6, 66.3, 34.7, 23.3, 13.3; HRMS (ESI) calcd. For C₂₅H₂₆ClO₃ [M+H]⁺: 409.1565, Found: 409.1560. [α]²⁰_D = 58.0 (*c* = 13.0 mg/mL, CHCl₃). IR v (cm⁻¹) 3451, 2965, 1719, 1277, 1132, 781. The er value was determined by HPLC (Chiralcel OD-H, hexane/isopropanol = 95:5, flow rate = 0.75 mL/min), retention time: t₁ = 50.8 min, t₂ = 57.6 min.

2-chloro-2-(hydroxymethyl)-5,5-diphenylpent-4-en-1-yl 1-naphthoate (4g)

Ph_OH	
Ph 🔶	$\langle \rangle$
4g , 81%, 95:5 er ^O	

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.90 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 7.2 Hz, 1H), 7.89 (d, J = 11.6 Hz, 1H), 7.63-7.52 (m, 2H), 7.44-7.40 (m, 1H), 7.29-7.15 (m, 10H), 6.34 (t, J = 7.2 Hz, 1H), 4.59 (S, 1H), 3.78 (d, J = 6.8 Hz, 1H), 2.82

(d, J = 6.8 Hz, 2H), 2.82 (d, J = 7.6 Hz, 3H), 2.32 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 145.7, 142.0, 139.5, 133.9, 133.8, 131.4, 130.6, 129.7, 128.6, 128.4, 128.2, 128.0, 127.5, 127.3, 126.3, 125.8, 125.7, 124.4, 121.8, 73.7, 66.5, 66.2, 35.6; HRMS (ESI) calcd. For C₂₉H₂₆ClO₃ [M+H]⁺: 457.1565, Found: 457.1565. [α]²⁰_D = 46.0 (c = 9.0 mg/mL, CHCl₃). IR v (cm⁻¹) 1720, 1242, 1195, 1139, 780. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 97:3, flow rate = 0.75 mL/min), retention time: t₁ = 29.8 min, t₂ = 33.5 min.

(E)-2-chloro-2-(hydroxymethyl)-5,6,6-trimethylhept-4-en-1-yl 1-naphthoate (4h)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.93 (d, J = 8.8 Hz, 1H), 8.24 (d, J = 7.2 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.65-7.50 (m, 2H), 5.42 (d, J = 7.2 Hz, 1H), 4.67 (d, J = 11.6 Hz, 1H), 4.56 (d, J = 11.6 Hz, 1H), 3.81 (d, J = 7.2 Hz, 2H),

2.70-2.67 (m, 2H), 2.51 (t, J = 7.2 Hz, 3H), 1.65 (s, 3H), 1.06 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 148.1, 134.0, 133.9, 131.4, 130.6, 128.6, 128.0, 126.4, 126.2, 125.7, 124.5, 113.7, 74.5, 66.5, 66.4, 36.6, 34.6, 29.0, 13.3; HRMS (ESI) calcd. For C₂₂H₂₈ClO₃ [M+H]⁺:

375.1721, Found: 375.1728. $[\alpha]^{20}_{D} = 31.0 \ (c = 10.0 \text{ mg/mL}, \text{CHCl}_3)$. IR v (cm⁻¹) 2988, 1722, 1241, 781. The er value was determined by HPLC (Chiralcel ID, hexane/isopropanol = 97:3, flow rate = 0.75 mL/min), retention time: t₁ = 14.0 min, t₂ = 15.7 min.

(E)-2-chloro-4-(2,3-dihydro-1H-inden-1-ylidene)-2-(hydroxymethyl)butyl 1-naphthoate (4i)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.97 (d, J = 8.8 Hz, 1H), 8.29 (d, J = 7.6 Hz, 1H), 8.19 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.69-7.53 (m, 4H), 7.29-7.22 (m, 3H), 6.16-6.13 (m, 1H), 4.80 (d, J = 11.6 Hz, 1H), 4.68 (d, J = 11.6 Hz, 1H), 3.90

(d, J = 10.8 Hz, 2H), 3.03-2.96 (m, 2H), 2.91 (d, J = 7.2 Hz, 2H), 2.81 (d, J = 5.6 Hz, 2H), 2.65-2.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 146.6, 146.3, 140.9, 134.0, 133.9, 131.4, 130.6, 128.6, 128.1, 128.1, 126.5, 126.4, 126.1, 125.6, 125.3, 124.7, 124.5, 120.3, 111.3, 74.2, 66.7, 66.3, 36.1, 29.9, 28.2; HRMS (ESI) calcd. For C₂₅H₂₄ClO₃ [M+H]⁺: 407.1408, Found: 407.1400. [α]²⁰_D = 81.0 (c = 9.0 mg/mL, CHCl₃). IR v (cm⁻¹) 1719, 1459, 1241, 1194, 1132, 781. The er value was determined by HPLC (Chiralcel OD-H, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: t₁ = 30.6 min, t₂ = 42.5 min.

(E)-2-chloro-4-(3,4-dihydronaphthalen-1(2H)-ylidene)-2-(hydroxymethyl)butyl 1-naphthoate (4j)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.97 (d, J = 8.8 Hz, 1H), 8.29 (d, J = 1.2 Hz, 1H), 8.27 (d, J = 1.2 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.95-7.20 (m, 4H), 7.15-7.12 (m, 3H), 6.23 (t, J = 7.6 Hz, 1H), 4.77 (d, J = 12.0 Hz, 1H), 4.67 (d, J = 11.6 Hz, 1H),

3.91-3.89 (m, 2H), 2.95-2.92 (m, 2H), 2.82-2.79 (m, 2H), 2.64-2.56 (m, 2H), 1.86-1.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 138.6, 137.5, 135.8, 134.0, 133.9, 131.4, 130.6, 128.9, 128.6, 128.1, 127.2, 126.4, 126.1, 125.6, 124.5, 124.0, 116.3, 74.2, 66.6, 66.4, 34.5, 30.3, 26.9, 23.2; HRMS (ESI) calcd. For C₂₆H₂₆ClO₃ [M+H]⁺: 421.1565, Found: 421.1563. [α]²⁰_D = 80.0 (*c* = 13.0 mg/mL, CHCl₃). IR v (cm⁻¹) 2987, 1720, 1510, 1240, 1133, 780. The er value was determined by HPLC (Chiralcel ODH, hexane/isopropanol = 97:3, flow rate = 0.75 mL/min), retention time: t₁ = 88.9 min, t₂ = 99.3 min.

(E)-2-chloro-4-(chroman-4-ylidene)-2-(hydroxymethyl)butyl 1-naphthoate (4k)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.92 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 0.8 Hz, 1H), 8.15 (d, J = 6.0 Hz, 1H), 7.99 (d, J = 5.6 Hz, 1H), 7.17-7.13 (m, 1H), 6.91-6.83 (m, 2H), 6.22 (t, J = 7.6 Hz, 1H), 4.74 (d, J = 12.0 Hz, 1H), 4.60 (d, J = 12.0 Hz, 1H), 4.16 (t, J

= 5.6 Hz, 2H), 2.69 (t, *J* = 5.6 Hz, 2H), 2.61 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 154.4, 134.2, 133.9, 132.8, 131.4, 130.7, 129.1, 128.7, 126.5, 126.0, 125.6, 124.5, 124.0, 120.8, 117.5, 114.4, 66.6, 66.2, 35.9, 26.1; HRMS (ESI) calcd. For C₂₅H₂₄ClO₄ [M+H]⁺: 423.1358, Found: 423.1359. $[\alpha]^{20}_{D} = 40.0$ (*c* = 5.0 mg/mL, CHCl₃). IR v (cm⁻¹) 2962, 1719, 1450, 1096, 1019, 801. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 97:3, flow rate = 0.75 mL/min), retention time: t₁ = 51.8 min, t₂ = 58.3 min.

2-chloro-4-cyclohexylidene-2-(hydroxymethyl)butyl 1-naphthoate (41)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.93 (d, J = 9.6 Hz, 1H), 8.24 (d, J = 7.2 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.65-7.45 (m, 3H), 5.27 (t, J = 7.6 Hz, 1H), 4.65 (d, J = 11.6 Hz, 1H), 4.58 (d, J = 11.6 Hz, 1H), 3.81 (d, J = 6.8 Hz, 2H),

2.74-2.62 (m, 2H), 2.48 (t, J = 7.2 Hz, 3H), 2.17-2.14 (m, 4H), 1.57-1.48 (m, 7H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 144.8, 134.0, 133.9, 131.4, 130.6, 128.6, 128.0, 126.4, 126.2, 125.7, 124.5, 113.6, 74.3, 66.5, 66.4, 37.4, 33.6, 29.1, 28.6, 27.7, 26.7; HRMS (ESI) calcd. For C₂₂H₂₆ClO₃ [M+H]⁺: 373.1565, Found: 373.1561. [α]²⁰_D = 35.0 (c = 6.0 mg/mL, CHCl₃). IR v (cm⁻¹) 2918, 1718, 1446, 1195, 1015, 781. The er value was determined by HPLC (Chiralcel ID, hexane/isopropanol = 97:3, flow rate = 0.75 mL/min), retention time: t₁ = 19.6 min, t₂ = 27.5 min.

2-chloro-3-(cyclohex-1-en-1-yl)-2-(hydroxymethyl)propyl 1-naphthoate (4m)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, J = 8.4 Hz, 1H), 8.24 (d, J = 7.6 Hz, 1H), 8.06 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.57-7.26 (m, 2H), 5.63 (s, 1H), 4.68 (d, J = 12.0 Hz, 1H), 4.56 (d, J = 11.6 Hz, 1H), 3.80-3.78 (m, 2H),

2.67-2.54 (m, 3H), 2.18-2.15 (m, 2H), 2.04 (m, 2H), 1.64-1.55 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 134.0, 133.9, 132.1, 131.4, 130.6, 128.6, 128.4, 128.0, 126.4, 126.2, 125.7, 124.5, 73.6, 66.6, 66.5, 44.2, 30.8, 25.5, 23.0, 22.0; HRMS (ESI) calcd. For C₂₁H₂₄ClO₃ [M+H]⁺: 359.1408, Found: 359.1405. [α]²⁰_D = 88.0 (*c* = 18.0 mg/mL, CHCl₃). IR v (cm⁻¹) 3474, 1719, 1511, 1241, 1133, 1017. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 97:3, flow rate = 0.75 mL/min), retention time: t₁ = 21.6 min, t₂ = 25.9 min.

(Z)-6-((tert-butyldimethylsilyl)oxy)-2-chloro-2-(hydroxymethyl)hex-4-en-1-yl 1-naphthoate (4n)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.95 (d, J = 8.4 Hz, 1H), 8.26 (d, J = 7.2 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.89 (dd, J = 12.0 Hz, 15.2 Hz, 1H), 4.32-4.27 (dd, J = 11.6 Hz, 15.2 Hz, 1H), 4.15-4.10 (dd, J = 12.4 Hz, 6.0 Hz, 1H), 3.78-3.73 (m, 2H), 3.68-3.64 (m, 1H), 2.95-2.90 (dd, J = 8.8 Hz, 14.4 Hz, 1H), 2.66-2.61 (dd, J = 6.4 Hz, 14.4

Hz, 3H), 0.89 (s, 9H), 0.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 133.8, 132.4, 131.5, 130.6, 128.6, 128.0, 126.4, 126.3, 126.2, 125.8, 124.5, 72.6, 67.5, 64.9, 58.7, 33.0, 25.8, 18.3; HRMS (ESI) calcd. For C₂₄H₃₄ClO₄Si [M+H]⁺: 449.1909, Found: 449.1900. [α]²⁰_D = 146.0 (*c* = 13.0 mg/mL, CHCl₃). IR v (cm⁻¹) 3418, 2954, 1721, 1462, 1242, 837. The er value was determined by HPLC (Chiralcel OD-H, hexane/isopropanol = 90:10, flow rate = 0.75 mL/min), retention time: t₁ = 17.4 min, t₂ = 22.7 min.

2-chloro-2-(hydroxymethyl)pent-4-en-1-yl 1-naphthoate (40)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, *J* = 6.4 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 1.2 Hz, 1H),

7.64-7.61 (m, 1H), 7.57-7.50 (m, 2H), 6.03-5.92 (m, 1H), 3.79 (d, J = 6.8 Hz, 2H), 2.71 (d, J = 7.2 Hz, 2H), 2.57 (t, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta 167.2$, 134.0, 133.9, 131.4, 130.6, 128.6, 128.1, 126.4, 126.1, 125.6, 124.5, 120.2, 72.7, 66.3, 66.2, 40.3; HRMS (ESI) calcd. For C₁₇H₁₈ClO₃ [M+H]⁺: 305.0939, Found: 305.0934. [α]²⁰_D = 170.0 (c = 15.0 mg/mL, CHCl₃). IR v (cm⁻¹) 3500, 2948, 1542, 1462, 1015, 778. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 95:5, flow rate = 0.75 mL/min), retention time: t₁ = 14.4 min, t₂ = 16.2 min.

2-chloro-2-(hydroxymethyl)-5-phenylpent-4-yn-1-yl 1-naphthoate (4p)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, J = 8.4 Hz, 1H), 8.26 (d, J = 7.2 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.65-7.48 (m, 3H), 7.43-7.41 (m, 2H), 7.32-7.25 (m, 3H), 4.85 (d, J = 12.0 Hz, 1H), 4.76 (d, J = 12.0 Hz, 1H), 3.97 (d, J = 6.8 Hz, 2H),

3.02-3.11 (dd, J = 17.6 Hz, 20.0 Hz, 2H), 2.56 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 167.1, 134.0, 133.9, 131.7, 131.4, 130.7, 128.6, 128.3, 128.1, 126.4, 126.1, 125.7, 124.5, 122.8, 84.3, 83.2, 71.6, 66.6, 66.3, 28.2; HRMS (ESI) calcd. For C₂₃H₂₀ClO₃ [M+H]⁺: 379.1095, Found: 379.1099. [α]²⁰_D = 104.0 (c = 12.0 mg/mL, CHCl₃). IR v (cm⁻¹) 1718, 1490, 1241, 1132, 1016, 781. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 97:3, flow rate = 0.75 mL/min), retention time: t₁ = 32.8 min, t₂ = 36.0 min.

(R)-2-chloro-2-(hydroxymethyl)butyl 1-naphthoate (4q)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.92 (d, J = 8.8 Hz, 1H), 8.23-8.21 (dd, J = 1.2 Hz, 7.2 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.66-7.62 (m, 1H), 7.57-7.49 (m, 2H), 4.68 (d, J = 15.6 Hz, 1H), 4.59 (d, J = 15.6 Hz, 1H), 3.80 (t, J = 1.2 Hz, 2H),

2.58-2.55 (m, 1H), 2.04-1.92 (m, 2H), 1.14-1.11 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta 167.3$, 134.0, 133.9, 131.4, 130.6, 128.6, 128.1, 126.4, 126.1, 125.6, 124.5, 74.2, 66.6, 66.4, 44.1, 24.7, 24.2; HRMS (ESI) calcd. For C₁₆H₁₈ClO₃ [M+H]⁺: 293.0939, Found: 293.0938. [α]²⁰_D = 28.0 (*c* = 12.0 mg/mL, CHCl₃). IR v (cm⁻¹) 3420, 2964, 1728, 1442, 1245, 837. The er value was determined by HPLC (Chiralcel ID, hexane/isopropanol = 95:5, flow rate = 0.75 mL/min), retention time: t₁ = 21.1 min, t₂ = 25.9.0 min.

(R)-2-chloro-2-(hydroxymethyl)-4-phenylbutyl 1-naphthoate (4r)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.92 (d, J = 8.8 Hz, 1H), 8.21 (d, J = 6.6 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.64-7.60 (m, 1H), 7.56-7.48 (m, 2H), 7.30-7.17 (m, 5H), 4.73 (d, J = 15.6 Hz, 1H), 4.63 (d, J = 15.6 Hz, 1H), 3.83 (s, 2H), 2.92-2.88

(dd, J = 7.6 Hz, 9.2 Hz, 2H), 2.25-2.19 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 141.0, 134.3, 134.1, 133.8, 131.4, 130.6, 128.6, 128.6, 128.4, 128.1, 128.0, 126.3, 126.2, 126.2, 126.0, 125.9, 125.6, 124.5, 73.5, 66.2, 66.1, 37.7, 30.0; HRMS (ESI) calcd. For C₂₂H₂₂ClO₃ [M+H]⁺: 369.1252, Found: 369.1256. [α]²⁰_D = 24.0 (c = 18.0 mg/mL, CHCl₃). IR v (cm⁻¹) 1718, 1470, 1261, 1156, 1043, 781. The er value was determined by HPLC (Chiralcel IA, hexane/isopropanol = 95:5, flow rate = 0.75 mL/min), retention time: t₁ = 21.2 min, t₂ = 23.0

(R)-2-chloro-2-(hydroxymethyl)-4-methylpentyl 1-naphthoate (4s)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, *J* = 1.2 Hz, 1H), 8.21 (d, *J* = 1.2 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.65-7.61 (m, 1H), 7.57-7.50 (m, 2H), 4.68 (d, *J* = 12.0 Hz, 1H), 4.61 (d, *J* = 12.0 Hz, 1H), 3.78 (d, *J* = 7.2 Hz, 2H), 2.59 (t, *J* = 7.2 Hz,

1H), 2.01-1.99 (m, 1H), 1.86 (d, J = 5.6 Hz, 2H), 1.66-1.04 (dd, J = 3.6 Hz, 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 134.0, 133.9, 131.4,130.6, 128.6, 128.1, 126.4, 126.1, 125.6, 124.5, 74.2, 66.6, 66.4, 44.1, 24.7, 24.2; HRMS (ESI) calcd. For C₁₈H₂₂ClO₃ [M+H]⁺: 321.1252, Found: 321.1258. [α]²⁰_D = 18.0 (c = 10.0 mg/mL, CHCl₃). IR v (cm⁻¹) 3418, 2954, 1721, 1462, 1242, 837. The er value was determined by HPLC (Chiralcel ID, hexane/isopropanol = 95:5, flow rate = 0.75 mL/min), retention time: t₁ = 13.7 min, t₂ = 15.4 min.

(S)-(2-chloro-1-oxo-2,3-dihydro-1H-inden-2-yl)methyl 1-naphthoate (6)

Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 8.80 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.87-7.83 (m, 2H), 7.56-7.46 (m, 4H), 7.36 (t, J = 7.6 Hz, 4H), 4.96-4.79 (dd, J = 11.2 Hz, 32.8 Hz, 1H), 3.82 (d, J = 11.8 Hz, 1H), 3.63 (d, J = 18.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 198.3, 166.2, 150.2, 136.4,

133.9, 133.7, 133.5, 131.3, 130.6, 128.5, 128.4, 128.0, 126.5, 126.3, 125.6, 125.5, 124.4, 66.9, 66.0, 41.1; HRMS (ESI) calcd. For $C_{21}H_{16}ClO_3$, $[M+H]^+$: 351.0782, Found: 351.0788.

(3-chloro-8-oxo-1-oxaspiro[4.5]deca-6,9-dien-3-yl)methyl 1-naphthoate (8)

Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 8.93 (d, J = 8.4 Hz, 1H), 8.24 (d, J = 7.2 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.67-7.53 (m, 3H), 7.34-7.26 (m, 1H), 6.80-6.77 (dd, J = 2.8 Hz, 10.0 Hz, 1H), 6.22-6.17 (m, 2H),

4.77 (d, J = 11.6 Hz, 1H), 4.70 (d, J = 12.0 Hz, 1H), 4.43-4.36 (dd, J = 7.6 Hz, 16.0 Hz, 2H), 2.70-2.61 (dd, J = 14.8 Hz, 20.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta 185.0$, 166.5, 148.0, 147.6, 134.3, 133.9, 131.4, 130.6, 128.7, 128.2, 128.1, 127.4, 126.5, 125.7, 125.5, 124.5, 78.2, 78.0, 72.6, 67.8, 48.8; HRMS (ESI) calcd. For C₂₁H₁₈ClO₄ [M+H]⁺: 369.0888, Found: 369.0889. $[\alpha]^{20}_{D} = 20.0$ (c = 4.0 mg/mL, CHCl₃).

(R)-2-benzyl-2-fluoro-3-hydroxypropyl acetate (15)

Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.23 (m, 5H), 4.28-4.09 (m, 2H), 3.64-3.59 (dd, J = 3.6 Hz, 12.4 Hz, 1H), 3.05 (d, J = 21.2 Hz, 2H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 1171.0, 134.5, 134.5, 130.3, 128.4, 127.0, 97.0, 95.3, 64.1, 63.8, 63.1, 62.8, 38.57, 38.4, 20.7; HRMS (ESI) calcd. For C₁₁H₁₄ClO₃ [M+H]⁺: 229.0626, Found: 229.0629. [α]²⁰_D = 6.0 (c = 14.0 mg/mL, CHCl₃).

7. References

1. C. Yokoyama, R. Hyodo, A. Nakadat, S. Yamaguchit, Y. Hirail, T. Kometani, M. Goto, N. Shibata and Y. Takeuehi, *Tetrabedron Lett.* 1998, **39**, 7741.

2. J. D. Olszewski, M. Marshalla, M. Sabat and R. J. Sundberg, J. Org. Chem. 1994, 59, 4285.

3. O. Iliashevsky, L. Amir, R. Glaser, R. S. Mark and N. G. Lemcoff, *J. Mater. Chem.* 2009, **19**, 6616.

4. K. D. Reichl, N. L. Dunn, N. J. Fastuca and A. T. Radosevich, J. Am. Chem. Soc. 2015, 137, 5292.

5. K. Hirano, A. T. Biju, I. Piel and F. Glorius, J. Am. Chem. Soc. 2009, 131, 14190.

6. M. A. Ischay, Z. Lu and T. P. Yoon, J. Am. Chem. Soc. 2010, 132, 8572.

7. H. Zheng, M. Lejkowski and D. G. Hall, Chem. Sci. 2011, 2, 1305.

8. K. D. Reichl, N. L. Dunn, N. J. Fastuca and A. T. Radosevich, J. Am. Chem. Soc. 2015, 137, 5292.

S25

- 40.78

-21.06

lbs-4-Me-diol-C

-0.000

lbs-4-MeO	-diol-C	1																
	158.52					113.48			77.32 77.00 76.74	- 76.68 7	4/.00		40.09					
									ú				I					
Mandatan Agamatan juli na juli na juli na juli		aline alin ing tan a	nana an	سالمعاسية	and the first state of the	not we can be seen ou		10,4,5 °C 10101000,00000		ton and the set of the set	han an a		en negative Agestrace	hoo ja dense name pos	u ⁿ atura _{la} kitati	ty the second	Mangara Shadara	there a
170	160	150	140	130	120	110	100	90 S3	80	70	60	50	40	30	20	10	•••••	ppm

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm
in Statutes of a Line of Statutes	- weighter w		. if a file time with	ar 11 - Mar 116 - 116 - 116 - 116 - 116 - 116 - 116 - 116 - 116 - 116 - 116 - 116 - 116 - 116 - 116 - 116 - 116																
					П 104.9			119.5				77.56	76.84	66.22		40.57				-4.28

200	190	180	170	160	150	140	130	120	110	100 \$34	90	80	70	60	50	40	30	20	10	ppm
						Ŷ								1						
						136.8	131.0 131.0 126.5					77.48	77.01 76.8	65.4		40.9				

lbs-NAP-diol-H

L Ę

OH

1h

0.071 0.000

\ /

(

lbs-NAP-diol-C

S39

2-Cl-thiol-C

	137.73 133.34 131.23 131.23 129.06 128.27 126.65		77.48 77.16 76.97 76.84 66.94	46.13	20.60	
kama, dihari klada ang kama aka aka aka ang ang ang ang ang ang ang ang ang an	م رواند المراقبة الم المراجعة المراقبة الم	banga kanama katika ana da pada da da ana kana kana da ya dika kana kana ka Kanama mana yang mala pada ngada nga da n	al January Ing States and States a	in the stand of the state of th	Landalah gandar Liggi kalan di Kalandar da ang kalan da ang kalan sa kalan sa kalan sa kalan sa kalan sa kalan Mang panan mang mang kang kalan sa kalan	Llabath, for and filthered
200 190 180 170 160 15	0 140 130 120	110 100 90 _{\$42}	80 70	60 50 40	30 20 10	ppm

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppn
					n de la stad en anjak (j. j. j. j. j. Jej tryk er i en an stad en anjak (j. j. j. j. j. Jej tryk er i en anjak (j. j. j			e Milé e de la Color de la 19 mil de la Color de Color de la Color de	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1)11 11 11 11 11 11 11 11 11 11 11 11 11	un dala jin da jin jin			tell Lingues of some side of the source of t			n dans, an didawith new dars and an an		
						\/		, 												
) ~ 7	- 142	1200	- 11.5					- 9L			40.				

	4	

200 190	180	170	160	150	140	130	120	110	100	90	80	70) 60	50	4	0	30	20	10	ppr
	n filo jisa and a stranger		elinge statute to specie to statute																	
						128.	120.					76.8	99					23.3	— 13.4	

ر ملاحظه به بهر همان المحلم المعلم المحلم المحل حد المحلم المح حد المحلم المحلم حد محلم المحلم المحلم حد محلم المحلم الم حد محلم المحلم المحل حد محلم المحلم ال حد محلم المحلم المحل	מייאייריק יויוןוקוידי 	ישייים בעישיישון חודען אייבערער אייניער דייייניים ער הסיב האיישון חודען אייבערער אייניער דר הסיב האיישון חודען אייבערער אייניער	
145. 1145. 128. 121. 122.	$\overbrace{77.1}^{77.4}$		34.9

18-10-11-11-11-11-11-11-11-11-11-11-11-11-	Ala pian Dila an Adamski Gippo na pina pina pina	a landa landa anda Ing ma ka sana y	nadi, dan dan yakan Mangang Tana yakan Mangang Tana yang	hladam Lalau jallus kaik asperanjara party siary tala	a just an an a tha an	n blev jaljika nation na kora postavanjan	na je dovanski konstrukcije je poslava V sporovenska poslava je poslava j V sporovenska poslava je poslava j	ing for the first of the second states of the secon	ing the static and the state of No Person provided the state of the	and the state of the	l fin al faite a transfere general faite state of the	a kalenda in dia	Websterne II one offer wergerreijerreiterfr	Jahri di u Jahan Barat Marangan Pangan Propinsi ang	100000 1 00 000 100 100 100 100 100 100	ing for the second s	(Assertific to a state	n in the second state of the s The second state of the second state of	alle find the lower states in the states of	ing in the second second
									I											
					I				I			1		I		1 1	1 1		I	
												\sim								

S54

المبار والانتقادية وهريق ف	स स (म्यु स स म्यु स स	all fills is a filler of a state of a	 	 • • • • • • • • • • • • • • • • • • •		1 COL 12 COL 12 COL 13	 1 M 1000 11 1	 	 A CONTRACTOR OF A	 		
un sea and buy planks		E Ang Ma Like grades for weating of			no del tin Lavo nila vine la						Madda and a second s	

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppn
									/////////////////////////////////////											
							132.9 127.9					77.36	67 15	, - - -		44.08	30.82	23.1(

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm
ang pang sa	Lan, ada a cha a bha a sais ba gan th' fall agus a filige agus a	sliderar on delign	sis dan kali di wa Abu Maji pala ni wa kali ya kali ya Maji ya kali ya	, ah la dah 1 by dah 1 by da Mang ang ang ang ang ang ang ang ang ang	halifa sayama dala Yang saka dalam yang m	ild kalaan dia Jappilia Poppa yang kalaya Poppa yang kalaya	(Lynis) a ddi Yrayallyny y ry	na station de la dada da Antigeneration de la dada	la la chairte stathard Reise stathard ann an stathard ann an stathard ann ann ann ann ann ann ann ann ann an	all this work is the second	a and Nah See Allah San 1979 - San		Luka, Andra Maria Interpretation	h (atel provide the first of the second s	Life and all colors	ได้หายๆประสารณ์ เขาประวัติการจากผู้ประชาต			uhan an bhadanainn an Mar an tairte an bhadannainn Mar an tairte an bhagar	uttess kall kan kan ka kan ya Tan panya kan ya
													9				ι 			

lbs-allyl-diol-H6

-0.000

lbs-Et-Diol-C

lbs-PhCH2CH2-diol-H

lbs-PhCH2	CH2-d:	iol-C																
			141.28	128.56 128.37 126.18					77.20	76.68				30.17				
			I															
1997-1999-1994 - 1995-1995 - 1995-1995 - 1995-1995 					ál, Brássálas án f													
170	160	150	140	130	120	110	100	90 _{S7}	80	70	60	50	40	30	20	10	0	ppm

a 🔬

-0H

0

3a, 95%, 95:5 er

-0.000

.000 0

lbs-4-CF3-Cl-H

lbs-OMe-desymmetrization-C1

lbs-TBS-Cl-H

lbs-4-prot	tectin	g-eth	yl-ol-	С														
			136.96 135.63 134.09 133.87 131.43	130.96 130.65 128.65 128.65	- 126.45 - 126.42 - 126.01 - 125.64				77.32	73.32	65.32 65.33 65.32							
					I		1			T			ſ					
											I							
													1					
															•	t tailet a social	الاله فانت م	
170	160	150	140	130	120	110	100	90 s	80	70) 60	50	40	30	20	10	0	ppm

lbs-m-protecting-H

2-Cl-thiol-H

2-Cl-thiol-C

lbs-desymmetrization-F-C1

lbs-desymmetrization-F-F

lbs-styrene-CH2-H1

lbs-styrene-a-me-H2

lbs-2-styrene-2'-2-Cl-H

0.000

lbs-styrene-5-Ph-6-Ph-H

0.000

lbs-styrene-5-Me-5-Ph-C

lbs-5-diphenyl-H

lbs-5-tBu-5-Me-C

lbs-benzenecyclopentane-H1

-0.049

lbs-benzenecyclopentane-C

lbs-benezocyclohexane-H1

lbs-benezocyclohexane-C

lbs-cis-olefin-OTBS-C 123.84 132.40 131.45 131.45 123.58 123.58 126.35 126.35 126.35 126.35 126.35 126.35 126.35 126.35 126.35 126.35 167.03 77.32 77.00 76.68 72.57 67.54 64.89 58.70 32.99 25.84 18.33 برولنها أصخلهما n na hailin a sha 150 50 170 160 140 130 120 110 100 90 80 70 60 40 30 20 10 0 ppm S125

lbs-alyll-Cl-H

-0.000

lbs-alyll-Cl-C

мю

bld an ha cho cho an an cho a blann ais ann han han bha a bha a dh an an bhal a bha an dh an bha an bha an bha Ann fha mar ann an bha an an ann an bha an an bha a Ann fha mar ann an bha an	ייין איז	אניוני איז איז איז איז איז איז איז איז איז אי

lbs-Et-monoester-C

lbs-2-Bn-CH2-2-Cl-C

lbs-ipr-monoester-H

lbs-ipr-mc	noeste	er-C															
			<pre>/134.00 /133.85</pre>	131.42 130.58 128.62 128.62 128.05	126.11				■ 77.32	74.20	66.38		44.08	-	24.11		
													I				
der i die beste fin wie delten blie einer in die de beste Angel die beste die voor is die stratige die beste die beste Angel die beste die voor is die stratige die beste	en en a l'industrie, sons bile par en general service generalisere	o bili bili di bili di bili di si di sono di so Ten 15 la constante di constante d	shiitika kashaya wakida da Miliya waliwa ta iyo wakida	national and the second se	il Locihizeilen eizuite	11. st. 1. g. s. det Å. all sti Villes av 1914 og 1914 og 1914 og	, 1994 (m. 1944), 1944 (m. 1944) 1979 - Yang Yang Yang, 1944 (m. 1944) 1979 - Yang Yang Yang, 1944 (m. 1944)	untara fan 1141 abir de a birt abir de Ferfinse (jewyng) were were stere inter	l dist obly month of t	niel je stas ji sete une ji Naji programija	lind a to be of which	ral, dala and dala manaja a 1 ada	internet state and state and state	ukan ukan sebuta kata kata kata kata kata kata kata k			in the state
170	160	150	140	130	120	110	100	90 S135	80	70) 6() 50	••••••••••••••••••••••••••••••••••••••	30	20	10	ppm

-0.000

LBS-indanol-ester-0	2			
198.28	166.23	150.20 133.94 133.94 133.47 133.47 133.47 128.54 128.54 128.54 126.27 126.27 126.27 126.27 125.53 126.27	■ 77.32 77.00 76.68 66.94	41.09
		1		
				ri salaran salat na alam salata dina makilika a
Martin and San	dar L de ei de daar ble dar ste berge ste beste ble en de eerste er. Her ge er val ei haren ver stepe gelegen en ste bere vere ste er 	hr, J. ana je, aku 19. zvije za 19. zvije za 19. zvije za 19. zkola 19. zkola 19. za 19. z Za 19. za 19. z Za 19. za	an a find de la dece hant alle general (). And find de la dece hant alle (). An a find de la dece hant alle (). An an alle (). An all and the later () and the later () and a set of the later ().	
210 200 190 1	80 170 160	0 150 140 130 120 110 100 _{S137}	90 80 70 60	50 40 30 20 10 ppm

lbs-oxidation-C2

lbs-OAc-H

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.116	965834	38656	49.543	57.642
2	13.473	983655	28406	50.457	42.358
Total		1949489	67062	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.034	574133	24958	4.876	7.434
2	13.244	11199780	310764	95.124	92.566
Total		11773913	335721	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.633	1128402	34913	49.377	55.528
2	13.801	1156898	27961	50.623	44.472
Total		2285300	62875	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.732	325775	10954	4.963	6.442
2	13.890	6238673	159082	95.037	93.558
Total		6564448	170036	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.311	3692805	74175	47.348	56.172
2	15.287	4106455	57875	52.652	43.828
Total		7799260	132051	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.372	650985	15807	6.142	9.127
2	15.368	9948450	157390	93.858	90.873
Total		10599435	173197	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.564	3340572	99719	49.196	55.768
2	18.349	3449817	79092	50.804	44.232
Total		6790390	178811	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.907	788441	32762	4.647	6.920
2	15.934	16179824	440689	95.353	93.080
Total		16968266	473452	100.000	100.000

Реак#	Ret. Time	Area	Height	Area %	Height %
1	28.143	2141530	28706	49.121	53.446
2	32.609	2218209	25004	50.879	46.554
Total		4359739	53710	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	28.241	489725	8353	9.555	12.118
2	32.557	4635482	60578	90.445	87.882
Total		5125207	68931	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	24.877	3235328	56655	50.523	72.501
2	38.339	3168310	21489	49.477	27.499
Total		6403638	78143	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	24.851	249105	4895	5.970	15.865
2	38.009	3923827	25957	94.030	84.135
Total		4172931	30852	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	43.701	150096314	1233562	49.179	53.857
2	52.216	155108183	1056862	50.821	46.143
Total		305204497	2290424	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	44.716	8603105	93313	4.452	6.705
2	51.933	184618431	1298427	95.548	93.295
Total		193221536	1391740	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.748	8055694	250785	48.598	55.539
2	18.367	8520622	200765	51.402	44.461
Total		16576315	451550	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.108	2412557	51585	7.296	8.836
2	17.264	30656326	532228	92.704	91.164
Total		33068883	583813	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.295	5833308	178159	50.013	56.327
2	16.361	5830246	138136	49.987	43.673
Total		11663554	316295	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.366	1011367	37821	6.352	9.461
2	14.859	14910607	361927	93.648	90.539
Total		15921974	399748	100.000	100.000

Pea k #	Ret. Time	Area	Height	Area %	Height %
1	24.589	931865	19725	14.836	18.199
2	28.935	5349184	88662	85.164	81.801
Total		6281049	108387	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.677	46469444	740442	49.390	57.932
2	25.625	47617304	537689	50.610	42.068
Total		94086748	1278131	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.610	1136152	24356	5.023	8.279
2	25.555	21482018	269847	94.977	91.721
Total		22618171	294204	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.583	37153493	1094179	50.519	55.075
2	11.847	36389383	892514	49.481	44.925
Total		73542876	1986692	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.278	1428360	48149	5.989	8.129
2	12.731	22420193	544193	94.011	91.871
Total		23848553	592342	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.143	15429194	502977	50.295	52.659
2	12.554	15248437	452185	49.705	47.341
Total		30677630	955162	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.726	1804844	62831	7.219	8.132
2	11.876	23195869	709811	92.781	91.868
Total		25000713	772642	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.194	5229238	69942	49.591	58.759
2	25.272	5315485	49090	50.409	41.241
Total		10544724	119031	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.527	13190383	139147	95.527	94.496
2	24.601	617617	8105	4.473	5.504
Total		13807999	147252	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.030	51005927	1036004	49.356	54.165
2	20.737	52336100	876684	50.644	45.835
Total		103342026	1912688	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	50.788	14094560	107187	49.920	53.285
2	57.615	14139945	93970	50.080	46.715
Total		28234505	201157	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	51.079	10824658	68106	94.976	95.260
2	58.259	572656	3389	5.024	4.740
Total		11397315	71495	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	29.831	36679315	462748	49.644	52.116
2	33.497	37204828	425171	50.356	47.884
Total		73884142	887920	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	29.960	2193194	32997	5.047	6.429
2	33.557	41264452	480238	94.953	93.571
Total		43457646	513235	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.985	309490	10646	49.781	52.793
2	15.737	312217	9520	50.219	47.207
Total		621707	20166	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.699	50300	1528	5.387	6.770
2	15.425	883467	21041	94.613	93.230
Total		933767	22569	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	30.760	2108846	27294	4.381	7.181
2	42.517	46029017	352792	95.619	92.819
Total		48137863	380086	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	88.431	27520201	112194	49.837	53.885
2	99.292	27699933	96015	50.163	46.115
Total		55220134	208209	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	89.680	2021946	9981	4.776	6.920
2	99.024	40314831	134254	95.224	93.080
Total		42336777	144235	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	52.365	292837	4129	5.004	6.799
2	58.939	5559354	56595	94.996	93.201
Total		5852191	60724	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.616	1346194	28636	50.019	60.342
2	27.543	1345194	18820	49.981	39.658
Total		2691388	47456	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.870	54906	1307	7.453	11.008
2	27.935	681806	10563	92.547	88.992
Total		736712	11869	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.613	39654722	998094	49.934	53.895
2	25.915	39759997	853842	50.066	46.105
Total		79414719	1851936	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.981	630859	20697	5.222	7.151
2	26.338	11449229	268746	94.778	92.849
Total		12080088	289444	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.445	1083406	19625	49.303	53.565
2	22.680	1114038	17013	50.697	46.435
Total		2197443	36638	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.032	94346	3354	6.896	8.893
2	21.268	1273783	34359	93.104	91.107
Total		1368129	37713	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.409	6815592	171008	49.104	60.243
2	16.169	7064303	112857	50.896	39.757
Total		13879895	283865	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.552	898657	26967	9.892	13.712
2	17.647	8186349	169706	90.108	86.288
Total		9085006	196673	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	32.826	16732084	243108	48.999	52.614
2	35.964	17415625	218947	51.001	47.386
Total		34147708	462055	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	32.962	1775422	37359	4.796	6.404
2	36.124	35240848	546006	95.204	93.596
Total		37016270	583365	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.054	2985560	37407	50.453	53.321
2	25.862	2931908	32748	49.547	46.679
Total		5917468	70155	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.178	463976	4935	15.789	17.163
2	25.963	2474705	23817	84.211	82.837
Total		2938681	28752	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.176	1034539	19235	52.761	53.108
2	23.048	926280	16983	47.239	46.892
Total		1960819	36218	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.035	1628659	33572	19.142	19.411
2	22.854	6879444	139382	80.858	80.589
Total		8508103	172953	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.906	6059630	226287	49.230	49.176
2	15.623	6249251	233867	50.770	50.824
Total		12308882	460154	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.737	3909018	135853	34.717	33.596
2	15.421	7350544	268525	65.283	66.404
Total		11259562	404378	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.177	2719334	63570	49.355	49.737
2	23.555	2790460	64244	50.645	50.263
Total		5509794	127814	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.460	334812	9360	9.760	10.729
2	23.682	3095746	77880	90.240	89.271
Total		3430559	87240	100.000	100.000