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Experimental

All reagents and chemicals used, unless otherwise specified, were purchased from Sigma-
Aldrich Co. The solvents used for reactions were obtained from Merck Speciality Chemicals
(Sydney, Australia) and were used as received.

Details of spectroscopic measurements, and device fabrication and characterization of
photovoltaic devices were reported previously.s!
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Scheme S1 Reaction strategy for the synthesis of 4D.

Synthesis of 1,1,2,2-tetrakis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)phenyl)ethene (2):

This compound was prepared following a literature procedure (Advanced Materials, 2015,
27(6), 1015-1020) with slight experimental modifications.

A  mixture of 1,1,22-tetrakis(4-bromophenyl)ethene (1) (500 mg, 0.77 mmol),
bis(pinacolato)diboron (986 mg, 3.88 mmol), Pd(dppf)Cl2-CH2Cl. (46 mg, 0.036 mmol) and
potassium acetate (609 mg, 6.21 mmol) in 1,4-dioxane (20.0 mL) was heated to 110 °C for
16 h under N2 atmosphere. The reaction mixture was cooled to room temperature, diluted
with water (40.0 mL) and diethyl ether (50.0 mL), and the organic layer was separated. The
ethereal layer was washed twice with water followed by brine, dried over anhydrous Na>SO4



and concentrated under vacuum to get crude residue which was purified by flash column
chromatography to get the titled product as an off-white solid (400 mg, 61%). All
spectroscopic data matches with the literature values.

Synthesis of 6,6',6",6""-((ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-
diyl))tetrakis(thiophene-5,2-diyl))tetrakis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-
dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (4D):

To a stirred solution of 2 (0.080 g, 0.096 mmol) and 3-(5-bromothiophen-2-yl)-2,5-bis(2-
ethylhexyl)-6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione  (0.35 ¢, 0.58
mmol) in degassed 1,2-dimethoxyethane (10.0 mL) was added 2M Na.COs solution (2.50
mL) and the resultant reaction mixture was degassed for 15 min using nitrogen. Then
Pd(PPhsz)s (0.011 g, 0.010 mmol) was added and resultant reaction mixture was allowed to
reflux for 16 h. Reaction progress was monitored by TLC analysis. After completion, the
reaction mixture was quenched with water and extracted with DCM (3 x 10 mL). Combined
organic layers were dried over anhydrous NaSOs; and concentrated under vacuum to get
crude residue which was purified by flash column chromatography to afford 4D as a bluish-
black powder (100 mg, 43%); *H NMR (300 MHz, CDCls3) & 8.83 (dd, J = 12.9, 3.9 Hz, 8H),
7.55 (d, J = 5.3 Hz, 4H), 7.44 (d, J = 8.3 Hz, 8H), 7.38 (d, J = 3.9 Hz, 4H), 7.20 (d, J = 5.3
Hz, 4H), 7.10 (d, J = 8.3 Hz, 8H), 3.97 (d, 16H), 1.82 (m, 8H), 1.21 (m, 64H), 0.93-0.58 (m,
48H); *C NMR (300 MHz, CDCl3) § 161.60, 161.47, 149.04, 143.85, 139.91, 139.78,
136.62, 134.84, 132.25, 131.94, 131.78, 131.22, 131.15, 130.55, 130.02, 128.97, 128.22,
127.81, 125.54, 124.45, 108.12, 45.68, 39.25, 39.11, 31.92, 30.24, 29.68, 29.36, 28.53, 28.36,
23.61, 23.47, 23.06, 22.69, 13.83, 13.78, 10.28, 10.21; HRMS (MALDI-TOF, m/z): [M+H]*
calculated for C146H173NgOgSg: 2422.1142, found: 2422.1668.

Experimental spectra of 4D:
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13C NMR:
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Theoretical energy levels - HOMO (left): -5.12 eV; LUMO (right): -3.01 eV; E;: 2.11 eV

Fig. S1 Orbital density distribution for the frontier molecular orbitals of 4D. Density
functional theory calculations were performed using the Gaussian 09 suite of programs and
the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory.

Fig S2 Torsional angle of ~20 ° between the thiophene ring planes (of DPP) and phenyl ring
planes (of TPE) of 4D from the minimum energy conformations calculated using the
Gaussian 09 suite of programs and the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of
theory.
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State 1: Singlet-A 1.8840 eV 658.09 nm f=0.6572 <S**2>=0.000
State 2: Singlet-A 1.9945 eV 621.62 nm f=0.2443 <S**2>=0.000
State 3: Singlet-A 2.0009 eV 619.64 nm f=0.1084 <S**2>=0.000
State 4: Singlet-A 2.0293 eV 610.96 nm f=0.0011 <S**2>=0.000
State 5: Singlet-A 2.0464 eV 605.87 nm f=1.1266 <S**2>=0.000
State 6: Singlet-A 2.0628 eV 601.06 nm f=0.2650 <S**2>=0.000
State 7: Singlet-A 2.1168 eV 585.72 nm f=0.0148 <S**2>=0.000
State 8: Singlet-A 2.1324 eV 581.42 nm f=0.1331 <S**2>=0.000
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Fig. S3 Theoretical optical absorption transitions and spectrum of 4D.
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Fig. S4 PESA spectrum of thin film of 4D. The dashed-lines show the fits to extract
ionisation potential (-5.53 eV) which corresponds to the HOMO energy level.
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Fig. S5 TGA curve showing thermal stability of 4D.
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Fig. S6 IPCE curve of the best BHJ device based on a blend of P3HT: 4D.

References:

S1D. Srivani, A. Gupta, A. M. Raynor, A. Bilic, J. Li, S. V. Bhosale and S. V. Bhosale, RSC
Adv., 2016, 6, 38703.



