Reactions of A Cerium(III) Amide with Heteroallenes: Insertion, Silyl-migration and De-insertion

Haolin Yin, Patrick J. Carroll, and Eric J. Schelter*

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104

E-mail: schelter@sas.upenn.edu

Supporting Information

Experimental Procedures	S2-S3
Synthetic Details and Characterization	S4-S7
X-Ray Crystal Structures	S8–S9
NMR spectra	S10–S17
VT NMR spectra	S18–S19
IR spectra	S20–S21
Mass Spectra	S22
References	S23

Experimental Procedures

General Methods. Unless otherwise indicated all reactions and manipulations were performed under an inert atmosphere (N₂) using standard Schlenk techniques or in a Vacuum Atmospheres, Inc. Nexus II drybox equipped with a molecular sieves 13X / Q5 Cu-0226S catalyst purifier system. Glassware was oven-dried overnight at 150 °C prior to use. ¹H, ¹⁹F, and ¹³C NMR spectra were obtained at 300K on a Bruker DMX-300 Fourier transform NMR spectrometer operating at ¹H frequency of 300 MHz. ¹H and ¹⁹F variable temperature NMR measurements were carried out at 300MHz and 282 MHz. Chemical shifts were recorded in units of parts per million referenced against residual proteo solvent peaks (¹H) deteuro solvent peaks (¹GC) or fluorobenzene (¹⁹F, -113.15 ppm). Elemental analyses were performed at the University of California, Berkeley, Microanalytical Facility using a Perkin-Elmer Series II 2400 CHNS analyzer. The infrared spectra were obtained from 400-4000 cm⁻¹ using a Perkin Elmer 1600 series infrared spectrometer. High resolution mass spectrometry (HRMS) data were collected on a Waters LC-TOF mass spectrometer (model LCT-XE Premier) using electrospray ionization (ESI) in positive or negative mode, depending on the analyte.

Materials. Toluene, fluorobenzene, hexanes, and *n*-pentane were purchased from Fisher Scientific. The solvents were sparged for 20 min with dry N₂ and dried using a commercial twocolumn solvent purification system comprising columns packed with Q5 reactant and neutral alumina respectively (for hexanes and *n*-pentane), or two columns of neutral alumina (for toluene and fluorobenzene). Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. and stored over molecular sieves overnight prior to use. Ce[N(SiMe₃)Ph^F]₃ (-Ph^F = 2, 3, 4, 5, 6-pentafluorophenyl) was prepared according to reported procedure.¹ Carbon disulfide, *N*, *N*'- diisopropylcarbodiimide and 1-adamantyl isocyanate were purchased from ACROS and used as received. 1-admantyl isothiocyanate was purchased from TCI and used as received.

X-Ray Crystallography. X-ray reflection intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at a temperature of 143(1) K. In all cases, rotation frames were integrated using SAINT,² producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTL³ program package for further processing and structure solution on a Dell Pentium 4 computer. The intensity data were corrected for Lorentz and polarization effects and for absorption using TWINABS⁴ or SADABS.⁵ The structures were solved by direct methods (SHELXS-97).⁶ Refinement was by full-matrix least squares based on F² using SHELXL-97.⁶ All reflections were used during refinements. The weighting scheme used was w = $1/[\sigma^2(F_o^2) + (0.0907P)^2 + 0.3133P]$ where P = $(F_o^2 + 2F_c^2)/3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model.

Synthetic Details and Characterization

Synthesis of Ce[S₂CN(SiMe₃)Ph^F]₃(O=PPh₃)₂ (2). To a vial containing Ce[N(SiMe₃)Ph^F]₃ (0.090 g, 0.100 mmol, 1.00 equiv) suspended in 2 mL toluene, a 2 mL toluene solution containing CS₂ (0.030 g, 0.400 mmol, 4.00 equiv) was added, leading to an orange solution. After stirring for 16 h, a 1 mL toluene solution containing O=PPh₃(0.056 g, 0.200 mmol, 2.00 equiv) was added, resulting in a color change to yellow. After stirring for 0.5 h, volatiles were removed under reduced pressure. The resulting off-white solids were collected on a medium porosity fritted filter, washed with 3 × 3 mL *n*-pentane and dried under reduced vacuum for 1 h. Yield: 0.132 g, 0.078 mmol, 78%. ¹H NMR (C₆D₆, 300 K): δ 13.85 (s, 12H, O=PPh₃), 8.21 (s, 12H, O=PPh₃), 8.03 (t, 6H, O=PPh₃, *J* = 6 Hz), -1.51 (s, 27H, -SiMe₃. ¹⁹F NMR (C₆D₆, 300 K): δ -147.88 (dd, 6F, *o*-F, *J*₁ = 23 Hz, *J*₂ = 6 Hz), -157.74 (t, 3F, *p*-F, *J* = 23 Hz), -165.40 (td, 6F, *m*-F, *J*₁ = 23 Hz, *J*₂ = 6 Hz). Elemental analysis found (calculated) for C₆₆H₅₇CeF₁₅N₃O₂P₂S₆Si₃: C, 47.22 (46.97), H, 3.36 (3.40), N, 2.74 (2.49), S, 11.28 (11.40). Single crystals suitable for an X-ray diffraction study were obtained by storing an *n*-pentane solution at -25 °C.

Synthesis of {['Pr(SiMe₃)N]C(N'Pr)(NPh^F)}₃Ce^{III} (3). To a vial containing Ce[N(SiMe₃)Ph^F]₃ (0.271 g, 0.300 mmol, 1.00 equiv) suspended in 3 mL toluene, a 2 mL toluene solution containing 'Pr–N=C=N–'Pr (0.227 g, 1.800 mmol, 6.00 equiv) was added, leading to a yellow solution. After stirring for 16 h, volatiles were removed under reduced pressure. The solid residues were extracted with 5 mL *n*-pentane and filtered through Celite packed in pipette. The clear yellow solution was then concentrated to 1 mL and stored at -25 °C to yield yellow crystals. The yellow products were collected on a medium porosity fritted filter and dried under reduced vacuum for 1 h. Yield: 0.311 g, 0.243 mmol, 81%. ¹H NMR (toluene-*d*₈, 300 K): δ 9.10 (s), 8.56 (br), 8.46 (br), 7.86 (s), 7.18 (br), 6.84 (br), 4.30 (s), 3.47 (s), 3.25 (br), 2.68 (s), 2.42(s),

2.28 (s), 1.28 (br), -1.91 (s), -3.79 (s), -4.54 (s), -7.93 (s), -8.46 (s), -9.97 (s). ¹⁹F NMR (toluene- d_8 , 300 K): δ -154.65 (br, o-F), -155.01 (br, o-F), -158.29 (br, o-F), -167.30 (t, m-F, J = 21 Hz), -167.56 (t, m-F, J = 21 Hz), -167.92 (t, m-F, J = 23 Hz), -168.11 (t, p-F, J = 23 Hz), -168.66 (t, p-F, J = 21 Hz). Elemental analysis found (calculated) for C₄₈H₇₂CeF₁₅N₉Si₃: C 45.06 (44.88), H, 5.55 (5.65), N 9.8 (9.81). Single crystals suitable for X-ray diffraction study were obtained by storing an n-pentane solution at -25 °C.

Reaction of ('Bu₂bipy)Ce[N(SiMe₃)Ph^F]₃ (1-'Bu₂bipy) with ^{*i*}Pr-N=C=N-^{*i*}Pr. ('Bu₂bipy)Ce[N(SiMe₃)Ph^F]₃ was generated quantitatively *in situ* by adding 'Bu₂bipy (0.027 g, 0.100 mmol, 1.00 equiv) into a toluene slurry containing Ce[N(SiMe₃)Ph^F]₃ (0.090 g, 0.100 mmol, 1.00 equiv). After stirring for 5 min, ^{*i*}Pr-N=C=N-^{*i*}Pr (0.076 g, 0.600 mmol, 6.00 equiv) were added to the orange solution and let stirred overnight (16 h). The volatiles were removed for a reaction aliquot and ¹H and ¹⁹F NMR was taken in C₆D₆ indicating no reaction between the above two compounds (Figure S9–10).

Hydrolysis of {[^{*i*}**Pr(SiMe₃)N]C(N^{***i***}Pr)(NPh**^F)}₃**Ce**^{III} (3) with py•HCl. To a 2 mL THF slurry containing pyridine hydrochloride (0.069 g, 0.600 mmol, 6.00 equiv), a yellow THF solution containing {[^{*i*}**Pr**(SiMe₃)N]C(N^{*i*}**Pr**)(NPh^F)}₃Ce^{III} (0.128g, 0.100 mmol, 1.00 equiv) was added. The slurry was stirred overnight (16 h), leading to a colorless solution. After removing the volatiles under reduced pressure, the mixture was extracted with 5 mL *n*-pentane. The *n*-pentane solution was filtered through Celite packed in a pipet filter and concentrated to 1 mL. Storage of resulting *n*-pentane solution at -25° C led to the precipitation of white solids. The products were collected on a medium porosity fritted filter and dried under reduced vacuum for 1 h. Yield of (NH^{*i*}Pr)₂C(=NPh^F): 0.083 g, 0.269 mmol, 90%. ¹H NMR (300Hz, C₆D₆, 300 K): δ 3.50 (m, 2H, $-CH(CH_3)_2$), 3.22(s, 2H, NH), 0.83(d, 12H, *J* = 6.0 Hz, $-CH(CH_3)_2$). ¹⁹F NMR (282 Hz, C₆D₆,

300 K): δ -153.46 (dd, *o*-F, J_1 = 20 Hz, J_2 = 5.6 Hz), -165.57 (td, *m*-F, J_1 = 20 Hz, J_2 = 5.6 Hz), -164.61 (tt, *p*-F, J_1 = 23 Hz, J_2 = 5.6 Hz). ¹³C{¹H} NMR (75 Hz, C₆D₆, 300 K): δ 43.88 (s), 23.23 (s). These characterization data matches with previous reports for (NHⁱPr)₂C(=NPh^F).⁷

Reaction of 1 with CO₂. In a 100 mL Schlenk tube, a 3 mL THF solution containing Ce[N(SiMe₃)Ph^F]₃ (0.027 g, 0.030 mmol, 1.00 equiv) was added in the box, followed by internal standard 1-fluorobenzene (8.50 µL, 0.030 mmol, 3.00 equiv) through micro-pipette. The Schlenk tube was attached to Schlenk line. Upon frozen of solvent with liquid N₂, the headspace was evacuated and refilled with CO₂ using Schlenk techniques. The reaction was let thaw and stir at room temperature overnight. The product was identified by GC-MS as Ph^F–N=C=O. ¹⁹F NMR (282 Hz, THF-*h*₈, 300 K): δ –144.49 (d, *o*-F, *J* = 20 Hz), –159.55 (t, *p*-F, *J* = 21 Hz), –164.83 (t, *m*-F, *J* = 20 Hz). Yield was estimated by NMR integration compared to the internal standard, 70 %. IR (THF solution): 2337 cm⁻¹.

Synthesis of Ad–N=C=N–Ph^F (5):

From reaction of Ad–N=C=O with 1. To a vial containing Ce[N(SiMe₃)Ph^F]₃ (0.090 g, 0.100 mmol, 1.00 equiv) suspended in 2 mL toluene, a 2 mL toluene solution containing O=C=N–Ad (0.053 g, 0.300 mmol, 3.00 equiv) was added, leading to a colorless solution. After stirring for 16 h, volatiles were removed under reduced pressure. The white solid residues were extracted with 5 mL *n*-pentane and filtered through Celite packed in pipette. The clear *n*-pentane solution was then concentrated to 1 mL and stored at –25 °C to yield colorless crystalline solids. The products were collected on a medium porosity fritted filter and dried under reduced vacuum for 1 h. Yield of Ph^F–N=C=N–Ad: 0.094 g, 0.275 mmol, 92%. ¹H NMR (300Hz, C₆D₆, 300 K): δ 1.78 (s, 9H), 1.37 (s, 6H). ¹⁹F NMR (282 Hz, C₆D₆, 300 K): δ –150.40 (d, *o*-F, *J* = 23 Hz), –164.61 (td, *m*-F, *J*₁ = 23 Hz, *J*₂ = 6 Hz). ¹³C {¹H} NMR (75 Hz, C₆D₆, 300 K):

δ 58.67 (s), 44.83 (s), 36.15 (s), 30.32(s). IR (thin film): 2909, 2156, 1533, 1507, 1058, 993, 978, 957 cm⁻¹; m.p. 103-104 °C. High resolution mass spectra (ESI⁻) observed (calculated) for [M+OH]⁻: 359.1197 (359.1183).

From reaction of Ad–N=C=S with 1. To a vial containing Ce[N(SiMe₃)Ph^F]₃ (0.090 g, 0.100 mmol, 1.00 equiv) suspended in 2 mL toluene, a 2 mL toluene solution containing S=C=N-Ad (0.058 g, 0.300 mmol, 3.00 equiv) was added, leading to a yellow solution. After stirring for 16 h, volatiles were removed under reduced pressure. The white solid residues were extracted with 5 mL *n*-pentane and filtered through Celite packed in pipette. The clear *n*-pentane solution was then concentrated to 1 mL and stored at –25 °C to yield colorless crystalline solids. The products were collected on a medium porosity fritted filter and dried under reduced vacuum for 1 h. Yield of Ph^F–N=C=N–Ad: 0.052 g, 0.152 mmol, 51%.

X-ray Crystal Structures

Figure S1. Thermal ellipsoid plot of **Ce[S₂CN(SiMe₃)Ph^F]₃(O=PPh₃)₂ (2)** at the 30% probability level. Selected bond length (Å) and angles (deg): Ce(1)–O(1) 2.369(3), Ce(1)–O(2) 2.370(2), Ce(1)–S(1) 3.0340(8), Ce(1)–S(2) 2.9506(10), Ce(1)–S(3) 3.0083 (8), Ce(1)–S(4) 2.9915(9), Ce(1)–S(5) 2.9390(9), Ce(1)–S(6) 2.9882(9); S(1)–Ce(1)–S(2) 59.65(2), S(3)–Ce(1)–S(4) 59.12(3), S(5)–Ce(1)–S(6) 60.37(2).

Figure S2. Thermal ellipsoid plot of {['**Pr(SiMe₃)N]C(N'Pr)(NPh^F)**}**Ce^{III} (3)** at the 30% probability level. Selected bond length (Å) and angles (deg): Ce(1)–N(1) 2.497(3), Ce(1)–N(2) 2.440(3), Ce(1)–N(4) 2.488(3), Ce(1)–N(5) 2.506(3), Ce(1)–N(7) 2.454(3), Ce(1)–N(8) 2.494(3); N(1)–Ce(1)–N(2) 53.83(12), N(4)–Ce(1)–N(5) 53.05(9), N(7)–Ce(1)–N(8) 53.57(11).

Figure S3. ¹H NMR data for Ce[S₂CN(SiMe₃)Ph^F]₃(O=PPh₃)₂ (2) in C₆D₆.

Figure S4. ¹⁹F NMR data for Ce[S₂CN(SiMe₃)Ph^F]₃(O=PPh₃)₂ (2) in C₆D₆.

Figure S5. ¹H NMR data for aliquot of $Ce[N(SiMe_3)Ph^F]_3(1)$ reaction with CS_2 in C_6D_6 . A broad $-SiMe_3$ peak centered at -0.10 ppm was observed.

Figure S6. ¹⁹F NMR data for aliquot of $Ce[N(SiMe_3)Ph^F]_3(1)$ reaction with CS_2 in C_6D_6 . A set of three broad resonances attributable to $-Ph^F$ group was observed.

--154.65 --155.01 167.23 167.30 -167.37-167.49 -167.56 -167.63 -167.93 -168.03 -168.11 -168.19 -168.74 .168.5868.66 --158.31 -152 -155 -158 -161 -164 -167 -170 Figure S8. ¹⁹F NMR data for {[^{*i*}Pr(SiMe₃)N]C(N^{*i*}Pr)(NPh^F)}₃Ce^{III}(3) in toluene-*d*₈.

Figure S9. ¹H NMR of reaction aliquots of $({}^{6}Bu_{2}bipy)Ce[N(SiMe_{3})Ph^{F}]_{3}$ (1- ${}^{6}Bu_{2}bipy$) with ${}^{i}Pr-N=C=N-{}^{i}Pr$ in toluene overnight, suggesting no reaction. The NMR was obtained in C₆D₆. (${}^{6}Bu_{2}bipy)Ce[N(SiMe_{3})Ph^{F}]_{3}$ and residue ${}^{i}Pr-N=C=N-{}^{i}Pr$ indicated by Δ and \circ , respectively. Protonated ligand (indicated by *) and solvent residue (*n*-pentane, indicated by ~) were also evident in the spectra.

Figure S10. ¹⁹F NMR of reaction aliquots of (${}^{Bu_{2}bipy})Ce[N(SiMe_{3})Ph^{F}]_{3}$ (1- ${}^{Bu_{2}bipy}$) with ⁱPr-N=C=N-ⁱPr in toluene overnight, suggesting no reaction. The NMR was obtained in C₆D₆ and only (${}^{Bu_{2}bipy})Ce[N(SiMe_{3})Ph^{F}]_{3}$ was observed.

Figure S11. ¹H NMR data for (NH^{*i*}Pr)₂C(=NPh^F) (hydrolysis product of 3) in C₆D₆.

Figure S12. ¹⁹F NMR data for $(NH^{i}Pr)_{2}C(=NPh^{F})$ (hydrolysis product of 3) in C₆D₆.

Figure S13. ¹³C NMR data for (NH^{*i*}Pr)₂C(=NPh^F) (hydrolysis product of 3) in C₆D₆.

Figure S14. ¹⁹F NMR data obtained in C_6D_6 for reaction aliquot of 1 with CO₂. The desire product **Ph^F-N=C=O (4)** is indicated by *. HN(SiMe₃)Ph^F, the hydrolysis product from 1 is indicated by ~.

Figure S16. ¹⁹F NMR data for $Ad-N=C=N-Ph^{F}$ (5) in C₆D₆.

Figure S17. ¹³C NMR data for $Ad-N=C=N-Ph^{F}(5)$ in $C_{6}D_{6}$.

VT NMR Spectra

Figure S18. VT ¹H NMR data for {[i Pr(SiMe₃)N]C(N i Pr)(NPh^F)}₃Ce^{III} (3) in toluene- d_{8} between 380–300 K.

Figure S19. VT ¹⁹F NMR data for {[i **Pr**(**SiMe**₃)**N**]**C**(**N** i **Pr**)(**NPh** F)}₃**Ce**^{III} (3) in toluene-*d*₈ between 380–300 K showing a symmetry change from *C*₁ to *C*₃ on NMR timescale. The coalescence was observed at ~365 K. The rotational barrier (17.4 kcal/mol) was calculated based on *o*-F resonances according to following equations:

$$k_c = \frac{\pi}{\sqrt{2}} \Delta v_{AB}$$
; $\Delta G^{\neq} = RTln(\frac{kT}{k_ch})$

Figure S20. Infrared spectrum for Ce[κ²-S₂CN(SiMe₃)Ph^F]₃(O=PPh₃)₂ (2) (KBr plate).

Figure S21. Infrared spectrum for {['Pr(SiMe₃)N]C(N'Pr)(NPh^F)}₃Ce^{III} (3) (KBr plate).

Figure S22. Infrared spectrum for reaction aliquot of **1** with CO_2 in THF solution, the spectrum region between 1650 to 2650 cm⁻¹ was shown. The absorption at 2337 cm⁻¹ indicates the presence of isocyanate species.

Figure S23. Infrared spectrum for Ad–N=C=N–Ph^F (5) (KBr plate).

Mass Spectra

Figure S26. High resolution mass spectra of $Ad-N=C=N-Ph^{F}$ (5). $[M+OH]^{-}$ was observed in ESI⁻ mode.

Figure S27. GC-MS spectra of $Ph^{F}-C=N=O(4)$. $[M]^{+}$ was observed in the spectra.

References

- (1) H. Yin, J. R. Robinson, P. J. Carroll, P. J. Walsh and E. J. Schelter, *Chem. Commun.*, **2014**, 50, 3470.
- (2) SAINT; Bruker AXS Inc.: Madison, WI, 2009.
- (3) *SHELXTL*; Bruker AXS Inc.: Madison, WI, 2009.
- (4) Scheldrick, G. *TWINABS*; University of Gottingen: Gottingen, Germany, 2008.
- (5) Scheldrick, G. *SADABS*; University of Gottingen: Gottingen, Germany, 2007.
- (6) Sheldrick, G. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
- (7) T.-G. Ong, G. P. A. Yap and D. S. Richeson, J. Am. Chem. Soc., 2003, 125, 8100.