Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Synthesis of 1,2,3,4-tetrasubstituted naphthalenes through cascade reaction triggered by silyl acetal activation

Hikaru Yanai,* Nobuyuki Ishii, and Takashi Matsumoto*

School of Pharmacy, Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan. Tel.: +81 426 76 3265, Fax: +81 426 76 3257 E-mail: yanai@toyaku.ac.jp (HY) and tmatsumo@toyaku.ac.jp (TM)

Electronic Supplementary Information

Table of contents

1. General and materials	p. S1
2. Preparation of 1 <i>H</i> -isochromen-1-ones	p. S2
3. Zwitterion-induced addition reaction	p. S10
4. Fluoride-triggered ring rearrangement reaction	p. S20
5. Construction of higher polycyclic systems	p. S28
6. X-ray crystallographic data	p. S30
7. ¹ H and ¹³ C NMR spectra of all compounds	p. S35
8. References	p. S88

<u>1. General and materials</u>

All reactions were carried out under Ar atmosphere. Melting points were uncorrected. NMR spectra were recorded on a Bruker Avance III Nanobay 400 MHz spectrometer (400 MHz for ¹H, 100 MHz for ¹³C) in CDCl₃ or CD₃CN. Data are reported as follows: chemical shifts, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sex = sextet, m = multiplet, br = broad) and coupling constants. Chemical shifts (in ppm) were referenced to the solvent signal (CDCl₃, 7.26 ppm for ¹H NMR and 77.0 ppm for ¹³C NMR; CD₃CN, 1.93 ppm for ¹H NMR and 117.7 ppm for ¹³C NMR). Coupling constants (*J*) are given in Hz. Mass spectra were measured on a MICROMASS LCT mass spectrometer using electrospray ionization-time of flight (ESI-TOF). Column chromatography was performed on neutral silica gel (Kanto Chemical, Silica gel 60N, 63-210 µm or 40-100 µm) or basic alumina (ICN Alumina B–Super I). Zwitterion catalyst **1** was prepared by our reported procedure from Tf₂CH₂.¹ Tf₂CH₂ was supplied from Central Glass Co. and this compound can be also prepared by Waller's procedure in the laboratory.²

2. Preparation of 1H-isochromen-1-ones

4-(Hex-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-one (7a)

This compound was obtained by simple modification of the Larock's conditions.³ To a solution of 4-iodo-3-phenyl-1*H*-isochromen-1-one **6** (1.04 g, 2.99 mmol) and hex-1-yne (0.74 g, 9.0 mmol) in DMF (3.0 mL) and Et₃N (1.2 mL), (Ph₃P)₂PdCl₂ (42 mg, 60 µmol) and CuI (38 mg, 200 µmol) were added at room temperature. After being stirred for 3 h at 55 °C, the reaction mixture was diluted with H₂O (100 mL), then it was extracted with Et₂O (50 mL x 3), dried over anhydrous MgSO₄, and evaporated. The resulting residue was purified by column chromatography on silica gel (hexane/EtOAc = 20 : 1) to give **7a** in 88% yield (801 mg, 2.65 mmol). Colorless crystals (from hexane/EtOAc); Mp. 32.0-32.5 °C; IR (ATR) *v* 2952, 2223, 1722, 1603, 1480, 1076, 758, 690, 552 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.96 (3H, t, *J* = 7.4 Hz), 1.44-1.54 (2H, m), 1.59-1.69 (2H, m), 2.52 (2H, t, *J* = 7.1 Hz), 7.43-7.49 (3H, m), 7.52-7.58 (1H, m), 7.78-7.84 (1H, m), 7.92 (1H, d, *J* = 8.0 Hz), 8.15-8.21 (2H, m), 8.32 (1H, dd, *J* = 7.8, 0.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 19.5, 22.1, 30.5, 73.5, 99.2, 100.2, 119.8, 125.5, 128.0, 128.4, 128.5, 129.3, 130.0, 132.5, 134.9, 137.6, 156.0, 161.2.; MS (ESI-TOF) *m*/*z* 303 [M+H]⁺; HRMS calcd for C₂₁H₁₉O₂ [M+H]⁺, 303.1385; found, 303.1383. Anal. Calcd for C₂₁H₁₈O₂: C, 83.42; H, 6.00. Found: C, 83.44; H, 6.05.

3-Phenyl-4-(phenylethynyl)-1*H***-isochromen-1-one (7b)**

According to the synthetic procedure for **7a**, this compound was obtained in 95% yield (1.84 g, 5.71 mmol) by the reaction of 4-iodo-3-phenyl-1*H*-isochromen-1-one **6** (2.09 g, 6.01 mmol) with ethynylbenzene (0.80 mL, 7.2 mmol) in the presence of (Ph₃P)₂PdCl₂ (84 mg, 0.12 mmol) and CuI (69 mg, 0.36 mmol) in a mixed solvent of DMF (6.0 mL) and Et₃N (2.4 mL) for 5 h at 55 °C and the following column chromatography on silica gel (hexane/EtOAc = 20 : 1). Its structure was confirmed by comparison with the reported ¹H and ¹³C NMR spectra.³ ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.42 (3H, m), 7.45-7.56 (5H, m), 7.60 (1H, t, *J* = 7.8 Hz), 7.87 (1H, t, *J* = 7.8 Hz), 8.12 (1H, d, *J* = 7.8 Hz), 8.20-8.28 (2H, m), 8.37 (1H, d, *J* = 7.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 82.6, 97.5, 99.6, 119.6, 122.7, 125.3, 128.1, 128.5, 128.58, 128.63, 128.7, 129.4, 130.4, 131.3, 132.3, 135.1, 136.9, 156.6, 160.9.

3-Butyl-4-(phenylethynyl)-1*H***-isochromen-1-one (7c)**

To a solution of methyl 2-(hex-1-yn-1-yl)benzoate⁴ (435 mg, 2.01 mmol) in CH₂Cl₂ (10 mL), a solution of I₂ (535 mg, 2.21 mmol) in CH_2Cl_2 (10 mL) was added. After being stirred for 1 h at room temperature, the reaction mixture was quenched with saturated Na₂S₂O₃ aqueous solution (25 mL) and extracted with Et₂O (25 mL x 3). The combined organic layer was washed with brine (25 mL), dried over anhydrous Na₂SO₄, and evaporated. The resulting residue contained 6-endo- and 5-exo-iodolactones in a ratio of 93:7. Due to low stability of these lactones, this mixture was used in the following Sonogashira reaction without further purification. This mixture mainly containing 6-endo-iodolactone was dissolved in a mixed solvent of DMF (2.0 mL) and Et₃N (0.8 mL). To this solution, ethynylbenzene (0.27 mL, 2.4 mmol), (Ph₃P)₂PdCl₂ (29 mg, 40 µmol), and CuI (21 mg, 110 µmol) were added. After being stirred for 5 h at 55 °C, the reaction mixture was filtrated through celite pad. The filtrate was evaporated, diluted with water (25 mL), and extracted with Et₂O (25 mL x 3). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. This compound was isolated in 71% yield (432 mg, 1.43 mmol) over two steps by column chromatography on silica gel (hexane/EtOAc = 10:1) followed by recycling HPLC (hexane/EtOAc = 10:1). Colorless crystals (from hexane/EtOAc); Mp. 85.5-88.0 °C; IR (ATR) v 2924, 1728, 1620, 1480, 1016, 750, 684 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.98 (3H, t, J = 7.5 Hz), 1.46 (2H, sex, J = 7.5 Hz), 1.769-1.86 (2H, m), 2.91 (2H, t, J = 7.6 Hz), 7.37-7.43 (3H, m), 7.53 (1H, brt, J = 7.9 Hz), 7.56-7.60 (2H, m), 7.77-7.83 (1H, m), 7.92 (1H, dd, J = 8.0, 0.5 Hz), 8.29 (1H, dd, J = 7.9, 0.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 13.8, 22.2, 29.3, 32.5, 81.3, 96.8, 100.2, 119.4, 122.8, 124.6, 128.1, 128.5, 128.6, 129.4, 131.4, 135.1, 136.5, 161.5, 162.8; MS (ESI-TOF) m/z 352 [M+Na]⁺; HRMS calcd for C₂₁H₁₈NaO₂ [M+Na]⁺, 325.1204; found, 325.1207.

3-Butyl-4-(hex-1-yn-1-yl)-1*H*-isochromen-1-one (7d)

According to the synthetic procedure for **7c**, this compound was obtained in 80% yield (318 mg, 1.13 mmol) as follows. A crude mixture of 3-butyl-4-iodo-1*H*-isochromen-1-one, which was obtained by the iodolactonization of methyl 2-(hex-1-yn-1-yl)benzoate⁴ (305 mg, 1.41 mmol) with I₂ (393 mg, 1.55 mmol) in CH₂Cl₂ (15 mL), was dissolved in a mixed solvent of DMF (2.0 mL) and Et₃N (0.8 mL). This solution was treated with hex-1-yne (0.48 mL, 4.2 mmol), (Ph₃P)₂PdCl₂ (29 mg, 40 µmol), and CuI (21 mg, 110 µmol) for 5 h at 55 °C.

After usual extractive workup, isolation of this compound was achieved by column chromatography on silica gel (hexane/EtOAc = 20 : 1) followed by recycling HPLC (hexane/EtOAc = 10 : 1). Pale yellow oil; IR (neat) v 2950, 2925, 2870, 2225, 1740, 1620, 1480, 1316, 1100, 1020, 768, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.95 (3H, t, J = 7.4 Hz), 0.98 (3H, t, J = 7.3 Hz), 1.42 (2H, sex, J = 7.4 Hz), 1.47-1.58 (2H, m), 1.59-1.69 (2H, m), 1.69-1.78 (2H, m), 2.52 (2H, t, J = 7.0 Hz), 2.81 (2H, t, J = 7.4 Hz), 7.48 (1H, td, J = 8.0, 1.3 Hz), 7.75 (1H, td, J = 8.0, 1.3 Hz), 7.81 (1H, dd, J = 8.0, 0.7 Hz), 8.24 (1H, dd, J = 8.0, 0.7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 13.8, 19.3, 22.0, 22.2, 29.3, 30.9, 32.3, 72.3, 98.0, 100.6, 119.4, 124.6, 127.8, 129.3, 134.9, 137.1, 161.8, 162.0; MS (ESI-TOF) m/z 305 [M+Na]⁺; HRMS calcd for C₁₉H₂₂NaO₂ [M+Na]⁺, 305.1517; found, 305.1517.

4-((4-Methoxyphenyl)ethynyl)-3-phenyl-1*H*-isochromen-1-one (7e)

According to the synthetic procedure for **7a**, this compound was obtained in 93% yield (658 mg, 1.87 mmol) by 4-iodo-3-phenyl-1*H*-isochromen-1-one 6 the reaction of (696 mg, 2.00 mmol) with 1-ethynyl-4-methoxybenzene (295 mg, 2.20 mmol) in the presence of (Ph₃P)₂PdCl₂ (28 mg, 40 µmol) and CuI (21 mg, 0.11 mmol) in a mixed solvent of DMF (2.0 mL) and Et₃N (0.80 mL) for 4 h at 55 °C and the following flash column chromatography on silica gel (hexane/EtOAc = 5 : 1). Colorless crystals (from hexane/EtOAc); Mp. 115-117 °C; IR (ATR) v 3033, 2958, 2839, 1731, 1602, 1250, 1223, 1016, 821, 753, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.89 (3H, s), 6.91 (2H, d, *J* = 8.9 Hz), 7.44-7.54 (5H, m), 7.59 (1H, td, *J* = 7.6, 1.1 Hz), 7.86 (1H, td, *J* = 7.6, 1.4 Hz), 8.11 (1H, brd, *J* = 7.6 Hz), 8.22-8.26 (2H, m), 8.35 (1H, dd, *J* = 7.6, 1.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 81.3, 97.6, 100.0, 114.2, 114.9, 119.7, 125.5, 128.1, 128.6, 128.7, 129.5, 130.3, 132.4, 132.9, 135.1, 137.2, 156.2, 160.0, 161.1 MS (ESI-TOF) m/z 353 [M+H]⁺; HRMS calcd for C₂₄H₁₇O₃ [M+H]⁺, 353.1176; found, 353.1178.

4-((2-Methoxyphenyl)ethynyl)-3-phenyl-1*H*-isochromen-1-one (7f)

According to the synthetic procedure for 7a, this compound was obtained in 79% yield (553 mg, 1.57 mmol) by the reaction of 4-iodo-3-phenyl-1*H*-isochromen-1-one **6** (696 mg, 2.00 mmol) with

1-ethynyl-2-methoxybenzene (322 mg, 2.40 mmol) in the presence of $(Ph_3P)_2PdCl_2$ (28 mg, 40 µmol) and CuI (20 mg, 105 µmol) in a mixed solvent of DMF (2.0 mL) and Et₃N (0.80 mL) for 4 h at 55 °C and the following flash column chromatography on silica gel (hexane/EtOAc = 5 : 1). Colorless crystals (from hexane/EtOAc); Mp. 144-145 °C; IR (ATR) *v* 2971, 2936, 2832, 1736, 1602, 1244, 1015, 743, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.97 (3H, s), 6.92-7.02 (2H, m), 7.31-7.39 (1H, m), 7.43-7.55 (4H, m), 7.57-7.63 (1H, m), 7.83-7.91 (1H, m), 8.38 (1H, d, *J* = 7.6 Hz), 8.32-8.40 (3H, m); ¹³C NMR (100 MHz, CDCl₃) δ 55.8, 86.6, 94.8, 100.1, 110.7, 112.2, 119.7, 120.6, 125.8, 128.1, 128.6, 128.7, 129.4, 130.2, 130.3, 132.3, 132.9, 135.1, 137.4, 156.0, 160.3, 161.1; MS (ESI-TOF) *m*/*z* 353 [M+H]⁺; HRMS calcd for C₂₄H₁₇O₃ [M+H]⁺, 353.1178; found, 353.1176. Anal. Calcd for C₂₄H₁₈O₃: C, 81.80; H, 4.58. Found: C, 81.60; H, 4.55.

3-Phenyl-4-(*o*-tolylethynyl)-1*H*-isochromen-1-one (7g)

According to the synthetic procedure for **7a**, this compound was obtained in 95% yield (632 mg, 1.88 mmol) by the reaction of 4-iodo-3-phenyl-1*H*-isochromen-1-one **6** (692 mg, 1.99 mmol) with 2-ethynyltoluene (255 mg, 2.20 mmol) in the presence of (Ph₃P)₂PdCl₂ (29 mg, 40 µmol) and CuI (21 mg, 110 µmol) in a mixed solvent of DMF (2.0 mL) and Et₃N (0.8 mL) for 2 h at 55 °C and the following column chromatography on silica gel (hexane/EtOAc = 10 : 1). Yellow crystals (from Et₂O); Mp. 157-159 °C; IR (ATR) *v* 1736, 1479, 1080, 1054, 1015, 751, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.50 (3H, s), 7.18-7.32 (3H, m), 7.47-7.54 (4H, m), 7.58-7.64 (1H, m), 7.84-7.90 (1H, m), 8.15 (1H, d, *J* = 8.0 Hz), 8.20-8.26 (2H, m), 8.37 (1H, d, *J* = 7.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 86.2, 96.7, 100.1, 119.8, 122.6, 125.4, 125.8, 128.2, 128.71, 128.76, 128.82, 129.6, 129.7, 130.4, 132.0, 132.4, 135.2, 137.2, 140.0, 156.6, 161.0; MS (ESI-TOF) *m/z* 337 [M+H]⁺; HRMS calcd for C₂₄H₁₇O₂ [M+H]⁺, 337.1229; found, 337.1241.

4-((4-Fluoro-3-methylphenyl)ethynyl)-3-phenyl-1*H*-isochromen-1-one (7h)

According to the synthetic procedure for **7a**, this compound was obtained in 87% yield (610 mg, 1.72 mmol) by the reaction of 4-iodo-3-phenyl-1*H*-isochromen-1-one **6** (692 mg, 1.99 mmol) with 4-ethynyl-1-fluoro-2-methylbenzene (293 μ L, 2.20 mmol) in the presence of (Ph₃P)₂PdCl₂ (29 mg, 40 μ mol) and CuI (23 mg, 120 µmol) in a mixed solvent of DMF (2.0 mL) and Et₃N (0.8 mL) for 3 h at 55 °C and the following column chromatography on silica gel (hexane/EtOAc = 10 : 1). Pale yellow crystals (from EtOAc); Mp. 137-139 °C; IR (ATR) ν 1730, 1481, 1213, 1097, 808, 764, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.30 (3H, d, $J_{HF} = 1.9$ Hz), 7.02 (1H, t, $J_{HF} = 8.5$ Hz, $J_{HH} = 8.5$ Hz), 7.32 (1H, ddd, $J_{HF} = 4.9$ Hz, $J_{HH} = 8.5$, 1.5 Hz), 7.36 (1H, dd, $J_{HF} = 7.2$ Hz, $J_{HH} = 1.5$ Hz), 7.46-7.54 (3H, m), 7.57-7.63 (1H, m), 7.81-7.92 (1H, m), 8.09 (1H, d, J = 8.0 Hz), 8.19-8.24 (2H, m), 8.36 (1H, dd, J = 7.9, 1.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 14.4 (d, $J_{CF} = 3.0$ Hz), 82.0, 96.7, 99.7, 115.5 (d, $J_{CF} = 23.1$ Hz), 118.5 (d, $J_{CF} = 3.0$ Hz), 119.7, 125.4, 125.5 (d, $J_{CF} = 18.1$ Hz), 128.2, 128.65 (3C), 128.73, 129.5, 130.4, 130.6 (d, $J_{CF} = 9.1$ Hz), 132.4, 134.5 (d, $J_{C-F} = 5.0$ Hz), 135.2, 137.0, 156.7, 160.7 (d, $J_{CF} = 75.5$ Hz); MS (ESI-TOF) m/z 355 [M+H]⁺; HRMS calcd for C₂₄H₁₆FO₂ [M+H]⁺, 355.1134; found, 355.1139.

3-Phenyl-4-((4-(trifluoromethyl)phenyl)ethynyl)-1*H*-isochromen-1-one (7i)

According to the synthetic procedure for 7a, this compound was obtained in 83% yield (641 mg, 1.66 mmol) by 4-iodo-3-phenyl-1*H*-isochromen-1-one 6 (692 1.99 the reaction of mg, mmol) with 1-ethynyl-4-(trifluoromethyl)benzene (314 μ L, 2.20 mmol) in the presence of (Ph₃P)₂PdCl₂ (29 mg, 40 μ mol) and CuI (23 mg, 120 µmol) in a mixed solvent of DMF (2.0 mL) and Et₃N (0.8 mL) for 3 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 20 : 1). Pale yellow crystals (from EtOAc); Mp. 149-152 °C; IR (ATR) v 1727, 1315, 1065, 1029, 839, 760 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.55 (3H, m), 7.59-7.68 (5H, m), 7.88 (1H, td, J = 8.0, 1.4 Hz), 8.08 (1H, d, J = 8.0 Hz), 8.17-8.22 (2H, m), 8.37 (1H, dd, J = 8.0, 0.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 82.3, 95.8, 99.2, 119.7, 122.5, 125.2, 125.5 $(q, J_{CF} = 3.0 \text{ Hz}), 127.8 (q, J_{CF} = 258 \text{ Hz}), 128.2, 128.7, 128.9, 129.7, 130.4 (q, J_{CF} = 33.2 \text{ Hz}), 130.7, 131.5,$ 132.2, 135.3, 136.7, 157.0, 160.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –0.3 (3F, s); MS (ESI-TOF) m/z 391 $[M+H]^+$; HRMS calcd for C₂₄H₁₄F₃O₂ $[M+H]^+$, 391.0946; found, 391.0950.

4-((6-Methoxynaphthalen-2-yl)ethynyl)-3-phenyl-1H-isochromen-1-one (7j)

According to the synthetic procedure for 7a, this compound was obtained in 89% yield (723 mg, 1.80 mmol) by 4-iodo-3-phenyl-1*H*-isochromen-1-one 6 (700)2.01 the reaction of mg, mmol) with 2-ethynyl-6-methoxynaphthalene (399 mg, 2.19 mmol) in the presence of $(Ph_3P)_2PdCl_2$ (29 mg, 40 µmol) and CuI (25 mg, 130 µmol) in a mixed solvent of DMF (2.0 mL) and Et₃N (0.8 mL) for 3 h at 55 °C and the following column chromatography on silica gel (hexane/EtOAc = 10 : 1). Pale yellow crystals (from EtOAc); Mp. 169-171 °C; IR (ATR) v 1731, 1666, 1643, 1235, 1216, 892, 765 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.95 (3H, s), 7.14 (1H, d, J = 2.5 Hz), 7.19 (1H, dd, J = 8.9, 2.5 Hz), 7.48-7.57 (4H, m), 7.61 (1H, td, J = 7.7, 0.9 Hz), 7.74 (2H, d, J = 8.9 Hz), 7.85-7.92 (1H, m), 7.97 (1H, brs), 8.18 (1H, d, J = 7.7 Hz), 8.26-8.31 (2H, m), 8.37 (1H, dd, J = 7.7, 0.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 82.3, 98.2, 99.9, 105.9, 117.6, 119.70 (2C), 119.74, 125.5, 127.1, 128.2, 128.5, 128.70, 128.72, 129.4, 129.5, 130.4, 131.2, 132.4, 134.4, 135.2, 137.2, 156.5, 158.6, 161.1; MS (ESI-TOF) m/z 403 [M+H]⁺; HRMS calcd for C₂₈H₁₉O₃ [M+H]⁺, 403.1334; found, 40.31338.

3-Phenyl-4-(thiophen-2-ylethynyl)-1*H*-isochromen-1-one (7k)

According to the synthetic procedure for **7a**, this compound was obtained in 81% yield (538 mg, 1.64 mmol) by the reaction of 4-iodo-3-phenyl-1*H*-isochromen-1-one **6** (701 mg, 2.01 mmol) with 3-ethynylthiophene (354 μ L, 3.59 mmol) in the presence of (Ph₃P)₂PdCl₂ (56 mg, 80 μ mol) and CuI (50 mg, 0.26 mmol) in a mixed solvent of DMF (2.0 mL) and Et₃N (0.8 mL) for 3 h at 55 °C and the following column chromatography on silica gel (hexane/EtOAc = 20 : 1 ~ 10 : 1). Colorless crystals (from Et₂O); Mp. 108-110 °C; IR (ATR) *v* 3100, 1733, 1719, 1098, 789, 759, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (1H, dd, *J* = 5.0, 1.0 Hz), 7.35 (1H, dd, *J* = 5.0, 3.0 Hz), 7.46-7.53 (3H, m), 7.55 (1H, dd, *J* = 3.0, 1.0 Hz), 7.56-7.62 (1H, m), 7.83-7.88 (1H, m), 8.08 (1H, d, *J* = 8.0 Hz), 8.19-8.25 (2H, m), 8.35 (1H, d, *J* = 7.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 82.2, 92.8, 99.7, 119.7, 121.8, 125.4, 125.8, 128.2, 128.6, 128.7, 129.0, 129.49, 129.52, 130.4, 132.3, 135.2, 137.0, 156.6, 161.0; MS (ESI-TOF) *m*/*z* 329 [M+H]⁺; HRMS calcd for C₂₁H₁₃O₂S [M+H]⁺, 329.0636; found,

329.0640.

4-(4-Hydroxybut-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-one (7p)

According to the synthetic procedure for **7a**, this compound was obtained in 81% yield (1.41 g, 4.86 mmol) by the reaction of 4-iodo-3-phenyl-1*H*-isochromen-1-one **6** (2.10 g, 6.03 mmol) with but-3-yn-1-ol (1.37 mL, 18.1 mmol) in the presence of (Ph₃P)₂PdCl₂ (0.42 g, 0.60 mmol) and CuI (0.12 g, 0.60 mmol) in a mixed solvent of DMF (6.0 mL) and Et₃N (4.0 mL) for 1 h at 55 °C and the following column chromatography on silica gel (hexane/EtOAc = 1 : 1). Colorless crystals (from hexane/EtOAc); Mp. 87.5-90.0 °C; IR (ATR) *v* 3281, 3072, 1721, 1605, 1480, 1177, 1041, 759, 692 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.79 (2H, t, *J* = 6.2 Hz), 3.85 (2H, t, *J* = 6.2 Hz), 7.45-7.51 (3H, m), 7.56 (1H, dd, *J* = 7.4, 1.1 Hz), 7.79-7.85 (1H, m), 8.00 (1H, d, *J* = 8.0 Hz), 8.12-8.16 (2H, m), 8.32 (1H, dd, *J* = 7.9, 0.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 24.3, 60.9, 75.4, 95.3, 99.8, 119.7, 125.4, 128.2, 128.5, 128.7, 129.5, 130.4, 132.4, 135.1, 137.3, 156.7, 161.1; MS (ESI-TOF) *m*/*z* 291 [M+H]⁺; HRMS calcd for C₁₉H₁₅O₃ [M+H]⁺, 291.1021; found, 291.1024.

4-(1-Oxo-3-phenyl-1*H*-isochromen-4-yl)but-3-yn-1-yl acetate (7m)

A solution of 4-(4-hydroxybut-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-one **7p** (584 mg, 2.01 mmol) in pyridine (1.0 mL) was treated with Ac₂O (1.0 mL) for 1 h at room temperature. After evaporation of the reaction mixture, the residue was purified by column chromatography on silica gel to give the corresponding acetate **7m** in 87% yield (580 mg, 1.75 mmol). Colorless crystals (from hexane/EtOAc); Mp. 81.0-83.0 °C; IR (ATR) *v* 1740, 1729, 1720, 1605, 1481, 1044, 759, 691 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.08 (3H, s), 2.87 (2H, t, *J* = 6.6 Hz), 4.30 (2H, t, *J* = 6.6 Hz), 7.43-7.51 (3H, m), 7.54-7.60 (1H, m), 7.79-7.85 (1H, m), 7.99 (1H, dd, *J* = 8.0, 0.4 Hz), 8.11-8.17 (2H, m), 8.32 (1H, dd, *J* = 7.7, 0.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 20.3, 20.9, 62.0, 75.2, 94.3, 99.6, 119.7, 125.3, 128.1, 128.5, 128.6, 129.4, 130.3, 132.3, 135.0, 137.3, 156.7, 161.0, 170.8; MS (ESI-TOF) *m*/*z* 333 [M+H]⁺; HRMS calcd for C₂₁H₁₇O₄ [M+H]⁺, 333.1127; found, 333.1120. Anal. Calcd for C₂₁H₁₆O₄: C, 75.89; H, 4.85. Found: C, 75.68; H, 4.81.

4-(4-(Methoxymethoxy)but-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-one (7n)

To a solution of 4-(4-hydroxybut-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-one **7p** (880 mg, 3.03 mmol) and *i*-Pr₂NEt (0.62 mL, 3.6 mmol) in CH₂Cl₂ (15 mL), MOMCl (0.28 mL, 3.6 mmol) was added at 0 °C. After being stirred for 10 h at room temperature, the reaction mixture was quenched with saturated aqueous NaHCO₃ solution (15 mL), extracted with EtOAc (20 mL x 3), and washed with brine (15 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated. The resulting residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 5 : 1) to give the MOM ether **7n** in 57% yield (588 mg, 1.76 mmol). Colorless oil; IR (neat) ν 3071, 2945, 2890, 1744, 1732, 1608, 1483, 1113, 1080, 1034, 766, 699 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 2.82 (2H, t, *J* = 6.7 Hz), 3.37 (3H, s), 3.78 (2H, t, *J* = 6.7 Hz), 4.69 (2H, s), 7.44-7.49 (3H, m), 7.56 (1H, td, *J* = 7.9, 0.9 Hz), 7.78-7.84 (1H, m), 8.03 (1H, d, *J* = 7.9 Hz), 8.15-8.20 (2H, m), 8.32 (1H, d, *J* = 7.9 Hz); ⁻¹³C NMR (100 MHz, CDCl₃) δ 21.4, 55.4, 65.8, 74.6, 95.8, 96.6, 99.8, 119.7, 125.5 (2C), 128.1, 128.5, 129.4, 130.2, 132.4, 135.0, 137.5, 156.4, 161.1; MS (ESI-TOF) *m/z* 357 [M+Na]⁺; HRMS calcd for C₂₁H₁₈NaO₄ [M+Na]⁺, 357.1103; found, 357.1116. Anal. Calcd for C₂₁H₁₈O₄: C, 75.43; H, 5.43. Found: C, 75.25; H, 5.44.

3-Phenyl-4-((trimethylsilyl)ethynyl)-1*H***-isochromen-1-one (70)**

According to the synthetic procedure for **7a**, this compound was obtained in 83% yield (763 mg, 2.40 mmol) by the reaction of 4-iodo-3-phenyl-1*H*-isochromen-1-one **6** (1.04 g, 2.99 mmol) with ethynyltrimethylsilane (1.25 mL, 9.04 mmol) in the presence of (Ph₃P)₂PdCl₂ (0.21 g, 0.30 mmol) and CuI (57 mg, 0.30 mmol) in a mixed solvent of DMF (3.0 mL) and Et₃N (12 mL) for 3 h at 55 °C and the following column chromatography on silica gel (hexane/EtOAc = 20 : 1). Colorless crystals (from hexane); Mp. 121-123 °C; IR (ATR) ν 3067, 2956, 2148, 1720, 1481, 1243, 1153, 1096, 897, 758, 677 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.29 (9H, s), 7.43-7.52 (3H, m), 7.57 (1H, td, J = 7.9, 1.1 Hz); 7.81-7.88 (1H, m), 8.01 (1H, dd, J = 7.9, 0.4 Hz), 8.19-8.27 (2H, m), 8.32 (1H, dd, J = 7.9, 1.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ –0.3, 98.0, 99.7, 104.3, 119.6, 125.5, 128.0, 128.66, 128.71, 129.4, 130.5, 132.1, 135.1, 137.0, 157.6, 160.9.; MS (ESI-TOF) *m/z* 341 [M+Na]⁺; HRMS calcd for C₂₀H₁₈NaO₂Si [M+Na]⁺, 341.0974; found, 341.0972. Anal. Calcd for C₂₀H₁₈O₂Si: C, 75.43; H, 5.70. Found: C, 74.41; H, 5.69.

4-(Cyclohex-1-en-1-ylethynyl)-3-phenyl-1*H*-isochromen-1-one (7q)

According to the synthetic procedure for **7a**, this compound was obtained in 94% yield (927 mg, 2.82 mmol) by the reaction of 4-iodo-3-phenyl-1*H*-isochromen-1-one **6** (1.04 g, 2.99 mmol) with 1-ethynylcyclohexene (1.06 mL, 9.00 mmol) in the presence of (Ph₃P)₂PdCl₂ (0.21 g, 0.30 mmol) and CuI (57 mg, 0.30 mmol) in a mixed solvent of DMF (3.0 mL) and Et₃N (12 mL) for 3 h at 55 °C and the following column chromatography on silica gel (hexane/CH₂Cl₂ = $3 : 1 \sim 1 : 1$). Colorless crystals (from hexane); Mp. 145-148 °C; IR (ATR) *v* 3051, 3019, 2931, 1736, 1142, 760, 689, 549 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.61-1.68 (2H, m), 1.68-1.76 (2H, m), 2.14-2.21 (2H, m), 2.24-2.30 (2H, m), 6.23-6.27 (1H, m), 7.43-7.51 (3H, m), 7.56 (1H, td, *J* = 8.0, 0.5 Hz), 7.79-7.85 (1H, m), 8.01 (1H, d, *J* = 8.0 Hz), 8.17-8.23 (2H, m), 8.33 (1H, dd, *J* = 7.9, 0.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 22.2, 25.8, 28.8, 80.0, 99.7, 100.1, 119.8, 120.7, 125.5, 128.0, 128.54, 128.56, 129.4, 130.2, 132.5, 135.0, 135.9, 137.3, 157.9, 161.1; MS (ESI-TOF) *m*/*z* 327 [M+H]⁺; HRMS calcd for C₂₃H₁₉O₂ [M+H]⁺, 327.1385; found, 327.1383. Anal. Calcd for C₂₃H₁₈O₂: C, 84.64; H, 5.56. Found: C, 84.69; H, 5.59.

3. Zwitterion-induced addition reaction

Ethyl 2-(1-((tert-butyldimethylsilyl)oxy)-4-(hex-1-yn-1-yl)-3-phenyl-1H-isochromen-1-yl)acetate (8a)

To a solution of 4-(hex-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-one **7a** (601 mg, 1.99 mmol) and zwitterion **1** (10 mg, 19 µmol) in CH₂Cl₂ (6.0 mL), a solution of *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (483 mg, 2.39 mmol) in CH₂Cl₂ (2.0 mL) was slowly added at 0 °C over 1 h using a syringe pump. After being stirred for additional 1 h at room temperature, the reaction mixture was quenched with Et₃N (1.0 mL). After usual extractive workup, the resulting residue was purified by column chromatography on alumina (hexane/EtOAc = 20 : 1) to give silyl acetal **8a** in 95% yield (949 mg, 1.88 mmol). Colorless oil; IR (neat) *v* 3060, 2931, 2852, 1738, 1598, 1483, 1324, 1250, 1178, 1017, 838, 760, 697 cm⁻¹; ⁻¹H NMR (400 MHz, CD₃CN) δ -0.20 (3H, s), -0.12 (3H, s), 0.85 (9H, s), 0.93 (3H, t, *J* = 7.3 Hz), 1.09 (3H, t, *J* = 7.2 Hz), 1.39-1.51 (2H, m), 1.52-1.62 (2H, m), 2.47 (2H, t, *J* = 7.0 Hz), 3.01 (1H, d, *J* = 13.8 Hz), 3.12 (1H, d, *J* = 13.8 Hz), 3.92-4.09 (2H, m), 7.34 (1H, td, *J* = 7.4, 1.2 Hz), 7.39-7.48 (5H, m), 7.64 (1H, d, *J* = 7.4 Hz), 8.11-8.17 (2H, m); ⁻¹³C NMR (100 MHz, CD)

CD₃CN) δ –4.0, –3.5, 13.3, 13.8, 18.1, 19.3, 22.2, 25.5, 30.9, 47.5, 60.8, 75.6, 96.9, 97.6, 101.1, 124.0, 124.9, 127.9, 128.2, 129.2, 129.5, 130.0, 130.4, 131.9, 134.7, 153.7, 168.6; MS (ESI-TOF) *m*/*z* 527 [M+Na]⁺; HRMS calcd for C₃₁H₄₀NaO₄Si [M+Na]⁺, 527.2594; found, 527.2604.

Ethyl 2-(1-((tert-butyldimethylsilyl)oxy)-3-phenyl-4-(phenylethynyl)-1H-isochromen-1-yl)acetate (8b)

According to the synthetic procedure for **8a**, this compound was obtained in 90% yield (954 mg, 1.82 mmol) by the reaction of 3-phenyl-4-(phenylethynyl)-1*H*-isochromen-1-one **7b** (652 mg, 2.02 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (492 mg, 2.43 mmol) in the presence of zwitterion **1** (11 mg, 21 µmol) in CH₂Cl₂ (2.0 mL) for 1 h at 0 °C and the following column chromatography on alumina (hexane/EtOAc = 20 : 1). Colorless crystals (from hexane); Mp. 83.5-86.5 °C; IR (ATR) ν 3061, 2980, 2952, 2855, 2206, 1729, 1593, 1561, 1330, 1190, 1014, 887, 759, 689 cm⁻¹; ⁻¹H NMR (400 MHz, CD₃CN) δ –0.17 (3H, s), –0.09 (3H, s), 0.87 (9H, s), 1.10 (3H, t, *J* = 7.1 Hz), 3.06 (1H, d, *J* = 14.0 Hz), 3.18 (1H, d, *J* = 14.0 Hz), 3.95-4.08 (2H, m), 7.35-7.42 (4H, m), 7.45-7.54 (7H, m), 7.76 (1H, d, *J* = 7.6 Hz), 8.18-8.23 (2H, m); ¹³C NMR (100 MHz, CD₃CN) δ –4.0, –3.6, 13.8, 18.0, 25.5, 47.6, 60.8, 85.4, 95.2, 96.9, 101.5, 123.8, 123.9, 125.1, 128.1, 128.4, 128.7, 129.1, 129.4, 129.6, 129.7, 130.4, 131.3, 131.7, 134.5, 155.2, 168.5; MS (ESI-TOF) m/z 547 [M+Na]⁺; HRMS calcd for C₃₃H₃₆NaO₄Si [M+Na]⁺, 547.2281; found, 547.2272.

Ethyl 2-(3-butyl-1-((*tert*-butyldimethylsilyl)oxy)-4-(phenylethynyl)-1*H*-isochromen-1-yl)acetate (8c)

According to the synthetic procedure for **8a**, this compound was obtained in 97% yield (980 mg, 1.94 mmol) by the reaction of 3-butyl-4-(phenylethynyl)-1*H*-isochromen-1-one **7c** (605 mg, 2.00 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (486 mg, 2.41 mmol) in the presence of zwitterion **1** (11 mg, 21 µmol) in CH₂Cl₂ (8.0 mL) for 0.5 h at 0 °C and the following column chromatography on alumina (hexane/EtOAc = 20 : 1). Colorless oil; IR (neat) v 2952, 2851, 2203, 1739, 1619, 1257, 1178, 1019, 839, 757 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ -0.15 (3H, s), 0.03 (3H, s), 0.90 (9H, s), 0.95 (3H, t, J = 7.1 Hz), 1.12 (3H, t, J = 7.3 Hz), 1.37-1.49 (2H, m), 1.69 (2H, quint, J = 7.5 Hz), 2.63 (1H, dt, J = 13.7, 7.5 Hz), 2.74 (1H, dt, J = 13.7, 7.5 Hz), 2.87 (1H, d, J = 13.8 Hz), 3.01 (1H, d, J = 13.8 Hz), 3.91-4.07 (2H, m), 7.28 (1H, td, J = 7.2, 1.2 Hz), 7.33-7.42 (5H, m), 7.51-7.56 (3H, m); ¹³C NMR (100 MHz, CD₃CN) δ -3.9, -3.4, 13.6, 13.9, 18.1, 22.4, 25.5, 29.1, 32.8, 48.0, 60.7, 84.3, 95.2, 96.4, 101.6, 122.7, 124.1, 125.3, 127.3, 128.5, 129.01, 129.03, 129.5, 131.2, 131.3, 161.4, 168.3; MS (ESI-TOF) m/z 527 [M+Na]⁺; HRMS calcd for C₃₁H₄₀NaO₄Si [M+Na]⁺, 527.2594; found, 527.2593.

Ethyl 2-(3-butyl-1-((tert-butyldimethylsilyl)oxy)-4-(hex-1-yn-1-yl)-1H-isochromen-1-yl)acetate (8d)

According to the synthetic procedure for 8a, this compound was obtained in 99% yield by the reaction of 3-butyl-4-(hex-1-yn-1-yl)-1H-isochromen-1-one 7d (93%) purity, 242 mg, 0.858 mmol) with tert-butyl((1-ethoxyvinyl)oxy)dimethylsilane (208 mg, 1.03 mmol) in the presence of zwitterion 1 (4.5 mg, 8.6 µmol) in CH₂Cl₂ (3.5 mL) for 3 h at 0 °C and the following column chromatography on alumina (hexane/EtOAc = 100:1). Colorless oil; IR (neat) v 2950, 2927, 2853, 1738, 1619, 1321, 1247, 1177, 1132, 1018, 836, 779, 760 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ –0.18 (3H, s), 0.00 (3H, s), 0.89 (9H, s), 0.93 (3H, t, J = 7.6 Hz), 0.95 (3H, t, J = 7.2 Hz), 1.11 (3H, t, J = 7.2 Hz), 1.38 (2H, sex, J = 7.2 Hz), 1.44-1.55 (2H, m), 1.55-1.67 (4H, m), 2.47 (2H, t, J = 6.8 Hz), 2.47-2.55 (1H, m), 2.61 (1H, dt, J = 13.6, 7.2 Hz), 2.81 (1H, d, J = 13.6 Hz), 2.94 (1H, d, J = 13.6 Hz), 3.90-4.03 (2H, m), 7.23 (1H, td, J = 7.4, 1.3 Hz), 7.31-7.36 (2H, m), 7.39 (1H, dd, J = 7.7, 1.3 Hz); ¹³C NMR (100 MHz, CD₃CN) δ -4.0, -3.5, 13.3, 13.5, 13.8, 18.0, 19.1, 22.1, 22.4, 25.5, 29.0, 31.2, 32.5, 47.8, 60.6, 74.6, 95.9, 96.8, 101.2, 122.5, 125.1, 127.0, 129.3, 129.6, 131.3, 159.7, 168.3; MS (ESI-TOF) *m*/*z* 507 [M+Na]⁺; HRMS calcd for C₂₉H₄₄NaO₄Si [M+Na]⁺, 507.2907; found, 507.2910.

Ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-((4-methoxyphenyl)ethynyl)-3-phenyl-1*H*-isochromen-1-yl)-acetate (8e)

According to the synthetic procedure for **8a**, this compound was obtained in 95% yield (269 mg, 0.485 mmol) by the reaction of 4-((4-methoxyphenyl)ethynyl)-3-phenyl-1*H*-isochromen-1-one **7e** (180 mg, 0.511 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (124 mg, 0.614 mmol) in the presence of zwitterion **1** (2.7 mg, 5.1 μ mol) in CH₂Cl₂ (2.4 mL) for 1 h at 0 °C and the following column chromatography on alumina

(hexane/EtOAc = 20 : 1). Colorless oil; IR (neat) v 2952, 2928, 2858, 1739, 1606, 1509, 1253, 1183, 1023, 837, 761 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ -0.17 (3H, s), -0.09 (3H, s), 0.87 (9H, s), 1.10 (3H, t, J = 7.2 Hz), 3.04 (1H, d, J = 14.1 Hz), 3.18 (1H, d, J = 14.1 Hz), 3.80 (3H, s), 3.90-4.09 (2H, m), 6.93 (2H, d, J = 8.8 Hz), 7.34-7.41 (1H, m), 7.41-7.53 (7H, m), 7.54 (1H, d, J = 8.0 Hz), 8.17-8.26 (2H, m); ¹³C NMR (100 MHz, CD₃CN) δ -4.0, -3.5, 13.8, 18.1, 25.5, 47.6, 55.5, 60.8, 83.8, 95.3, 97.2, 101.4, 114.7, 115.8, 124.0, 125.0, 128.0, 128.3, 129.3, 129.7, 129.8, 130.3, 131.8, 132.8, 134.6, 154.5, 160.2, 168.5; MS (ESI-TOF) *m*/*z* 577 [M+Na]⁺; HRMS calcd for C₃₄H₃₈NaO₅Si [M+Na]⁺, 577.2386; found, 577.2379. Anal. Calcd for C₃₄H₃₈O₅: C, 73.61; H, 6.90. Found: C, 73.50; H, 7.00.

Ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-((2-methoxyphenyl)ethynyl)-3-phenyl-1*H*-isochromen-1-yl)-acetate (8f)

According to the synthetic procedure for **3a**, this compound was obtained in 94% yield (520 mg, 0.937 mmol) by the reaction of 4-((2-methoxyphenyl)ethynyl)-3-phenyl-1*H*-isochromen-1-one **7f** (356 mg, 1.01 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (245 mg, 1.21 mmol) in the presence of zwitterion **1** (5.3 mg, 10 µmol) in CH₂Cl₂ (4.0 mL) for 1 h at 0 °C and the following column chromatography on alumina (hexane/CH₂Cl₂/EtOAc = 20 : 20 : 1). Pale yellow crystals (from hexane/EtOAc); Mp. 67.0-69.5 °C; IR (ATR) *v* 2953, 2930, 1726, 1192, 1149, 1134, 1013, 745 cm⁻¹; ⁻¹H NMR (400 MHz, CD₃CN) δ –0.17 (3H, s), -0.08 (3H, s), 0.87 (9H, s), 1.10 (3H, t, *J* = 7.2 Hz), 3.05 (1H, d, *J* = 13.9 Hz), 3.18 (1H, d, *J* = 13.9 Hz), 3.92 (3H, s), 3.95-4.10 (2H, m), 6.96 (1H, td, *J* = 7.5, 1.0 Hz), 7.03 (1H, d, *J* = 8.4 Hz), 7.31-7.44 (3H, m), 7.44-7.54 (5H, m), 7.87 (1H, d, *J* = 7.7 Hz), 8.26-8.31 (2H, m); ⁻¹³C NMR (100 MHz, CD₃CN) δ –4.0, –3.5, 13.8, 18.1, 25.5, 47.6, 55.9, 60.8, 89.1, 92.7, 97.3, 101.5, 111.5, 112.9, 120.9, 124.2, 125.0, 128.1, 128.3, 129.3, 129.7, 129.9, 130.2, 130.3, 131.8, 132.8, 134.4, 154.3, 160.4, 168.6; MS (ESI-TOF) *m*/*z* 577 [M+Na]⁺; HRMS calcd for C₃₄H₃₈NaO₅Si [M+Na]⁺, 577.2386; found, 577.2385.

Ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-3-phenyl-4-(*o*-tolylethynyl)-1*H*-isochromen-1-yl)acetate (8g)

According to the synthetic procedure for **8a**, this compound was obtained in 88% yield (386 mg, 0.716 mmol) by the reaction of 3-phenyl-4-(*o*-tolylethynyl)-1*H*-isochromen-1-one **7g** (274 mg, 0.815 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (230 mg, 1.14 mmol) in the presence of zwitterion **1** (5.4 mg, 10 µmol) in CH₂Cl₂ (6.0 mL) for 2 h at 0 °C and the following column chromatography on silica gel (hexane/ EtOAc = 40 : 1). Yellow oil; IR (neat) *v* 3058, 2960, 2941, 2852, 1732, 1483, 1251, 1182, 1118, 760 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ -0.18 (3H, s), -0.09 (3H, s), 0.87 (9H, s), 1.10 (3H, t, *J* = 7.1 Hz), 2.41 (3H, s), 3.03 (1H, d, *J* = 13.9 Hz), 3.16 (1H, d, *J* = 13.9 Hz), 3.93-4.10 (2H, m), 7.13-7.25 (3H, m), 7.34-7.39 (1H, m), 7.41-7.50 (6H, m), 7.78 (1H, d, *J* = 7.8 Hz), 8.17-8.23 (2H, m); ¹³C NMR (100 MHz, CD₃CN) δ -3.9, -3.4, 13.9, 18.1, 20.8, 25.6, 47.6, 60.8, 89.2, 94.4, 97.3, 101.5, 123.6, 124.0, 125.0, 126.3, 128.1, 128.4, 128.7, 129.5, 129.7, 129.9, 130.1, 130.4, 131.8, 131.9, 134.5, 139.9, 155.0, 168.5; MS (ESI-TOF) *m/z* 561.2437 [M+Na]⁺; HRMS calcd for C₃₄H₃₈NaO₄Si [M+Na]⁺, 561.2437; found, 561.2442.

Ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-((4-fluoro-3-methylphenyl)ethynyl)-3-phenyl-1*H*-isochromen -1-yl)acetate (8h)

According to the synthetic procedure for **8a**, this compound was obtained in 88% yield (486 mg, 0.873 mmol) by the reaction of 4-((4-fluoro-3-methylphenyl)ethynyl)-3-phenyl-1*H*-isochromen-1-one **7h** (352 mg, 0.992 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (245 mg, 1.21 mmol) in the presence of zwitterion **1** (5.6 mg, 11 µmol) in CH₂Cl₂ (7.0 mL) for 1 h at 0 °C and the following column chromatography on silica gel (hexane/ EtOAc = 40 : 1). Yellow oil; IR (neat) v 3057, 2951, 2932, 2853, 1738, 1498, 1234, 1110, 839, 760 cm⁻¹; ⁻¹H NMR (400 MHz, CD₃CN) δ -0.18 (3H, s), -0.08 (3H, s), 0.87 (9H, s), 1.11 (3H, t, *J* = 7.2 Hz), 2.23 (3H, d, *J*_{HF} = 1.7 Hz), 3.01 (1H, d, *J* = 13.8 Hz), 3.15 (1H, d, *J* = 13.8 Hz), 3.95-4.09 (2H, m), 7.01 (1H, d, *J*_{HF} = 9.6 Hz, *J*_{HH} = 8.4 Hz), 7.25-7.32 (1H, m), 7.33-7.39 (2H, m), 7.40-7.51 (5H, m), 7.74 (1H, d, *J* = 7.3 Hz), 8.19-8.23 (2H, m); ⁻¹³C NMR (100 MHz, CD₃CN) δ -3.8, -3.3, 14.0, 18.2, 25.7, 47.6, 60.9, 84.9, 94.6, 97.0, 101.6, 115.8 (d, *J*_{CF} = 22.1 Hz), 119.9 (d, *J*_{CF} = 4.0 Hz), 124.1, 125.0, 126.0 (d, *J*_{CF} = 18.1 Hz), 128.2, 128.4, 129.4, 129.5, 129.7, 130.5, 130.75, 130.83, 131.8, 134.5, 134.6 (br), 155.1, 161.4 (d, *J*_{CF} = 246 Hz), 168.5; ¹⁹F NMR (376 MHz, CD₃CN) δ -53.9~53.7 (1F, m); MS (ESI-TOF) *m*/*z* 579 [M+Na]⁺; HRMS calcd for C₃₄H₃₇FNaO₄Si [M+Na]⁺, 579.2343; found, 579.2353.

Ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-3-phenyl-4-((4-(trifluoromethyl)phenyl)ethynyl)-1*H*-isochromen-1-yl)acetate (8i)

According to the synthetic procedure for **8a**, this compound was obtained in 95% yield (278 mg, 0.469 mmol) by the reaction of 3-phenyl-4-((4-(trifluoromethyl)phenyl)ethynyl)-1*H*-isochromen-1-one **7i** (193 mg, 0.494 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (120 mg, 0.599 mmol) in the presence of zwitterion **1** (2.6 mg, 5.4 µmol) in CH₂Cl₂ (3.5 mL) for 1 h at 0 °C and the following column chromatography on silica gel (hexane/ EtOAc = 40 : 1). Yellow oil; IR (neat) ν 2941, 2857, 2203, 1739, 1601, 1324, 1168, 1130, 1069, 840 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ -0.18 (3H, s), -0.10 (3H, s), 0.86 (9H, s), 1.10 (3H, t, *J* = 7.1 Hz), 3.04 (1H, d, *J* = 13.9 Hz), 3.17 (1H, d, *J* = 13.9 Hz), 3.92-4.09 (2H, m), 7.37-7.40 (1H, m), 7.45-7.54 (5H, m), 7.61 (2H, d, *J* = 8.2 Hz), 7.67 (2H, d, *J* = 8.2 Hz), 7.77 (1H, dd, *J* = 7.2, 1.2 Hz), 8.16-8.21 (2H, m); ¹³C NMR (100 MHz, CD₃CN) δ -4.7, -4.2, 13.1, 17.4, 24.8, 47.0, 60.2, 87.7, 93.2, 95.7, 101.0, 123.2, 124.0 (q, *J*_{CF} = 271 Hz), 124.4, 125.2 (q, *J*_{CF} = 4.0 Hz), 127.3, 127.5, 127.7, 128.6, 128.7 (q, *J*_{CF} = 32.2 Hz), 128.8, 129.1, 130.0, 130.9, 131.0, 133.6, 155.7, 167.8; ¹⁹F NMR (376 MHz, CD₃CN) δ -0.04 (3F, s); MS (ESI-TOF) *m*/z 615 [M+Na]⁺; HRMS calcd for C₃₄H₃₅F₃NaO₄Si [M+Na]⁺, 615.2154; found, 615.2141.

Ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-((6-methoxynaphthalen-2-yl)ethynyl)-3-phenyl-1*H*-isochromen-1-yl)acetate (8j)

According to the synthetic procedure for **8a**, this compound was obtained in 92% yield (554 mg, 0.916 mmol) by the reaction of 4-((6-methoxynaphthalen-2-yl)ethynyl)-3-phenyl-1*H*-isochromen-1-one **7j** (400 mg, 0.994 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (245 mg, 1.21 mmol) in the presence of zwitterion **1** (5.3 mg, 11 µmol) in CH₂Cl₂ (8.5 mL) for 1 h at room temperature and the following column chromatography on silica gel (hexane/ EtOAc = 25 : 1). Pale yellow oil; IR (neat) ν 3055, 2953, 2924, 2856, 1738, 1597, 1482, 1246, 1037, 838 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ -0.18 (3H, s), -0.09 (3H, s), 0.86 (9H, s), 1.10

(3H, t, J = 7.1 Hz), 3.04 (1H, d, J = 13.9 Hz), 3.18 (1H, d, J = 13.9 Hz), 3.87 (3H, s), 3.95-4.07 (2H, m), 7.16 (1H, dd, J = 9.0, 2.4 Hz), 7.23 (1H, d, J = 2.4 Hz), 7.34-7.40 (1H, m), 7.44-7.55 (6H, m), 7.75 (2H, d, J = 8.7 Hz), 7.79-7.83 (1H, m), 7.93 (1H, brs), 8.22-8.27 (2H, m); ¹³C NMR (100 MHz, CD₃CN) δ –4.6, –4.1, 13.2, 17.5, 24.9, 46.9, 54.9, 60.2, 84.4, 95.3, 96.5, 100.9, 105.8, 118.1, 119.3, 123.3, 124.4, 126.9, 127.5, 127.8, 128.1, 128.3, 128.8, 129.0, 129.10, 129.12, 129.8, 130.2, 131.1, 133.9, 134.0, 154.3, 158.3, 167.9; MS (ESI-TOF) m/z 627 [M+Na]⁺; HRMS calcd for C₃₈H₄₀NaO₅Si [M+Na]⁺, 627.2543; found, 627.2534.

Ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-3-phenyl-4-(thiophen-2-ylethynyl)-1*H*-isochromen-1-yl)acetate (8k)

According to the synthetic procedure for **8a**, this compound was obtained in 95% yield (251 mg, 0.473 mmol) by the reaction of 3-phenyl-4-(thiophen-2-ylethynyl)-1*H*-isochromen-1-one **7k** (164 mg, 0.499 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (248 mg, 1.23 mmol) in the presence of zwitterion **1** (7.8 mg, 15 μ mol) in CH₂Cl₂ (3.0 mL) for 4 h at 0 °C and the following column chromatography on silica gel (hexane/EtOAc = 50 : 1). Yellow oil; IR (neat) *v* 2935, 2850, 1734, 1598, 1258, 1181, 783, 759 cm⁻¹; ⁻¹H NMR (400 MHz, CD₃CN) δ -0.18 (3H, s), -0.09 (3H, s), 1.87 (9H, s), 1.10 (3H, t, *J* = 7.1 Hz), 3.03 (1H, d, *J* = 13.9 Hz), 3.17 (1H, d, *J* = 13.9 Hz), 3.97-4.09 (2H, m), 7.18 (1H, dd, *J* = 5.0, 1.0 Hz), 7.34-7.40 (1H, m), 7.43 (1H, dd, *J* = 5.0, 3.0 Hz), 7.45-7.52 (5H, m), 7.57 (1H, dd, *J* = 3.0, 1.0 Hz), 7.73 (1H, d, *J* = 7.8 Hz), 8.16-8.21 (2H, m); ⁻¹³C NMR (100 MHz, CD₃CN) δ -4.0, -3.5, 13.8, 18.0, 25.5, 47.5, 60.8, 84.6, 90.6, 96.9, 101.5, 122.7, 123.9, 125.0, 126.7, 128.1, 128.3, 128.7, 129.3, 129.63, 129.67, 129.72, 130.4, 131.7, 134.4, 154.9, 168.5; MS (ESI-TOF) *m*/*z* 553 [M+Na]⁺; HRMS calcd for C₃₁H₃₄O₄NaSSi [M+Na]⁺, 553.1845; found, 553.1851.

Ethyl 2-(4-(4-acetoxybut-1-yn-1-yl)-1-((*tert*-butyldimethylsilyl)oxy)-3-phenyl-1*H*-isochromen-1-yl)acetate (8m)

According to the synthetic procedure for 8a, this compound was obtained in 94% yield (503 mg, 0.940 mmol) by the reaction of 4-(1-oxo-3-phenyl-1*H*-isochromen-4-yl)but-3-yn-1-yl acetate 7m (333 mg, 1.00 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (249 mg, 1.23 mmol) in the presence of zwitterion **1** (5.3 mg, 10

μmol) in CH₂Cl₂ (4.0 mL) for 0.5 h at 0 °C and the following column chromatography on silica gel (hexane/EtOAc = 10 : 1). Colorless oil; IR (neat) *v* 2959, 2943, 2856, 1743, 1239, 1181, 1042, 840, 762 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ–0.20 (3H, s), –0.12 (3H, s), 0.86 (9H, s), 1.09 (3H, t, *J* = 7.1 Hz), 2.00 (3H, s), 2.79 (2H, t, *J* = 6.5 Hz), 3.00 (1H, d, *J* = 13.8 Hz), 3.13 (1H, d, *J* = 13.8 Hz), 3.93-4.06 (2H, m), 4.20 (2H, t, *J* = 6.5 Hz), 7.34 (1H, td, *J* = 7.5, 1.3 Hz), 7.40-7.48 (5H, m), 7.61-7.68 (1H, m), 8.10-8.18 (1H, m); ¹³C NMR (100 MHz, CD₃CN) δ–4.1, –3.6, 13.8, 18.0, 20.2, 20.5, 25.5, 47.4, 60.8, 62.6, 76.8, 92.9, 97.0, 101.2, 123.9, 124.9, 127.9, 128.2, 129.2, 129.5, 130.10, 130.11, 131.7, 134.5, 154.3, 168.5, 170.9; MS (ESI-TOF) *m*/*z* 557 [M+Na]⁺; HRMS calcd for C₃₁H₃₈NaO₆Si [M+Na]⁺, 557.2335; found, 557.2329. Anal. Calcd for C₃₁H₃₈O₆Si: C, 69.72; H, 7.16. Found: C, 69.71; H, 7.28.

Ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-(4-(methoxymethoxy)but-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-yl)acetate (8n)

According to the synthetic procedure for **8a**, this compound was obtained in 96% yield (531 mg, 0.989 mmol) by the reaction of 4-(4-(methoxymethoxy)but-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-one **7n** (344 mg, 1.03 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (245 mg, 1.21 mmol) in the presence of zwitterion **1** (5.4 mg, 10 µmol) in CH₂Cl₂ (4.0 mL) for 1 h at 0 °C and the following column chromatography on silica gel (hexane/EtOAc = 10 : 1). Colorless oil; IR (neat) v 2947, 2854, 1739, 1602, 1486, 1181, 1152, 1116, 1035, 840, 763 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ -0.21 (3H, s), -0.12 (3H, s), 0.85 (9H, s), 1.09 (3H, t, J = 7.1 Hz), 2.73 (2H, t, J = 6.5 Hz), 3.00 (1H, d, J = 13.8 Hz), 3.12 (1H, d, J = 13.8 Hz), 3.29 (3H, s), 3.69 (2H, t, J = 6.5 Hz), 3.91-4.08 (2H, m), 4.63 (2H, s), 7.34 (1H, td, J = 7.5, 1.0 Hz), 7.40-7.49 (5H, m), 7.66 (1H, d, J = 7.5 Hz), 8.14-8.19 (2H, m); ¹³C NMR (100 MHz, CD₃CN) δ -4.1, -3.6, 13.8, 18.0, 21.3, 25.5, 47.4, 54.9, 60.7, 66.2, 76.3, 94.3, 96.6, 97.2, 101.2, 124.0, 124.9, 127.9, 128.2, 129.1, 129.5, 130.0, 130.2, 131.7, 134.5, 154.0, 168.5; MS (ESI-TOF) m/z 559 [M+Na]⁺; HRMS calcd for C₃₁H₄₀NaO₆Si [M+Na]⁺, 559.2492; found, 559.2488. Anal. Calcd for C₃₁H₄₀O₆Si: C, 69.37; H, 7.51. Found: C, 69.17; H, 7.39.

Ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-3-phenyl-4-((trimethylsilyl)ethynyl)-1*H*-isochromen-1-yl)acetate (80)

TBSO CO₂Et

According to the synthetic procedure for 8a, this compound was obtained in 84% yield (427 mg, 0.820 mmol)

by the reaction of 3-phenyl-4-((trimethylsilyl)ethynyl)-1*H*-isochromen-1-one **7o** (308 mg, 0.969 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (235 mg, 1.16 mmol) in the presence of zwitterion **1** (5.2 mg, 9.9 μ mol) in CH₂Cl₂ (4.0 mL) for 1.5 h at 0 °C and the following column chromatography on silica gel (hexane/EtOAc = 30 : 1). Colorless oil; IR (neat) *v* 2956, 2146, 1736, 1250, 837, 757 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ -0.19 (3H, s), -0.10 (3H, s), 0.24 (9H, s), 0.87 (9H, s), 1.10 (3H, t, *J* = 6.8 Hz), 3.02 (1H, d, *J* = 13.6 Hz), 3.13 (1H, d, *J* = 13.6 Hz), 3.92-4.10 (2H, m), 7.38 (1H, t, *J* = 7.6 Hz), 7.41-7.49 (5H, m), 7.52 (1H, d, *J* = 7.2 Hz), 8.16-8.22 (2H, m); ¹³C NMR (100 MHz, CD₃CN) δ -4.1, -3.6, -0.7, 13.8, 18.0, 25.4, 47.7, 60.8, 96.8, 100.9, 101.3, 10.5, 123.8, 125.0, 128.1, 128.2, 129.39, 129.42, 129.6, 130.4, 131.6, 134.21, 155.9, 168.5; MS (ESI-TOF) *m*/*z* 521 [M+H]⁺; HRMS calcd for C₃₀H₄₁O₄Si₂ [M+H]⁺, 521.2543; found, 521.2553.

Ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-(4-((*tert*-butyldimethylsilyl)oxy)but-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-yl)acetate (8p)

According to the synthetic procedure for 8a, this compound was obtained in 96% yield (589 mg, 0.970 mmol) by the reaction of 4-(4-hydroxybut-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-one **7p** (293 mg, 1.01 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (450 mg, 2.23 mmol) in the presence of zwitterion **1** (5.3 mg, 10 µmol) in CH₂Cl₂ (4.0 mL) at 0 °C for 3 h and the following column chromatography on alumina (hexane/EtOAc = 30 : 1). Colorless oil; IR (neat) *v* 2944, 2850, 1737, 1601, 1484, 1183, 1025, 841, 761 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ –0.21 (3H, s), –0.12 (3H, s), 0.07 (6H, s), 0.85 (9H, s), 0.89 (9H, s), 1.09 (3H, t, *J* = 7.2 Hz), 2.64 (2H, t, *J* = 6.5 Hz), 3.01 (1H, d, *J* = 13.9 Hz), 3.03 (1H, d, *J* = 13.9 Hz), 3.82 (2H, t, *J* = 6.5 Hz), 3.92-4.09 (2H, m), 7.33 (1H, td, *J* = 7.5, 1.3 Hz), 7.39-7.47 (5H, m), 7.67 (1H, brd, *J* = 7.8 Hz), 8.12-8.18 (2H, m); ¹³C NMR (100 MHz, CD₃CN) δ –5.7, –4.1, –3.6, 13.8, 18.0, 18.3, 24.2, 25.5, 25.7, 47.4, 60.7, 62.1, 76.4, 94.4, 97.3, 101.0, 124.0, 124.8, 127.8, 128.2, 129.1, 129.4, 130.0, 130.2, 131.7, 134.6, 153.9, 168.5; MS (ESI-TOF) *m*/*z* 607 [M+H]⁺; HRMS calcd for C₃₅H₅₁O₅Si₂ [M+H]⁺, 607.3275; found, 607.3279.

Ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-(cyclohex-1-en-1-ylethynyl)-3-phenyl-1*H*-isochromen-1-yl)-acetate (8q)

According to the synthetic procedure for **8a**, this compound was obtained in 88% yield (464 mg, 0.878 mmol) by the reaction of 4-(cyclohex-1-en-1-ylethynyl)-3-phenyl-1*H*-isochromen-1-one **7q** (327 mg, 1.00 mmol) with *tert*-butyl((1-ethoxyvinyl)oxy)dimethylsilane (242 mg, 1.20 mmol) in the presence of zwitterion **1** (5.2 mg, 9.9 μ mol) in CH₂Cl₂ (4.0 mL) at room temperature for 2 h and the following column chromatography on silica gel (hexane/EtOAc = 20 : 1). Colorless crystals (from EtOAc); Mp. 104-107 °C; IR (ATR) *v* 2926, 2855, 1732, 1185, 1150, 1046, 753 cm⁻¹; ¹H NMR (400 MHz, acetone-*d*₆) δ –0.16 (3H, s), –0.03 (3H, s), 0.90 (9H, s), 1.32 (3H, t, *J* = 7.1 Hz), 1.58-1.66 (2H, m), 1.66-1.73 (2H, m), 2.11-2.18 (2H, m), 2.20-2.28 (2H, m), 3.03 (1H, d, *J* = 13.8 Hz), 3.18 (1H, d, *J* = 13.8 Hz), 3.98-4.10 (2H, m), 6.11-6.18 (1H, m), 7.38 (1H, td, *J* = 7.4, 1.0 Hz), 7.42-7.51 (4H, m), 7.53 (1H, dd, *J* = 7.4, 1.0 Hz). 7.66 (1H, dd, *J* = 7.4, 0.8 Hz), 8.22-8.28 (2H, m); ¹³C NMR (100 MHz, acetone-*d*₆) δ –4.0, –3.4, 13.9, 18.1, 22.5, 25.7, 25.8, 28.7, 47.3, 60.4, 97.4, 97.6, 101.5, 121.5, 124.8, 127.8, 128.0, 129.3, 129.4, 129.95, 130.01, 132.0, 134.2, 134.6, 153.9, 168.0; MS (ESI-TOF) *m*/*z* 551 [M+Na]⁺; HRMS calcd for C₃₃H₄₀NaO₄Si [M+Na]⁺, 551.2594; found, 551.2597. Anal. Calcd for C₃₃H₄₀O₄Si: C, 74.96; H, 7.63. Found: 74.83; H, 7.70.

Ethyl 2-(1-((tert-butyldimethylsilyl)oxy)-3,4-diphenyl-1H-isochromen-1-yl)acetate

According to the synthetic procedure for 8a, this compound was obtained in 90% yield (923 mg, 1.85 mmol) by the reaction of 3,4-diphenyl-1*H*-isochromen-1-one³ (610 2.05 mg, mmol) with tert-butyl((1-ethoxyvinyl)oxy)dimethylsilane (434 mg, 2.15 mmol) in the presence of zwitterion 1 (11 mg, 19 µmol) in CH₂Cl₂ (8.0 mL) at 0 °C for 4 h and the following column chromatography on neutral alumina (hexane/EtOAc = 50 : 1). Colorless crystals (from hexane/EtOAc); Mp. 102-104 °C; IR (ATR) ν 2981, 2952, 2854, 1737, 1332, 1185, 1145, 1018, 8355, 764 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ –0.11 (3H, s), -0.07 (3H, s), 0.89 (9H, s), 1.09 (3H, t, J = 7.2 Hz), 3.12 (1H, d, J = 13.8 Hz), 3.28 (1H, d, J = 13.8 Hz), 3.95-4.09 (2H, m), 6.82 (1H, dd, J = 6.9, 1.5 Hz), 7.12-7.39 (12H, m), 7.51 (1H, dd, J = 7.4, 1.2 Hz); ^{13}C NMR (100 MHz, CDCl₃) δ-3.9, -3.6, 13.8, 18.1, 25.5, 47.3, 60.6, 100.6, 114.9, 123.5, 125.2, 127.2, 127.7, 127.9, 128.6, 129.05, 129.07, 129.6, 131.9, 132.0, 132.2, 135.8, 136.8, 147.7, 168.8; MS (ESI-TOF) m/z 523 HRMS calcd for C₃₁H₃₆NaO₄Si [M+Na]⁺, 523.2281; found, 523.2211. $[M+Na]^+;$ Anal. Calcd for C₃₁H₃₆O₄Si: C, 74.36; H, 7.25. Found: 74.38; H, 7.26.

4. Fluoride-triggered ring rearrangement reaction

Ethyl 4-benzoyl-1-hydroxy-3-pentyl-2-naphthoate (9a)

To a mixture of MS4A powder (3.0 g) and TBAF (a 1.0 M solution in THF, 3.0 mL, 3.0 mmol) in THF (3.0 mL), a solution of ethyl 2-(1-((tert-butyldimethylsilyl)oxy)-4-(hex-1-yn-1-yl)-3-phenyl-1H-isochromen-1-yl)acetate 8a (506 mg, 1.00 mmol) in THF (1.0 mL) was added at room temperature. After being stirred for 3 h at 70 °C, the obtained reaction mixture was quenched with saturated NH₄Cl aqueous solution (10 mL). This mixture was filtrated through celite pad. The resulting filtrate was diluted with water (25 mL) and extracted with EtOAc (20 mL x 3). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na₂SO₄, and evaporated. Thus obtained residue was purified by column chromatography on silica gel (hexane/EtOAc = 20 : 1) to give naphthalene **9a** in 99.8% yield (390 mg, 1.00 mmol). Colorless crystals (from hexane/EtOAc); Mp. 90.5-92.0 °C; IR (ATR) v 3065, 2961, 2950, 2870, 1660, 1644, 1578, 1407, 1325, 1239, 1221, 1160, 823, 765, 635 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.78 (3H, t, J = 6.8 Hz), 1.02-1.30 (4H, m), 1.40-1.54 (2H, br), 1.44 (3H, t, J = 7.1 Hz), 2.50-2.68 (1H, m), 2.90-3.16 (1H, m), 4.50 (2H, q, J = 7.1 Hz), 7.30-7.37 (1H, m), 7.42 (2H, t, J = 7.4 Hz), 7.42-7.50 (2H, m), 7.53 (1H, tt, J = 7.4, 1.3 Hz), 7.83 (2H, d, J = 7.4 Hz), 8.40-8.51 (1H, m), 12.86 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 14.1, 22.3, 31.6, 32.2, 33.6, 62.0, 105.6, 123.6, 124.4, 124.7, 125.5, 128.8, 128.9, 129.7, 130.2, 133.3, 133.7, 136.7, 138.1, 162.9, 172.4, 199.8; MS (ESI-TOF) m/z 391 [M+H]⁺; HRMS calcd for C₂₅H₂₇O₄ [M+H]⁺, 391.1909; found, 391.1901.

Ethyl (Z)-2-(4-benzoyl-3-pentyl-1*H*-isochromen-1-ylidene)acetate (10a)

The reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-(hex-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-yl)acetate **8a** (120 mg, 0.238 mmol) with TBAF (a 1.0 M solution in THF, 0.24 mL, 0.24 mmol) in THF (2.0 mL) was conducted in the absence of MS4A. After usual extractive workup, chromatographic purification of the resulting residue gave naphthalene **9a** (53% yield, 49.1 mg, 0.126 mmol), lactone **7a** (24% yield, 17.0 mg, 56.2 µmol), and divinyl ether **10a** (15% yield, 14.3 mg, 36.6 µmol).

For **10a** Yellow oil; IR (neat) v 2950, 2930, 2860, 1705, 1665, 1640, 1610, 1595, 1260, 1145, 1110, 1050 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.80 (3H, t, J = 6.8 Hz), 1.15-1.25 (4H, m), 1.33 (3H, t, J = 7.2 Hz), 1.69-1.82 (2H, m), 2.33 (2H, t, J = 7.6 Hz), 4.24 (2H, q, J = 7.2 Hz), 5.80 (1H, s), 6.92 (1H, dd, J = 7.2, 1.6 Hz), 7.27-7.35 (2H, m), 7.43-7.51 (2H, m), 7.62 (1H, t, J = 7.2 Hz), 7.73 (1H, dd, J = 7.6, 1.6 Hz), 7.94-7.99 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 14.5, 22.2, 26.4, 31.2, 32.0, 59.5, 90.4, 114.0, 122.5, 124.0, 124.1,

128.0, 129.0, 129.7, 130.2, 132.0, 134.1, 137.6, 155.2, 159.3, 165.4, 195.0; MS (ESI-TOF) *m*/*z* 391 [M+H]⁺; HRMS calcd for C₂₅H₂₇O₄ [M+H]⁺, 391.1909; found, 391.1920.

Ethyl 4-benzoyl-3-benzyl-1-hydroxy-2-naphthoate (9b)

According to the synthetic procedure for **9a**, this compound was obtained in 92% yield (377 mg, 0.918 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-3-phenyl-4-(phenylethynyl)-1*H*-isochromen-1-yl)-acetate **8b** (524 mg, 0.999 mmol) with TBAF (a 1.0 M solution in THF, 3.0 mL, 3.0 mmol) in the presence of MS4A powder (3.0 g) in THF (4.0 mL) for 1 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 5 : 1). Colorless crystals (from hexane/EtOAc); Mp. 133-134 °C; IR (ATR) *v* 2935, 1736, 1670, 1576, 1407, 1325, 1240, 1171, 1103, 835, 740, 631 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.10 (3H, t, *J* = 7.1 Hz), 4.05-4.28 (3H, m), 4.44 (1H, d, *J* = 16.0 Hz), 6.94 (2H, d, *J* = 7.0 Hz), 7.06 (1H, t, *J* = 7.3 Hz), 7.10-7.20 (2H, m), 7.30-7.47 (3H, m), 7.48-7.59 (3H, m), 7.82 (2H, d), 8.45-8.57 (1H, m), 12.81 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 38.8, 61.9, 106.2, 124.1, 124.4, 125.0, 125.6, 126.1, 127.8, 128.0, 128.7, 129.8, 130.3, 130.6, 132.9, 133.2, 133.8, 137.8, 140.7, 162.9, 171.8, 199.4; MS (ESI-TOF) *m/z* 411 [M+H]⁺; HRMS calcd for C₂₇H₂₃O₇ [M+H]⁺, 411.1596; found, 411.1610. Anal. Calcd for C₂₇H₂₂O₇: C, 79.01; H, 5.40. Found: C, 78.71; H, 5.58.

Ethyl 3-benzyl-1-hydroxy-4-pentanoyl-2-naphthoate (9c)

According to the synthetic procedure for **9a**, this compound was obtained in 92% yield (362 mg, 0.928 mmol) by the reaction of ethyl 2-(3-butyl-1-((*tert*-butyldimethylsilyl)oxy)-4-(phenylethynyl)-1*H*-isochromen-1-yl)-acetate **8c** (508 mg, 1.01 mmol) with TBAF (a 1.0 M solution in THF, 1.1 mL, 1.1 mmol) in THF (4.0 mL) for 3 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 5 : 1). Colorless crystals (from hexane/EtOAc); Mp. 68.0-69.5 °C; IR (ATR) ν 2955, 2871, 1692, 1635, 1406, 1328, 1163, 762, 737, 706, 636 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.83 (3H, t, *J* = 7.3 Hz), 1.06 (3H, t, *J* = 7.1 Hz), 1.28 (2H, sex, *J* = 7.3 Hz), 1.66 (2H, quint, *J* = 7.3 Hz), 2.60-2.82 (2H, br), 4.18 (2H, q, *J* = 7.1 Hz), 4.26-4.50 (2H, br), 6.99 (2H, d, *J* = 7.2 Hz), 7.13 (1H, t, *J* = 7.2 Hz), 7.22 (2H, t, *J* = 7.2 Hz), 7.47 (1H, d, *J* = 8.3 Hz), 7.50-7.60 (1H, m), 7.60-7.68 (1H, m), 8.49 (1H, d, *J* = 8.3 Hz), 12.80 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 13.8, 22.1, 25.4, 38.2, 45.8, 61.9, 106.0, 124.0, 124.3, 124.6, 125.8, 126.0, 127.8 (2C), 128.3 (2C), 130.4, 130.6, 132.0, 133.8, 140.9, 162.7, 171.8, 210.2; MS (ESI-TOF) *m*/z 391 [M+H]+; HRMS calcd for C₂₅H₂₇O₄

[M+H]⁺, 391.1909; found, 391.1914.

Ethyl 1-hydroxy-4-pentanoyl-3-pentyl-2-naphthoate (9d)

According to the synthetic procedure for **9a**, this compound was obtained in 97% yield (168 mg, 0.455 mmol) by the reaction of ethyl 2-(3-butyl-1-((*tert*-butyldimethylsilyl)oxy)-4-(hex-1-yn-1-yl)-1*H*-isochromen-1-yl)-acetate **8d** (227 mg, 0.467 mmol) with TBAF (a 1.0 M solution in THF, 1.4 mL, 1.4 mmol) in the presence of MS4A powder (1.4 g) in THF (3.5 mL) for 3 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 10 : 1). Colorless crystals (from hexane/EtOAc); Mp. 57.0-58.5 °C; IR (ATR) *v* 2868, 1698, 1639, 1405, 1236, 1015, 833, 767 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (3H, t, *J* = 7.1 Hz), 0.96 (3H, t, *J* = 7.3 Hz), 1.24-1.38 (4H, m), 1.40-1.60 (4H, m), 1.46 (3H, t, *J* = 7.1 Hz), 1.78 (2H, quint, *J* = 7.4 Hz), 2.50-3.24 (2H, br), 2.83 (2H, t, *J* = 7.4 Hz), 4.50 (2H, q, *J* = 7.1 Hz), 7.36-7.44 (1H, m), 7.48 (1H, td, *J* = 6.9, 1.1 Hz), 7.58 (1H, td, *J* = 6.9, 1.3 Hz), 8.37-8.49 (1H, m), 12.76 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 13.98, 14.07, 14.12, 22.3, 22.6, 25.6, 32.2, 32.4, 33.5, 46.0, 62.0, 105.3, 123.6, 123.7, 124.6, 125.5, 130.3, 132.0 (2C), 134.7, 162.6, 172.3, 210.2; MS (ESI-TOF) *m*/z 393 [M+Na]⁺; HRMS calcd for C₂₃H₃₀NaO₄ [M+Na]⁺, 393.2042; found, 393.2049.

Ethyl 4-benzoyl-1-hydroxy-3-(4-methoxybenzyl)-2-naphthoate (9e)

According to the synthetic procedure for **9a**, this compound was obtained in 91% yield (169 mg, 0.384 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-((4-methoxyphenyl)ethynyl)-3-phenyl-1*H*-isochromen-1-yl)acetate **8e** (233 mg, 0.420 mmol) with TBAF (a 1.0 M solution in THF, 1.3 mL, 1.3 mmol) in the presence of MS4A powder (1.3 g) in THF (2.5 mL) for 1 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 5 : 1). Colorless crystals (from hexane/EtOAc); Mp. 131-132 °C; IR (ATR) *v* 2992, 2832, 1669, 1635, 1511, 1439, 1370, 1237, 820, 766, 630 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.17 (3H, t, *J* = 7.2 Hz), 3.71 (3H, s), 4.08 (1H, d, *J* = 14.8 Hz), 4.16-4.30 (2H, m), 4.39 (1H, d, *J* = 14.8 Hz), 6.69 (2H, d, *J* = 8.8 Hz), 6.86 (2H, d, *J* = 8.8 Hz), 7.34-7.44 (3H, m), 7.47-7.57 (3H, m), 7.83 (2H, d), 8.46-8.54 (1H, m), 12.73 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 13.8, 37.8, 55.2, 61.9, 106.2, 113.5, 124.1, 124.4, 125.0, 126.0, 128.7, 128.8, 129.8, 130.3, 130.4, 132.8, 133.2, 133.5, 133.8, 137.8, 157.6, 162.7, 171.8, 199.4; MS (ESI-TOF) *m*/*z* 463 [M+Na]⁺; HRMS calcd for C₂₈H₂₄NaO₅ [M+Na]⁺, 463.1521; found, 463.1514. Anal. Calcd for C₂₈H₂₄O₅: C, 76.35; H, 5.49. Found: C, 76.05; H, 5.61.

Ethyl 4-benzoyl-1-hydroxy-3-(2-methoxybenzyl)-2-naphthoate (9f)

According to the synthetic procedure for **9a**, this compound was obtained in 91% yield (161 mg, 0.366 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-((2-methoxyphenyl)ethynyl)-3-phenyl-1*H*-isochromen-1-yl)acetate **8f** (222 mg, 0.400 mmol) with TBAF (a 1.0 M solution in THF, 1.2 mL, 1.2 mmol) in the presence of MS4A powder (1.2 g) in THF (2.5 mL) for 1 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 9 : 1). Colorless crystals (from hexane/EtOAc); Mp. 192-193 °C; IR (ATR) *v* 2933, 1666, 1638, 1578, 1404, 1239, 754, 628 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.98 (3H, t, *J* = 6.8 Hz), 3.75 (3H, s), 3.93 (1H, brd, *J* = 17.0 Hz), 4.13 (2H, q, *J* = 6.8 Hz), 4.50 (1H, brd, *J* = 17.0 Hz), 6.67-6.76 (3H, m), 7.04-7.10 (1H, m), 7.36 (2H, t, *J* = 7.2 Hz), 7.39-7.42 (1H, m), 7.47-7.57 (3H, m), 7.83 (2H, d, *J* = 7.2 Hz), 8.50-8.56 (1H, m), 13.0 (1H, s, OH); ¹³C NMR (100 MHz, CDCl₃) δ 13.1, 32.9, 54.8, 61.7, 106.3, 109.0, 120.3, 124.1, 124.4, 124.9, 125.9, 126.6, 128.0, 128.6, 129.5, 129.8, 130.2, 130.8, 133.1, 133.2, 133.7, 137.7, 156.2, 162.9, 172.0, 199.2; MS (ESI-TOF) *m*/*z* 463 [M+Na]⁺; HRMS calcd for C₂₈H₂₄NaO₅ [M+Na]⁺, 463.1521; found, 463.1523.

Ethyl 4-benzoyl-1-hydroxy-3-(2-methylbenzyl)-2-naphthoate (9g)

According to the synthetic procedure for **9a**, this compound was obtained in 89% yield (135 mg, 0.318 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-3-phenyl-4-(*o*-tolylethynyl)-1*H*-isochromen-1-yl)-acetate **8g** (193 mg, 0.358 mmol) with TBAF (a 1.0 M solution in THF, 1.1 mL, 1.1 mmol) in the presence of MS4A powder (1.1 g) in THF (2.5 mL) for 1 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 20 : 1~10 : 1). Colorless crystals (from hexane/EtOAc); Mp. 165-168 °C; IR (ATR) *v* 2971, 1671, 1634, 1595, 1463, 1292, 1240, 841, 757, 631 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (3H, t, *J* = 7.2 Hz), 2.17 (3H, s), 4.04 (1H, brd, *J* = 16.2 Hz), 4.08-4.20 (2H, m), 4.32 (1H, brd, *J* = 16.2 Hz), 6.68 (1H, d, *J* = 7.0 Hz), 6.92-7.00 (2H, m), 7.01-7.08 (1H, m), 7.35 (2H, t, *J* = 8.2 Hz), 7.42 (1H, dd, *J* = 7.0, 1.6 Hz), 7.47-7.58 (3H, m), 7.83 (2H, d, *J* = 7.2 Hz), 8.52-8.59 (1H, m), 13.09 (1H, s, OH); ¹³C NMR (100 MHz, CDCl₃) δ 13.2, 19.6, 36.4, 61.8, 106.3, 124.1, 124.4, 124.9, 125.5, 125.8, 126.0, 126.7, 128.6, 129.2, 129.7, 130.3, 130.7, 132.8, 133.3, 133.7, 134.8, 137.6, 139.2, 163.1, 171.9, 199.3; MS (ESI-TOF) *m*/*z* 425 [M+H]⁺; HRMS calcd for C₂₈H₂₅O₄ [M+H]⁺, 425.1753; found, 425.1758.

Ethyl 4-benzoyl-3-(4-fluoro-3-methylbenzyl)-1-hydroxy-2-naphthoate (9h)

According to the synthetic procedure for **9a**, this compound was obtained in 94% yield (181 mg, 0.409 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-((4-fluoro-3-methylphenyl)ethynyl)-3-phenyl-1*H*-isochromen-1-yl)acetate **8h** (243 mg, 0.436 mmol) with TBAF (a 1.0 M solution in THF, 1.3 mL, 1.3 mmol) in the presence of MS4A powder (1.3 g) in THF (2.5 mL) for 1 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 20 : 1). Colorless crystals (from hexane/EtOAc); Mp. 134-136 °C; IR (ATR) *v* 2927, 1661, 1641, 1496, 1406, 1236, 1162, 767, 627 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 1.16 (3H, t, *J* = 7.2 Hz), 2.14 (3H, d, *J*_{HF} = 0.8 Hz), 4.11 (1H, brd, *J* = 16.0 Hz), 4.18-4.32 (2H, m), 4.42 (1H, brd, *J* = 16.0 Hz), 6.72-6.83 (3H, m), 7.37 (2H, t, *J* = 7.7 Hz), 7.40-7.46 (1H, m), 7.48-7.59 (3H, m), 7.84 (2H, d, *J* = 7.7 Hz), 8.49-8.56 (1H, m), 12.86 (1H, s, O*H*); ⁻¹³C NMR (100 MHz, CDCl₃) δ 13.7, 14.4 (d, *J*_{CF} = 4.0 Hz), 37.8, 61.9, 106.0, 114.3 (d, *J*_{CF} = 22.1 Hz), 123.9, 124.0, 124.4, 124.9, 126.0, 126.5 (d, *J*_{CF} = 8.0 Hz), 128.6, 129.7, 130.3, 130.4, 130.8, 133.0 (d, *J*_{CF} = 25.2 Hz), 133.8, 135.85, 135.89, 137.6, 159.4 (d, *J*_{CF} = 242 Hz), 162.9, 171.7, 199.3; ⁻¹⁹F NMR (376 MHz, CDCl₃) δ -59.6 (1F, brs); MS (ESI-TOF) *m*/*z* 443 [M+H]⁺; HRMS calcd for C₂₈H₂₄FO4 [M+H]⁺, 443.1659; found, 443.1670.

Ethyl 4-benzoyl-1-hydroxy-3-(4-(trifluoromethyl)benzyl)-2-naphthoate (9i)

According to the synthetic procedure for **9a**, this compound was obtained in 84% yield (167 mg, 0.348 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-3-phenyl-4-((4-(trifluoromethyl)phenyl)ethynyl)-1*H*-isochromen-1-yl)acetate **8i** (248 mg, 0.418 mmol) with TBAF (a 1.0 M solution in THF, 1.3 mL, 1.3 mmol) in the presence of MS4A powder (1.3 g) in THF (3.0 mL) for 3 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 20 : 1). Colorless crystals (from EtOAc); Mp. 113-115 °C; IR (ATR) *v* 2981, 1667, 1643, 1466, 1320, 1108, 867, 613 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (3H, t, *J* = 7.1 Hz), 4.13-4.29 (3H, m), 4.53 (1H, d, *J* = 16.5 Hz), 7.09 (2H, t, *J* = 7.9 Hz), 7.35-7.44 (5H, m), 7.50-7.59 (3H, m), 7.80 (2H, t, *J* = 7.9 Hz), 8.50-8.57 (1H, m), 12.96 (1H, s, O*H*); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 38.6, 62.0, 105.8, 124.23, 124.24 (q, *J*_{CF} = 267 Hz), 124.5, 124.9 (q, *J*_{CF} = 4.0 Hz), 125.0, 126.3, 128.0 (q, *J*_{CF} = 32.2 Hz), 128.1, 128.8, 129.7, 130.6, 130.8, 131.6, 133.2, 134.0, 137.5, 144.9, 163.3, 171.6, 199.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -0.4 (3F, s); MS (ESI-TOF) *m*/*z* 479 [M+H]⁺; HRMS calcd for C₂₈H₂₂F₃O₄ [M+H]⁺, 479.1470; found, 479.1460.

Ethyl 4-benzoyl-1-hydroxy-3-((6-methoxynaphthalen-2-yl)methyl)-2-naphthoate (9j)

According to the synthetic procedure for **9a**, this compound was obtained in 95% yield (184 mg, 0.375 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-((6-methoxynaphthalen-2-yl)ethynyl)-3-phenyl-1*H*-isochromen-1-yl)acetate **8j** (240 mg, 0.397 mmol) with TBAF (a 1.0 M solution in THF, 1.2 mL, 1.2 mmol) in the presence of MS4A powder (1.2 g) in THF (2.5 mL) for 1 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 20 : 1~10 : 1). Colorless crystals (from hexane/EtOAc); Mp. 189-191 °C; IR (ATR) ν 3044, 2967, 1734, 1602, 1250, 1023, 851, 765, 692 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 1.07 (3H, t, *J* = 7.2 Hz), 3.88 (3H, s), 4.09-4.23 (2H, m), 4.29 (1H, d, *J* = 16.2 Hz), 4.56 (1H, d, *J* = 16.2 Hz), 6.99-7.06 (2H, m), 7.11 (1H, dd, *J* = 8.5, 1.7 Hz), 7.22 (1H, brs), 7.34 (2H, t, *J* = 8.5 Hz), 7.41-7.47 (1H, m), 7.48-7.58 (5H, m), 7.81-7.87 (2H, m), 8.51-8.56 (1H, m), 12.82 (1H, s, OH); ⁻¹³C NMR (100 MHz, CDCl₃) δ 1.3.8, 38.7, 55.2, 61.9, 105.4, 106.2, 118.4, 124.2, 124.4, 125.0, 125.8, 126.1, 126.4, 127.3, 128.7, 128.9, 129.0, 129.7, 130.3, 130.6, 132.8, 133.1, 133.3, 133.8, 136.0, 137.7, 157.1, 162.9, 171.8, 199.4; MS (ESI-TOF) *m/z* 491 [M+H]⁺; HRMS calcd for C₃₂H₂₇O₅ [M+H]⁺, 491.1858; found, 491.1849.

Ethyl 4-benzoyl-1-hydroxy-3-(thiophen-3-ylmethyl)-2-naphthoate (9k)

According to the synthetic procedure for **9a**, this compound was obtained in 82% yield (161 mg, 0.387 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-3-phenyl-4-(thiophen-2-ylethynyl)-1*H*-isochromen-1-yl)acetate **8k** (251 mg, 0.473 mmol) with TBAF (a 1.0 M solution in THF, 1.4 mL, 1.4 mmol) in the presence of MS4A powder (1.4 g) in THF (2.5 mL) for 1.5 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 10 : 1). Colorless crystals (from hexane/EtOAc); Mp. 175-177 °C; IR (ATR) *v* 2978, 1672, 1635, 1593, 1327, 1240, 766, 628 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.19 (3H, t, *J* = 7.2 Hz), 4.10 (1H, brd, *J* = 16.0 Hz), 4.28 (2H, q, *J* = 7.2 Hz), 4.43 (1H, brd, *J* = 16.0 Hz), 6.63 (1H, dd, *J* = 3.0, 0.9 Hz), 6.76 (1H, dd, *J* = 4.9, 0.9 Hz), 7.10 (1H, dd, *J* = 4.9, 3.0 Hz), 7.23-7.42 (3H, m), 7.47-7.58 (3H, m), 7.83 (2H, d, *J* = 7.4 Hz), 8.47-8.53 (1H, m), 12.78 (1H, s, OH); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 34.0, 62.0, 105.9, 120.5, 124.0, 124.4, 124.8, 125.0, 126.0, 127.9, 128.7, 129.7, 129.9, 130.3, 133.20, 133.22, 133.8, 137.6, 140.9, 162.7, 171.8, 199.3; MS (ESI-TOF) *m*/*z* 417 [M+H]⁺; HRMS calcd for C₂₅H₂₁O₄S [M+H]⁺, 417.1161; found, 417.1159.

Ethyl 3-(3-acetoxypropyl)-4-benzoyl-1-hydroxy-2-naphthoate (9m)

According to the synthetic procedure for **9a**, this compound was obtained in 86% yield (334 mg, 0.795 mmol) by the reaction of ethyl 2-(4-(4-acetoxybut-1-yn-1-yl)-1-((*tert*-butyldimethylsilyl)oxy)-3-phenyl-1*H*-isochromen-1-yl)acetate **8m** (492 mg, 0.920 mmol) with TBAF (a 1.0 M solution in THF, 2.8 mL, 2.8 mmol) in the presence of MS4A powder (2.8 g) in THF (5.0 mL) for 2 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 5 : 1). Colorless crystals (from hexane/EtOAc); Mp. 99.0-99.5 °C; IR (ATR) *v* 3063, 2967, 1726, 1647, 1410, 1238, 1023, 770 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.46 (3H, t, *J* = 7.1 Hz), 1.81-1.97 (2H, m), 1.95 (3H, s), 2.61-2.72 (1H, m), 3.06-3.18 (1H, m), 3.90-4.00 (2H, m), 4.52 (2H, q, *J* = 7.1 Hz), 7.31-7.36 (1H, m), 7.43 (2H, t, *J* = 7.4 Hz), 7.45-7.51 (2H, m), 7.59 (1H, tt, *J* = 7.4, 1.2 Hz), 7.82 (2H, d, *J* = 7.4 Hz), 8.43-8.50 (1H, m), 12.94 (1H, s, OH); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 20.9, 30.2, 30.6, 62.2, 64.2, 105.4, 123.8, 124.4, 124.7, 125.8, 125.9, 129.3, 129.7, 130.4, 133.2, 133.9, 135.0, 137.8, 163.2, 171.0, 172.1, 199.5; MS (ESI-TOF) *m/z* 443 [M+Na]⁺; HRMS calcd for C₂₅H₂₄NaO₆ [M+Na]⁺, 443.1471; found, 443.1474.

Ethyl 4-benzoyl-1-hydroxy-3-(3-(methoxymethoxy)propyl)-2-naphthoate (9n)

According to the synthetic procedure for **9a**, this compound was obtained in 93% yield (175 mg, 0.415 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-(4-(methoxymethoxy)but-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-yl)acetate **8n** (239 mg, 0.445 mmol) with TBAF (a 1.0 M solution in THF, 1.3 mL, 1.3 mmol) in the presence of MS4A powder (1.3 g) in THF (2.5 mL) for 2 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 5 : 1). Pale yellow oil; IR (neat) v 3060, 2947, 1672, 1651, 1580, 1406, 1327, 1240, 1109, 1040 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.46 (3H, t, J = 7.1 Hz), 1.72-1.90 (2H, m), 2.62-2.80 (1H, m), 3.08-3.21 (1H, m), 3.26 (3H, s), 3.37-3.45 (2H, m), 4.50 (2H, s), 4.51 (1H, d, J = 14.5 Hz), 7.30-7.37 (1H, m), 7.42 (2H, t, J = 7.8 Hz), 7.44-7.50 (2H, m), 7.57 (1H, t, J = 7.4 Hz), 7.83 (2H, d, J = 7.2 Hz), 8.44-8.49 (1H, m), 12.89 (1H, s, OH); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 30.4, 31.7, 55.0, 62.2, 67.4, 96.2, 105.6, 123.7, 124.4, 124.7, 125.7, 128.8, 129.2, 129.7, 130.3, 133.2, 133.8, 135.8, 138.0, 163.0, 172.3, 199.7; MS (ESI-TOF) *m*/*z* 423 [M+H]⁺; HRMS calcd for C₂₅H₂₇O₆ [M+H]⁺, 423.1808; found, 423.1815. Anal. Calcd for C₂₅H₂₆O₆: C, 71.07; H, 6.20. Found: C, 70.99; H, 6.21.

Ethyl 4-benzoyl-1-hydroxy-3-methyl-2-naphthoate (90)

According to the synthetic procedure for **9a**, this compound was obtained in 91% yield (156 mg, 0.467 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-3-phenyl-4-((trimethylsilyl)ethynyl)-1*H*-isochromen-1-yl)acetate **8o** (267 mg, 0.512 mmol) with TBAF (a 1.0 M solution in THF, 1.5 mL, 1.5 mmol) in the presence of MS4A powder (1.5 g) in THF (2.5 mL) for 1.5 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 15 : 1~10 : 1). Colorless crystals (from hexane/EtOAc); Mp. 126-127 °C; IR (ATR) *v* 3064, 2980, 1665, 1645, 1578, 1408, 1326, 1245, 1221, 1173, 1157, 849, 770, 624 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (3H, t, *J* = 7.1 Hz), 2.45 (3H, s), 4.49 (2H, q, *J* = 7.1 Hz), 7.32-7.38 (1H, m), 7.45 (2H, t, *J* = 8.0 Hz), 7.40-7.50 (2H, m), 7.54-7.62 (1H, m), 7.85 (2H, dd, *J* = 7.1, 1.2 Hz), 8.42-8.50 (1H, m), 12.9 (1H, s, OH); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 21.1, 62.0, 106.2, 123.5, 124.3, 124.5, 125.5, 128.9, 129.0, 129.7, 130.3, 131.8, 133.2, 133.8, 137.8, 162.7, 172.5, 200.2; MS (ESI-TOF) *m*/*z* 335 [M+H]⁺; HRMS calcd for C₂₁H₁₉O₄ [M+H]⁺, 335.1283; found, 335.1284.

Ethyl 4-benzoyl-1-hydroxy-3-(3-hydroxypropyl)-2-naphthoate (9p)

According to the synthetic procedure for **9a**, this compound was obtained in 97% yield (102 mg, 0.270 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-(4-((*tert*-butyldimethylsilyl)oxy)but-1-yn-1-yl)-3-phenyl-1*H*-isochromen-1-yl)acetate **8p** (169 mg, 0.278 mmol) with TBAF (a 1.0 M solution in THF, 0.83 mL, 0.83 mmol) in the presence of MS4A powder (0.83 g) in THF (2.0 mL) for 1 h at 70 °C and the following column chromatography on silica gel (hexane/EtOAc = 2 : 1). Pale yellow crystals (from hexane/EtOAc); Mp. 92.0-93.5 °C; IR (ATR) *v* 3566, 2955, 1657, 1641, 1576, 1407, 1238, 765, 629 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 1.44 (3H, t, *J* = 7.1 Hz), 1.70-1.90 (2H, m), 1.93-2.12 (1H, m, OH), 2.58-2.73 (1H, m), 3.20-3.36 (1H, m), 3.44-3.55 (2H, m), 4.43-4.59 (2H, m), 7.34-7.38 (1H, m), 7.39-7.50 (4H, m), 7.58 (1H, t, *J* = 7.4 Hz), 7.84 (2H, d, *J* = 7.2 Hz), 8.42-8.51 (1H, m), 12.9 (1H, s, OH); ⁻¹³C NMR (100 MHz, CDCl₃) δ 14.0, 29.7, 34.6, 61.9, 62.2, 105.4, 123.7, 124.4, 124.7, 125.7, 128.8, 129.1, 129.8, 130.1, 134.0, 135.6, 137.8, 163.0, 172.1, 200.7; MS (ESI-TOF) *m*/*z* 401 [M+H]⁺; HRMS calcd for C₂₃H₂₂NaO₅ [M+Na]⁺, 401.1365; found, 401.13665.

Ethyl 1-hydroxy-3,4-diphenyl-2-naphthoate

According to the synthetic procedure for **9a**, this compound was obtained in 80% yield (148 mg, 0.401 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-3,4-diphenyl-1*H*-isochromen-1-yl)acetate (250 mg, 0.499 mmol) with TBAF (a 1.0 M solution in THF, 0.50 mL, 0.50 mmol) in THF (2.5 mL) for 7 h at room temperature and the following column chromatography on silica gel (hexane/EtOAc = 30 : 1). Colorless crystals (from hexane/EtOAc); Mp. 157-158 °C; IR (ATR) ν 3053, 3022, 2986, 1638, 1398, 1320, 1209, 1097, 745, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.66 (3H, t, *J* = 7.2 Hz), 3.94 (2H, q, *J* = 7.2 Hz), 6.94-7.11 (7H, m), 7.13-7.22 (3H, m), 7.38 (1H, dd, *J* = 8.3, 1.2 Hz), 7.49 (1H, td, *J* = 7.0, 1.2 Hz), 7.51-7.57 (1H, m), 8.53 (1H, brd, *J* = 7.0 Hz), 12.38 (1H, s, O*H*); ¹³C NMR (100 MHz, CDCl₃) δ 12.9, 60.9, 106.5, 123.8, 1241, 125.60, 125.61, 126.3, 126.67, 126.70, 127.5, 1298.6, 129.8, 131.2, 131.5, 135.5, 137.2, 138.7, 142.0, 160.5, 172.1; MS (ESI-TOF) *m*/*z* 369 [M+H]⁺; HRMS calcd for C₂₅H₂₁O₃ [M+H]⁺, 369.1491; found, 369.1472.

5. Construction of higher polycyclic systems

11-Benzoyl-6-hydroxytetracen-5(12H)-one (11)

Naphthol **9b** (103 mg, 0.251 mmol) was dissolved in TfOH (1.0 mL). After being stirred for 2 h at room temperature, the reaction mixture was diluted with CH₂Cl₂ (20 mL). The resulting mixture was poured into water (50 mL), and extracted with EtOAc (20 mL x 3). The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated. The yellow residue was quickly purified by column chromatography on silica gel (hexane/EtOAc = 10 : 1) to give tetracenone **11** in 86% yield (79.0 mg, 0.213 mmol). Yellow crystals (from EtOAc); Mp. 178-181 °C; IR (ATR) ν 3057, 2923, 1734, 1618, 1575, 1247, 739, 614 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.26 (2H, brs), 7.28 (1H, d, *J* = 7.4 Hz), 7.40-7.49 (4H, m), 7.50-7.58 (3H, m), 7.62 (1H, tt, *J* = 7.4, 0.3 Hz), 7.89 (1H, d, *J* = 7.4 Hz), 8.35 (2H, dd, *J* = 7.9, 1.1 Hz), 8.55-8.60 (1H, m), 15.2 (1H, s, OH); ¹³C NMR (100 MHz, CDCl₃) δ 30.4, 109.7, 123.3, 124.5, 125.8, 125.5, 125.8, 127.1, 127.2, 128.4, 129.1, 129.8, 130.6, 130.9, 132.1, 133.8, 134.17, 134.24, 137.2, 140.3, 164.4, 189.8, 199.3; MS (ESI-TOF) *m/z* 365 [M+H]⁺; HRMS calcd for C₂₅H₁₇O₃ [M+H]⁺, 365.1178; found, 365.1182.

Ethyl 5-hydroxy-12-phenyl-8,9,10,11-tetrahydrotetraphene-6-carboxylate (12)

According to the synthetic procedure for **9a**, this compound was obtained in 67% yield (66.6 mg, 0.168 mmol) by the reaction of ethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)-4-(cyclohex-1-en-1-ylethynyl)-3-phenyl-1*H*-isochromen-1-yl)acetate **8q** (132 mg, 0.250 mmol) with TBAF (a 1.0 M solution in THF, 0.75 mL, 0.75 mmol) in the presence of MS4A powder (0.75 g) in THF (2.5 mL) for 12 h at 70 °C and the following column chromatography on silica gel (hexane/CH₂Cl₂ = 4 : 1). Yellow crystals (from Et₂O); Mp. 172-180 °C; IR (ATR) *v* 3061, 2923, 2851, 1640, 1308, 1249, 805, 693 cm⁻¹; ⁻¹H NMR (400 MHz, CDCl₃) δ 1.56 (3H, t, *J* = 7.1 Hz), 1.71-1.79 (2H, m), 1.80-1.88 (2H, m), 2.46 (2H, t, *J* = 6.4 Hz), 3.04 (2H, t, *J* = 6.4 Hz), 4.61 (2H, q, *J* = 7.1 Hz), 7.09 (1H, dd, *J* = 7.2, 1.4 Hz), 7.19-7.24 (2H, m), 7.33-7.40 (2H, m), 7.41-7.52 (3H, m), 8.46 (1H, brd, *J* = 7.9 Hz), 8.52 (1H, s), 12.81 (1H, s, O*H*); ⁻¹³C NMR (100 MHz, CDCl₃) δ 14.3, 22.8, 23.7, 28.9, 30.9, 60.9, 101.7, 123.6, 124.1, 125.5, 125.7, 126.2, 126.9, 128.1, 128.2, 128.4, 129.3, 129.9, 133.2, 134.1, 136.7, 169.1, 143.7, 161.1, 172.6; MS (ESI-TOF) *m*/*z* 397 [M+H]⁺; HRMS calcd for C₂₇H₂₅O₃ [M+H]⁺, 397.1804; found, 397.1809.

6. X-ray crystallographic data

X-ray crystallographic data of 9a, 9b, 11, and 12 have been deposited with Cambridge Crystallographic Data Center (CCDC) as supplementary publication Nos. CCDC 1469784 (9a), 1469783 (9b), 1469782 (11), and 1473607 CCDC (12). These data can be obtained free of charge from the via www.ccdc.cam.ac.uk/data_request/cif.

Table S1. Crystallographic data of 9a

C ₂₅ H ₂₆ O ₄	F(000) = 832
$M_r = 390.46$	$D_{\rm x} = 1.216 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 4024 reflections
a = 14.1779 (17) Å	$\theta = 2.8 - 27.6^{\circ}$
b = 7.8527 (9) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 19.280 (2) Å	T = 90 K
$\beta = 96.4640 \ (16)^{\circ}$	Block, colourless
V = 2132.9 (4) Å ³	$0.26\times0.14\times0.11~mm$
Z = 4	
Bruker APEXII CCD area detector	3758 independent reflections
diffractometer	
Radiation source: Bruker TXS fine-focus rotating anode	3224 reflections with $I > 2\sigma(I)$
Bruker Helios multilayer confocal mirror	$R_{\rm int} = 0.021$
Detector resolution: 8.333 pixels mm ⁻¹	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$
phi and ω scans	$h = -12 \rightarrow 16$
Absorption correction: analytical	$k = -9 \rightarrow 8$
Crystal Faces plugin in Bruker APEX2 software	
$T_{\min} = 0.979, \ T_{\max} = 0.991$	$l = -22 \rightarrow 19$
10003 measured reflections	
Refinement on <i>F</i> ²	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.096$	H atoms treated by a mixture of independent and constrained
	refinement
S = 1.04	$w = 1/[\sigma^2(F_0^2) + (0.0514P)^2 + 0.5033P]$
	where $P = (F_o^2 + 2F_c^2)/3$
3758 reflections	$(\Delta/\sigma)_{max} < 0.001$
267 parameters	$\Delta \rangle_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta angle_{\min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table S2. Crystallographic data of 9b

$C_{27}H_{22}O_4$	Z = 2
$M_r = 410.45$	F(000) = 432
Triclinic, <i>P</i> ⁻ 1	$D_{\rm x} = 1.319 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 9.173 (2) Å	Cell parameters from 4575 reflections
b = 10.382 (3) Å	$\theta = 2.3-27.5^{\circ}$
c = 12.748 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 104.062 (3)^{\circ}$	T = 90 K
$\beta = 94.660 (3)^{\circ}$	Block, colorless
$\gamma = 116.023 \ (2)^{\circ}$	$0.28\times0.16\times0.15~mm$
V = 1033.4 (4) Å ³	
Bruker APEXII CCD area detector	3635 independent reflections
diffractometer	
Radiation source: Bruker TXS fine-focus rotating anode	3133 reflections with $I > 2\sigma(I)$
Bruker Helios multilayer confocal mirror	$R_{\rm int} = 0.043$
Detector resolution: 8.333 pixels mm ⁻¹	$\theta_{max}=25.0^\circ,\theta_{min}=2.3^\circ$
phi and ω scans	$h = -10 \rightarrow 10$
Absorption correction: analytical	$k = -12 \rightarrow 12$
Crystal Faces plugin in Bruker APEX2 software	

$T_{\min} = 0.976, T_{\max} = 0.987$	$l = -15 \rightarrow 15$
10078 measured reflections	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.137$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0829P)^2 + 0.2205P]$
	where $P = (F_0^2 + 2F_c^2)/3$
3635 reflections	$(\Delta/\sigma)_{max} < 0.001$
282 parameters	$\Delta angle_{ m max}=0.26$ e Å ⁻³
204 restraints	Δ _{min} = -0.31 e Å ⁻³

Table S3. Crystallographic data of 11

$C_{25}H_{16}O_3$	F(000) = 1520
$M_r = 364.38$	$D_{\rm x} = 1.398 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 2632 reflections
a = 25.507 (4) Å	$\theta=2.5{-}27.5^{\circ}$
b = 8.1552 (14) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 16.661 (3) Å	T = 90 K
$\beta = 92.869 \ (2)^{\circ}$	Plate, pale yellow
$V = 3461.4 (10) Å^3$	$0.21\times0.15\times0.05~mm$
Z = 8	
Bruker APEXII CCD area detector	3046 independent reflections
diffractometer	
Radiation source: Bruker TXS fine-focus rotating anode	2504 reflections with $I > 2\sigma(I)$
Bruker Helios multilayer confocal mirror	$R_{\rm int} = 0.030$

Detector resolution: 8.333 pixels mm⁻¹

phi and ω scans

 $h = -28 \rightarrow 30$

 $\theta_{max}=25.0^\circ,\,\theta_{min}=2.5^\circ$

Absorption correction: analytical	$k = -9 \rightarrow 5$
Crystal Faces plugin in Bruker APEX2 software	
$T_{\min} = 0.981, \ T_{\max} = 0.996$	$l = -19 \rightarrow 18$
8153 measured reflections	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.093$	H atoms treated by a mixture of independent and constrained
	refinement
S = 1.04	$w = 1/[\sigma^2(F_0^2) + (0.0404P)^2 + 1.9447P]$
	where $P = (F_0^2 + 2F_c^2)/3$
3046 reflections	$(\Delta/\sigma)_{max} < 0.001$
256 parameters	$\Delta \lambda_{max} = 0.20 \text{ e} \text{ Å}^{-3}$
0 restraints	Δ _{min} = -0.18 e Å ⁻³

Table S4. Crystallographic data of 12

$C_{27}H_{24}O_3$	$\gamma = 92.531 (1)^{\circ}$
$M_r = 396.46$	$V = 981.26 (12) \text{ Å}^3$
Triclinic, <i>P</i> ⁻ 1	Z = 2
Hall symbol: -P 1	F(000) = 420
a = 5.7885 (4) Å	$D_{\rm x} = 1.342 {\rm ~Mg~m^{-3}}$
b = 10.4613 (8) Å	Mo K α radiation, $\lambda = 0.71073$ Å
c = 16.3808 (12) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 92.216 (1)^{\circ}$	T = 90 K
$\beta = 97.607 \ (1)^{\circ}$	$0.29 \times 0.11 \times 0.10 \text{ mm}$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.021$
Graphite monochromator	$\theta_{max} = 27.6^{\circ}, \ \theta_{min} = 1.3^{\circ}$
11621 measured reflections	$h = -7 \rightarrow 7$
4505 independent reflections	$k = -13 \rightarrow 13$

3883 reflections with $I > 2\sigma(I)$	$l = -21 \rightarrow 21$
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.112$	H atoms treated by a mixture of independent and constrained
	refinement
S = 0.98	$w = 1/[\sigma^2(F_o^2) + (0.0641P)^2 + 0.3713P]$
	where $P = (F_0^2 + 2F_c^2)/3$
4505 reflections	$(\Delta/\sigma)_{max} < 0.001$
275 parameters	$\Delta angle_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
0 restraints	Δ _{min} = -0.25 e Å ⁻³

7. ¹H and ¹³C NMR spectra of all new compounds

-S38-

-S40-

-S45-

-S47-

-S51-

-S52-

-S54-

-S64-

-S80-

-S87-

8. References

- 1. H. Yanai, T. Yoshino, M. Fujita, H. Fukaya, A. Kotani, F. Kusu, T. Taguchi, *Angew. Chem. Int. Ed.* **2013**, *52*, 1560–1563.
- (a) F. J. Waller, A. G. M. Barrett, D. C. Braddock, D. Ramprasad, R. M. McKinnell, A. J. P. White, D. J. Williams, R. J. Ducray, *J. Org. Chem.* 1999, 64, 2910–2913; (b) H. Yanai, A. Takahashi, T. Taguchi, *Tetrahedron* 2007, 63, 12149–12159.
- 3. Yao, T.; Larock, R. C. J. Org. Chem. 2003, 68, 5936-5942.
- Vasilevsky, S. F.; Mikhailovskaya, T. F.; Mamatyuk, V. I.; Salnikov, G. E.; Bogdanchikov, G. A.; Manoharan, M.; Alabugin, I. V. J. Org. Chem., 2009, 74, 8106–8117.