ESI for:

Highly Fluorescent Extended 2-(2'hydroxyphenyl)benzazole Dyes: Synthesis, Optical Properties and First-Principle Calculations

Mohamed Raoui,^a Julien Massue,^{*a} Cloé Azarias,^b Denis Jacquemin^{*b,c} and Gilles Ulrich^{*a}

^a Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Chimie Organique pour les Matériaux, la Biologie et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France.

^b Laboratoire CEISAM, UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 03, France.

^c Institut Universitaire de France, 1 rue Descartes, F-75005 Paris Cedex 05, France.

Contact: massue@unistra.fr, Denis.Jacquemin@univ-nantes.fr gulrich@unistra.fr

S1 General information and equipments

S2 Synthetic protocols

S3¹H and ¹³C NMR Spectra

S4 HRMS traces

S5 Solution-state spectroscopic data

S6 Solid-state spectroscopic data

S7 Lippert-Mataga plot

S8.Fluorescence decay curves

S9 Theoretical protocol and additional results

S10 References

S1 General information and equipments

All reactions were performed under a dry atmosphere of argon using standard Schlenck techniques. All chemicals were received from commercial sources (Aldrich, Alfa Aesar, Acros) and used without further purification. Dichloromethane were distilled over P_2O_5 under an argon atmosphere. Thin layer chromatography (TLC) was performed on silica gel coated with fluorescent indicator. Chromatographic purifications were conducted using 40-63 µm silica gel. All mixtures of solvents are given in v/v ratio.

¹H NMR (400.1 MHz) and ¹³C NMR (100.5 MHz) spectra were recorded on a Bruker Advance 400 MHz spectrometer, ¹H NMR (300.1 MHz) and ¹³C NMR (75.5 MHz) or a Bruker Advance 300 MHz spectrometer with perdeuterated solvents with residual protonated solvent signals as internal references.

Absorption spectra were recorded using a dual-beam grating Schimadzu UV-3000 absorption spectrometer with a 1 cm quartz cell. The steady-state fluorescence emission and excitation spectra were obtained by using a Horiba S2 Jobin Yvon Fluoromax 4. All fluorescence spectra were corrected. Solvents for spectroscopy were spectroscopic grade and were used as received. All fluorescence spectra were corrected.

The fluorescence quantum yield (Φ_{exp}) was calculated from eq (1).

$$\Phi_{exp} = \Phi_{ref} \frac{I}{I_{ref}} \frac{OD_{ref}}{OD} \frac{\eta^2}{\eta^2_{ref}} \quad (eq \ 1)$$

I denotes the integral of the corrected emission spectrum, OD is the optical density at the excitation wavelength, and η is the refractive index of the medium. The reference systems used were: Quinine Φ = 55% in H₂SO₄ 1N, λ_{exc} = 366 nm for dyes emitting below 480 nm, Rhodamine 6G, Φ = 88% in ethanol λ_{exc} = 488 nm for dyes emitting between 480 and 570 nm and cresyl violet, Φ = 55% λ_{exc} = 546 nm in ethanol for dyes emitting above 570 nm.

Luminescence lifetimes were measured on an Edinburgh Instruments spectrofluorimeter equipped with a R928 photomultiplier and a PicoQuant PDL 800-D pulsed diode connected to a GwInstect GFG- 8015G delay generator. No filter was used for the excitation. Emission wavelengths were selected by a monochromator. Lifetimes were deconvoluted with FS-900 software using a light-scattering solution (LUDOX) for instrument response. The excitation source was a laser diode ($\lambda_{exc} = 320$ nm).

2-hydroxy-5-iodobenzaldehyde¹, p-(dibutylamino)phenyl acetylene² and HBO 1^3 were synthesized according to reported procedures.

S2 Synthetic protocols

Scheme S1. Synthesis of E-HBT, E-HBO 1 and E-HBO 2

General procedure for HBO and HBT 1-3:

A mixture of 2-hydroxy-5-iodobenzaldehyde and aminophenol (1 eqt) were refluxed in EtOH for 3 hours. An orange/red precipitate rapidly appeared that was filtered and further washed with EtOH before being redissolved in distilled CH_2Cl_2 . 2,6-dichloro-3,5-dicyano-1,4-benzoquinone (DDQ) (1.2 eqt) was then added by portions and the resulting mixture stirred overnight at room temperature. The solvents were removed *in vacuo* and the crude mixture purified by column chromatography on SiO₂ (CH₂Cl₂/ Ether. Pet. 1:2) to avoid **1-3** as white powders.

82%. ¹H NMR (400MHz, CDCl₃) δ (ppm): 11.14 (s, 1H, OH), 7.98 (s, 1H, CH Ar), 7.63-7.67 (m, 3H, CH Ar), 7.50 (s, 1H, CH Ar), 7.34 (dd, 1H, ${}^{3}J$ =10.8 Hz, ${}^{4}J$ =2.4 Hz, CH Ar). ¹³C NMR (100.5Hz, CDCl₃) δ (ppm): 164.0, 158.8, 150.7, 140.0, 129.1, 127.9, 127.0, 122.9, 122.9, 117.0,

117.0, 111.2, 109.4, 100.8. ESI-HRMS: calcd for $C_{14}H_8F_3INO_2\,405.9546$ (M+H), found 405.9593 (M+H).

25%.¹H NMR (400MHz, CDCl₃) δ (ppm): 12.61 (s, 1H, OH), 7.98 (d, 1H, J=8.4Hz, CH Ar), 7.89 (d, 1H, J=8 Hz, CH Ar), 7.49-7.53 (m, 2H, CH Ar), 7.27-7.44 (m, 3H, CH Ar). ¹³C NMR (75.5Hz, CDCl₃) δ (ppm): 168.6, 158.1,

151.7, 134.1, 132.4, 129.1, 128.7, 127.2, 126.9, 125.8, 122.2, 121.6, 116.4, 98.6. ESI-HRMS: calcd for C₁₃H₉INOS 353.9444 (M+H), found 353.9410 (M+H).

Compound 4⁴

5-(hydroxymethyl)-2-iodophénol (1 eqt) and MnO₂ (15 eqts) were stirred in CH₂Cl₂ at room temperature for three hours. The medium was then filtered on a pad of celite and washed several times with CH₂Cl₂. The filtrate is then evaporated *in vacuo* to lead to compound 4^4 as a white powder (68% yield). ¹H NMR (400MHz, CDCl₃) δ (ppm): 9.92 (s, 1H, CHO), 7.87 (d, 1H, J = 8Hz, CH Ar), 7.44

(d, 1H, ${}^{4}J = 2$ Hz, CH Ar), 7.18 (dd, 1H, ${}^{3}J = 4$ Hz, ${}^{4}J = 2$ Hz, CH Ar), 5.79 (s, 1H, OH). 13 C NMR (75.5Hz, CDCl₃) δ (ppm): 191.3, 155.7, 139.3, 138.4, 123.0, 114.9, 93.7. ESI-HRMS: calcd for C₇H₆IO₂ 248.9407(M+H), found 248.9436 (M+H).

Compound 5

To a solution of compound **4** in toluene was added p-(dibutylamino)phenyl acetylene² (1.2 eqt), $PdCl_2(PPh_3)_2$ (5% mol.) and triethylamine (10 eqts). The resulting suspension was degassed with argon for 30 minutes before CuI (10% mol.) were added. The medium was stirred overnight at room temperature. After cooling

down, the dark solution was taken up in dichloromethane, washed with water, dried (MgSO₄) and the solvents evaporated *in vacuo*. The crude residue was purified by silica gel chromatography eluting with CH₂Cl₂/Pet.Ether 1:1 leading to compound **5** as a beige oil (62% yield). ¹H NMR (400MHz, CDCl₃) δ (ppm): 10.00 (s, 1H, CHO), 7.93 (s, 1H, CH Ar), 7.70-7.72 (m, 3H, CH Ar), 7.55 (d, 1H, *J*=8 Hz, CH Ar), 6.77 (s, 1H, CH benzofuran), 6.68 (d, 2H, *J*=9.2Hz, CH Ar), 3.32 (t, 4H, *J*=8Hz, CH₂), 1.56-1.64 (m, 4H, CH₂), 1.33-1.43 (m, 4H, CH₂), 0.98 (t, 6H, *J*=7.4Hz, CH₃). ¹³C NMR (75.5Hz, CDCl₃) δ (ppm): 191.6, 161.7, 154.2, 149.1, 136.4, 131.9, 127.0, 125.1, 120.0, 116.1, 111.8, 111.4, 97.7, 50.8, 29.5, 20.4, 14.0. ESI-HRMS: calcd for C₂₃H₂₇NO₂ 349.2036 (M), found 349.2046 (M).

Compound 6

Methyltriphenylphosphine bromide (1.5 eqt) was dissolved in anhydrous THF and the resulting mixture was stirred for five minutes at -78 °C. *n*-BuLi 1.6M (1.5 eqt) was added dropwise at this temperature and the medium further stirred for one hour. A

concentrated solution of compound **5** in THF was then added dropwise. After stirring one hour at -78 °C, the medium was allowed to stir at room temperature overnight. The crude solution was then extracted with dichloromethane, washed with water, dried (MgSO₄) and the solvents evaporated *in vacuo*. The crude oil was purified by silica gel chromatography eluting with CH₂Cl₂/Pet.Ether 2:1 leading to compound **6** as a yellow powder (65% yield). ¹H NMR (400MHz, CDCl₃) δ (ppm): 7.75 (d, 2H, *J*=8.8Hz, CH Ar), 7.59 (s, 1H, CH Ar), 7.48 (d, 1H, *J*=8Hz, CH Ar), 7.33 (dd, 1H, ³*J*=8.2Hz, ⁴*J*=1.2Hz CH Ar), 6.84-6.91 (m, 1H,CH Ar), 6.77 (s, 1H, CH benzofuran), 6.73 (d, 2H, *J*=8.8Hz, CH Ar), 5.83 (d, 1H, *J*=17.6Hz, CH=CH), 5.27 (d, 1H, *J*=10.8Hz, CH=CH), 3.36 (t, 4H, *J*=7.6Hz, CH₂), 1.61-1.69 (m, 4H, CH₂), 1.38-1.47 (m, 4H, CH₂), 1.03 (t, 6H, *J*=7.2Hz, CH₃). ¹³C NMR (75.5Hz, CDCl₃) δ (ppm): 157.0, 154.0, 147.4, 136.3, 132.1, 128.9, 125.3, 120.4, 116.7, 116.3, 111.2, 110.5, 107.1, 96.6, 49.7, 28.4, 19.3, 13.0. ESI-HRMS: calcd for C₂₄H₃₀NO 348.2322 (M+H), found 348.2349 (M+H).

General procedure for E-HBO 1, E-HBO 2, E-HBT

The appropriate compounds 1-3 (1 eqt) and compound 6 (1 eqt) were dissolved in a mixture of DMF, N,N-diisopropylethylamine and H₂O (10/0.3/0.3 v:v). $P(^{\circ}$ -tolyl)₃ (20% mol) was then added in the medium which was degassed with Ar for 30 minutes. $Pd(oAc)_2$ (5% mol) was then added and the resulting mixture was stirred at 120 °C overnight. The crude medium was then extracted with dichloromethane, washed with water, dried (MgSO₄) and the solvents evaporated *in vacuo*. The crude oil was purified by silica gel chromatography eluting with CH₂Cl₂/Pet.Ether leading to -HBO 1, E-HBO 2 or E-HBT as yellow to orange powders.

E-HBO 1

yellow powder. 20%. ¹H NMR (400MHz, CDCl₃) δ (ppm): 11.40 (s, 1H, OH), 7.99 (d, 1H, *J*=8.4Hz, CH Ar), 7.69-7.73 (m, 3H, CH Ar), 7.64 (s, 1H, CH Ar), 7.59-7.61 (m, 1H, CH Ar), 7.46-7.49 (m, 1H, CH Ar), 7.36-7.40 (m, 3H, CH Ar), 7.32 (d, 1H, *J*=16Hz, CH=CH), 7.26 (s, 1H, CH Ar), 7.19 (d, 1H, *J*=8.4Hz, CH Ar), 7.10 (d, 1H,

J=16Hz, CH=CH), 6.75 (s, 1H, CH benzofuran), 6.69 (d, 2H, *J*=8.2Hz, CH Ar), 3.33 (t, 4H, *J*=7.7Hz, CH₂), 1.58-1.65 (m, 4H, CH₂), 1.34-1.44 (m, 4H, CH₂), 0.99 (t, 6H, *J*=7.7Hz, CH₃). ¹³C NMR (75.5Hz, CDCl₃) δ (ppm): 162.9, 158.9, 155.1, 149.2, 148.6, 143.1, 140.2, 133.6, 132.2, 132.0, 130.6, 127.3, 126.5, 126.2, 125.2, 125.0, 122.3, 120.0, 119.1, 118.0, 117.2, 114.6, 111.5, 110.6, 109.3, 108.7, 97.8, 50.8, 29.5, 20.4, 14.0. ESI-HRMS: calcd for C₃₇H₃₇N₂O₃ 557.2799 (M+H), found 557.2792 (M+H).

E-HBO 2

Orange powder. 13%. ¹H NMR (400MHz, CDCl₃) δ (ppm) : 11.10 (s, 1H, OH), 7.92 (d, 2H, J = 8.6Hz, CH Ar), 7.57-7.64 (m, 5H, CH Ar), 7.40 (d, 1H, J = 8.5 Hz, CH Ar), 7.37 (d, 1H, J = 8.2 Hz, CH Ar), 7.29 (d, 1H, J = 8.2Hz, CH Ar), 7.24 (d, 1H, J = 16.1 Hz, CH=CH), 7.14 (d, 1H, J = 8.2 Hz,

CH Ar), 7.02 (d, 1H, J = 16.1 Hz, CH=CH), 6.68 (s, 1H, CH benzofuran), 6.62 (d, 2H, J = 8.2 Hz, CH Ar), 3.26 (t, 4H, J = 7.7 Hz, CH₂), 1.50-1.58 (m, 4H, CH₂), 1.27-1.36 (m, 4H, CH₂), 0.91 (t, 6H, J = 7.7 Hz, CH₃). ¹³C NMR (75.5Hz, CDCl₃) δ (ppm) : 164.6, 159.2, 158.6, 155.0, 150.8, 148.6, 143.9, 140.5, 132.5, 132.0, 130.7, 129.2, 128.0, 127.5, 127.1, 126.4, 125.9, 122.4, 120.0, 118.1, 117.1, 114.8, 111.5, 111.2, 111.0, 108.8, 108.5, 97.7, 50.8, 29.5, 20.4, 14.0. ESI-HRMS: calcd for C₃₈H₃₆F₃N₂O₃ 625.2673(M+H), found 625.2648(M+H).

E-HBT

Orange powder. 15%. ¹H NMR (300MHz, CDCl₃) δ (ppm) : 12.53 (s, 1H, OH), 7.98 (d, 1H, J = 6 Hz, CH Ar), 7.89 (d, 1H, J = 5.7 Hz, CH Ar), 7.70 (d, 2H, J = 6.6 Hz, CH Ar), 7.65 (d, 2H, J = 6.3 Hz, CH Ar), 7.47-7.53 (m, 2H, CH Ar), 7.38-7.42 (m, 2H, CH Ar), 7.31 (d, 1H, J = 12 Hz, CH=CH), 7.25 (d, 1H, J = 6 Hz, CH Ar),

7.12 (d, 1H, J = 6 Hz, CH Ar), 7.08 (d, 1H, J = 12 Hz, CH=CH), 6.75 (s, 1H, CH benzofuran), 6.70 (d, 2H, J = 6.6 Hz, CH Ar), 3.33 (t, 4H, J = 5.7 Hz, CH₂), 1.56-1.65 (m, 4H, CH₂), 1.33-1.43 (m, 4H,

CH₂), 0.98 (t, 6H, J = 5.4 Hz, CH₃). ¹³C NMR (75.5Hz, CDCl₃) δ (ppm) :169.1, 158.5, 158.2, 155.0, 152.0, 148.5, 142.3, 132.6, 132.2, 131.8, 130.5, 128.7, 126.7, 126.4, 126.1, 125.4, 122.3, 122.1, 121.5, 120.0, 118.0, 117.2, 115.8, 115.0, 111.5, 108.7, 97.7, 50.8, 29.5, 20.4, 14.0. ESI-HRMS: calcd for C₃₇H₃₇N₂O₂S 573.2570 (M+H), found 573.2496 (M+H).

шdd	191,571			 	119,966 116,142 111,753 111,440	97,726	77,462 77,141 76,824	50,763	 14,040
		0 							
		H	5	JBu₂					
							1		
ppm	190			 10 130					

S4 HRMS traces

Mass Spectrum Molecular Formula Report

Analysis Analysis	s Info Name [D:\Data\S	Service r	nasse 201	5\037883SI	K.d	∼_s	š→_{	\frown	I	Acquisition Date	11/27/2015 4:08:1	8 PM
Method Sample Comme	e Name M nt	esi low p MR11	os.m				3	но	/		Operator Instrument	Administrator micrOTOF	66
Acquisi	tion Parameter										Set Corrector Fill	74 V	
Source Ty Scan Ran Scan Beg Scan End	ype nge jin I	ESI n/a 50 m/z 3000 m/z			lon Pol Capilla Hexapo Skimmo Hexapo	arity ry Exit ble RF er 1 ble 1	F 8 6 5 2	Positive 30.0 V 50.0 V 50.0 V 24.3 V			Set Pulsar Pull Set Pulsar Push Set Reflector Set Flight Tube Set Detector TOF	817 V 810 V 1700 V 8600 V F 2275 V	
Intens.3												+MS	0.1-0.2min #(9-13)
x10 ⁵ 1.25				353.9410 ∬									,
1.00				Λ									
0.75													
0.25				1		354.9436			355,938	4			
0.00 x105												C 13 H 9 I 1 I	N101S1 ,353.94
1 25				353.9444									
1.00-				Λ									
0.75				1									
0.50				1									
0.25						354.9474							
0.00				\neg		$- \Lambda$			355.942	4			
	35	53		354		355			356		357	358	m/z
	Sum F	ormula	Sigma	m/z	Err [ppm]	Mean Err (p	pm]	rdb	N Rule	e ⁻			
	C 13 H 9 I 1 N 1 (0181	0.03	353.9444	9.74		9.96	9.50	ok	even			
		101	0.70	302.9300	-3.64	-	0.01	10.00	-	ouu			

Bruker Daltonics DataAnalysis 3.3	printed:	11/16/2015	11:09:27 AM	Page 1 of 1

Dye	λ _{abs} (nm)	Е (M ⁻¹ .cm ⁻¹)	λ _{em} (nm)	Δ_{SS} (cm ⁻¹)	$\Phi_{\rm F}{}^{\rm [b]}$	τ (ns)	$\frac{K_r}{(10^8 s^{-1})}$	K_{nr} (10 ⁸ s ⁻¹)	Solvent
E-HBO1	414	49100	488	3600	0.85	1.2	7.08	1.25	cyclohexane
	418	51000	514	4400	0.75	1.3	5.77	1.92	toluene
	417	50000	592	6900	0.69	2.2	3.14	1.41	CH_2Cl_2
	386	60100	451	3700	0.56	0.9	6.22	4.89	$CH_2Cl_2 + HCl_g$
	412	58400	640	8400	0.41	2.1	1.95	2.81	Acetone
	412	41900	611	7700	0.40	1.5	2.67	4.00	EtOH
	416	55800	666	9000	0.20	1.6	1.25	5.00	CH ₃ CN
	426	41300	670	8600	0.18	1.5	1.20	5.47	DMSO
E-HBO2	423	31000	502	3700	0.91	1.3	7.00	0.69	cyclohexane
	423	38500	526	4900	0.80	1.5	5.33	1.33	toluene
	422	36000	619	7300	0.70	2.4	2.92	1.25	CH_2Cl_2
	387	50200	456	3700	0.52	0.9	6.56	4.56	$CH_2Cl_2 + HCl_g$
	418	37200	670	8900	0.16	2.4	0.67	3.5	Acetone
	416	25400	643	8300	0.18	1.0	1.80	8.20	EtOH
	426	36200	650	8100	0.12	0.6	2.00	14.7	DMSO
E-HBT	420	31800	496	3600	0.92	1.2	7.67	0.67	cyclohexane
	424	56000	521	4400	0.87	1.4	6.21	0.93	toluene
	423	63500	609	7100	0.67	2.4	2.79	1.38	CH_2Cl_2
	394	47200	461, 527	3500	0.16	1.0	1.07	5.60	$CH_2Cl_2 + HCl_g$
	418	40200	659	8700	0.26	1.6	1.63	4.63	Acetone
	416	28500	618	7800	0.12	1.4	0.86	6.29	EtOH
	416	53100	693	9400	0.09	0.9	1.00	10.01	CH ₃ CN

Table S1. Photophysical data in solution at room temperature

λ (nm)

S6 Solid-state spectroscopic data

S7 Lippert-Mataga plot

Figure S1. Lippert-Mataga plot for E-HBO 1(blue), E-HBO 2 (green) and E-HBT (red)

The Stokes shift Δ_{SS} (cm⁻¹) was plotted against the orientation polarizability Δf for the different solvents listed in Table S1.

 Δf is obtained for each solvent using the following equation:

$$\Delta f = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}$$

where ε is the dielectric constant and n is the refractive index of the solvent.⁵

The Lippert-Mataga equation⁶ can be used to correlate the energy difference between absorption (hv_{abs}) and emission (hv_{em}), also known as Stokes' shift (Δ_{SS}), with solvent polarity represented by Δf . The Lippert-Mataga relation is based on the assumption that the energy difference is only proportional to the solvent orientation polarizability (known as the general solvent effect).

The Lippert-Mataga equation is as follow:

$$\Delta_{SS} = v_{abs} - v_{em} = \frac{2 \Delta \mu^2}{hc a^3} \left(\frac{\epsilon - 1}{2\epsilon + 1} - \frac{n^2 - 1}{2n^2 + 1} \right) + \text{ constant}$$

where v_{abs} and v_{em} are the wavenumbers (cm⁻¹) corresponding to the absorption and the emission, respectively, h is Planck's constant, c is the speed of light, and a is the Onsager radius of the solvent cavity in which the fluorophore resides. From this equation, it can be deducted:

Slope =
$$\frac{2 \Delta \mu^2}{hc a^3}$$

where $\Delta \mu$ is the dipole moment difference between the ground and excited states.

Based on the assumption that the Onsager cavity radius a equals 5.3 Å, which is half of the optimized distance between the two farthest atoms of the molecule in the direction of charge separation $(10.61 \text{ Å})^7$ and on the slopes determined on Fig.S1, $\Delta\mu$ can be estimated for each probe; 15.3 D for **E-HBO1**, 14.9 D for **E-HBO2** and 15.5 D for **E-HBT**, which is in the range of values reported for similar solvatochromic structures (3-20D).⁸

S8.Fluorescence decay curves

Fluorescence decay curves of **E-HBT**, **E-HBO 1** and **2** are presented below (reference in blue, decay in yellow and fit in purple)

S9 Theoretical calculations

Computational details

The structures and vibrational frequencies of all molecules have been obtained with (TD-) DFT and the total and transition energies with ADC(2) whereas the solvent effects were determined with the Polarizable Continuum Model (PCM).⁹ The different properties (P), except when noted below, were obtained as,

P = P(Gas, ADC) + P(PCM, TD) - P(Gaz, TD)

For all (TD-)DFT calculations, we have used the Gaussian09.D01 program,¹⁰ applying default thresholds and algorithms, except for the following: we have tightened both the self-consistent field (10^{-10} a.u.) and geometry optimization (10^{-5} a.u.) convergence thresholds, as well as used a (99,590) pruned integration grid (so-called *ultrafine* grid). These (TD-)DFT calculations were made with Zhao and Truhlar's M06-2X meta-GGA hybrid exchange-correlation functional,¹¹ a choice justified by previous works showing that M06-2X is suited for both optical spectra and ESIPT.¹¹⁻¹⁸ Following Ref. 12, we determine the geometrical and vibrational parameters with the 6-31G(d) atomic basis set, whereas the total and transition energies are computed with 6-311+G(2d,p), so that all energies present in the main text are corrected for basis-set effects. For each molecule, both the ground state (GS) and first excited state (ES) have been fully optimized using DFT/TD-DFT analytical gradients and considering both the *enol* and *keto* forms of each compound. The nature of all structures was confirmed by analytical (GS) or numerical (ES) Hessian calculations that returned 0 (minima) imaginary vibrational modes.

Environmental effects (here: cyclohexane, dichloromethane and acetone) have been accounted for using the well-known PCM,⁹ as implemented in Gaussian09.¹⁰ While geometry optimizations and Hessian calculations have been performed with the popular linear-response (LR) PCM approach for both GS and ES, all transitions energies have been determined with the more accurate corrected-LR (cLR) approach.¹⁹ cLR is indeed necessary to obtain valuable emission energies. Of course, although we applied the *equilibrium* limit for optimization and vibrational whereas both absorption and fluorescence wavelengths were corrected for *nonequilibrium* effects.

The gas phase ADC(2) total and transition energies determined on the (TD-)DFT structures have been obtained with the Turbomole code.²⁰ These ADC(2) calculations relied on the so-called ADC(2)-s formalism²¹ and were obtained with the resolution of identity technique.^{22,23} For all ADC(2) calculations, we have used the *aug*-cc-pVDZ atomic basis set.

Vibrationally resolved spectra have been obtained using the FCclasses program.²⁴ The Franck-Condon approximation has been applied as we obviously consider only strongly dipole-allowed ES.^{25,26} The reported spectra have been simulated by using convoluting Gaussian functions that represent a half width at half-maximum (HWHM) that has been applied to allow accurate comparisons with experimental results. A maximum number of 25 overtones for each mode and 20 combination bands on each pair of modes were included in

the calculation. The number of integrals (10^{12}) to be computed for each class was set to allow convergence of the FC factor (> 0.9). Note that the experimental absorption and emission bands have been renormalized to obtain band shapes and allow direct theory-experiment comparisons. We redirect the reader to Ref. 27 for more details about the procedure.

The density variation plots have been obtained through the difference in total densities of the first ES and GS. To quantify charge transfer (CT) in the dyes, we used Le Bahers' model,^{28,29} which determines the distance between the barycenters of density gain/depletion. This model provides a CT distance expressed in Angstrom, and we applied a home-made code for it.³⁰

The charges have been computed using the Merz-Kollman³¹ approach at the M06-2X/6-311+G(2d,p) level.

All compounds have been modeled by replacing the NBu_2 by NMe_2 groups for the sake of computational efficiency.

Assessment of the most stable isomer in the ground-state (performed at the TD-DFT level - no ADC correction)

We first assessed the most stable rotamer, considering the **E-HBO 1** molecule. The *enol* GS energies of the four possible *trans* rotamers (see figure S2) have been computed and we found that they differ by 0.02-0.03 eV only, the most stable being the 0-0 form of figure S2. For this rotamer, we computed the corresponding *cis* isomer and found that, the formation of the latter is clearly impossible in the GS (the energy difference between both reaching 0.19 eV). Considering the *trans* isomer, we also assessed the possible GS formation of the *keto* (K) and the *enol*' (E') forms (see Scheme S3). One clearly notices that starting with the most stable E isomer, both K and E' forms cannot be reached thermally as the barriers for attaining these structures are 0.54 and 0.56 eV, respectively. The only existing form in the GS is therefore canonical *trans* enol and the photophysical processes start with absorption of light by this form, as one could expect. We note that all the *trans* rotamers absorbs at the same energy (3.23 ± 0.02 eV) and all the following calculations have been performed on the 0-0 form.

Figure S2. Possible rotamers of E-HBO 1

Figure S3. Possible isomers of a typical ESIPT dye.

Cartesian coodinates of the enol and keto structures considered in this paper

The Cartesian coordinates (Å) of all the structures [at the PCM-M06-2X/6-31G(d)] in both the ground and excited state in different solvent conditions are reported below for the enol (\mathbf{E} -) and keto (\mathbf{K} -) forms of the **HBO 1**, **HBO 2** and **HBT** species. For all compounds, we report the DFT or TD-DFT *G* energies at the same level of theory. Note that the values within text are further corrected with ADC(2) energy differences.

Coordinates for HBO 1:

Enol-HBO 1	ground-state s	structure in	cyclohexane	G	-1529.905536 au
------------	----------------	--------------	-------------	---	-----------------

6	-5.284954	1.509918	0.005222
6	-5.602453	0.135336	0.003794
6	-6.989799	-0.278912	0.003314
6	-8.641734	-1.672139	0.001993
6	-9.451373	-2.794231	0.000983
6	-10.821814	-2.545213	0.001130
6	-11.333387	-1.237301	0.002229
6	-10.498591	-0.125242	0.003233
6	-9.124834	-0.362295	0.003104
1	-9.041476	-3.797354	0.000142
1	-11.510403	-3.383557	0.000375
1	-10.889763	0.885986	0.004079
8	-7.274533	-1.609102	0.002129
7	-8.032888	0.500411	0.003928
8	-6.212446	2.480235	0.006073
6	-4.561015	-0.808041	0.003106
6	-3.942458	1.895480	0.005813
6	-3.240695	-0.414228	0.003692
1	-4.816737	-1.862680	0.002300
1	-3.724237	2.959063	0.006858
1	-7.109213	2.073142	0.005537
1	-2.462550	-1.168674	0.003731
6	-1.528501	1.450204	0.005307
1	-1.435697	2.534222	0.010685
6	-0.420124	0.691827	-0.001011
1	-0.523342	-0.392049	-0.007700
6	-2.910177	0.957981	0.004860
6	0.967710	1.163650	-0.000651
6	1.987677	0.205084	-0.012271
6	1.308561	2.538142	0.011006
6	3.294244	0.660045	-0.011931
1	1.764585	-0.857100	-0.021416
6	2.621633	2.971223	0.011093
1	0.517043	3.279948	0.020564
6	3.649934	2.015895	-0.000589
1	2.850844	4.032018	0.020296
1	-12.408845	-1.093756	0.002293
8	4.411020	-0.117034	-0.022150
6	5.489445	0.732630	-0.017445
6	5.085320	2.034987	-0.004717
1	5.726376	2.904129	-0.000100
6	6.803267	0.106768	-0.027204
6	6.947014	-1.285264	-0.049835
6	7.968727	0.883038	-0.008675
6	8.197435	-1.880847	-0.058168
1	6.060809	-1.911279	-0.057291
6	9.224135	0.302728	-0.017048
1	7.895018	1.966631	0.017531
6	9.374632	-1.102056	-0.051387

1	8.256931	-2.962131	-0.069257
1	10.094684	0.946502	0.004842
7	10.620733	-1.686421	-0.081495
6	11.796092	-0.862177	0.112522
1	11.785750	-0.341783	1.080815
1	12.683599	-1.493524	0.069252
1	11.882084	-0.110162	-0.679478
6	10.732893	-3.122948	0.068179
1	10.221494	-3.642604	-0.749478
1	11.785840	-3.402517	0.033551
1	10.309112	-3.477453	1.018549

Keto-HBO 1 ground-state structure in cyclohexane G -1529.883855 au

\sim	I ground state s	diactare in eyere	mentane o 15E
6	5.3096800	-1.4660180	0.1940590
6	5.5708390	-0.0510580	-0.0167520
6	6.9071320	0.3528810	0.0034640
6	8.6962760	1.6154000	-0.0859840
6	9.5583810	2.6854060	-0.2034930
6	10.9162920	2.3888360	-0.0689360
6	11.3599390	1.0833620	0.1699090
6	10.4727940	0.0135200	0.2858940
6	9.1234540	0.3097600	0.1520020
1	9.1959890	3.6894930	-0.3884700
1	11.6416780	3.1906000	-0.1519710
1	10.8159160	-0.9976480	0.4705310
8	7.3201210	1.6229210	-0.1751610
7	7.9620200	-0.4489070	0.2003430
8	6.2237300	-2.3126340	0.3892620
6	4.5124270	0.8743320	-0.2372550
6	3.9176690	-1.8348330	0.1642550
6	3.2159280	0.4598070	-0.2528380
1	4.7592960	1.9203060	-0.3968850
1	3.6952230	-2.8865550	0.3208720
1	2.4237120	1.1763160	-0.4331520
6	1.5224040	-1.4184250	-0.0446910
1	1.4269450	-2.4968480	0.0649570
6	0.4153000	-0.6648590	-0.1474460
1	0.5166200	0.4160090	-0.2254760
6	2.9049060	-0.9273020	-0.0436120
6	-0.9714900	-1.1419420	-0.1477610
6	-1.9961770	-0.1892700	-0.1113030
6	-1.3055030	-2.5175620	-0.1858540
6	-3.3003720	-0.6514120	-0.1022140
1	-1.7784320	0.8737820	-0.0857910
6	-2.6163480	-2.9578820	-0.1772030
I	-0.5095700	-3.2531360	-0.2347230
6	-3.6492070	-2.0086810	-0.1319840
1	-2.8401870	-4.0193930	-0.2103250
I	12.4238180	0.8962240	0.2678060
8	-4.4210810	0.1196100	-0.0653870
6	-5.4951260	-0.7356490	-0.0715070
6	-5.0847270	-2.0352070	-0.1119160
I	-5.7215190	-2.9074010	-0.1269960
6	-6.8120000	-0.1166630	-0.0352470
6	-6.9625280	1.2/45/00	-0.0122160
6	-/.9/33410	-0.8989490	-0.0164570
0	-8.2156440	1.8636740	0.0241060
	-0.0/94590	1.9050090	-0.0188/60
6	-9.2313330	-0.3250040	0.0193980
	-/.8941890	-1.9824520	-0.0247270

6	-9.3888340	1.0792030	0.0315220
1	-8.2800990	2.9444760	0.0477500
1	-10.0982490	-0.9737380	0.0397920
7	-10.6384820	1.6582430	0.0455130
6	-11.8041010	0.8225690	0.2495040
1	-11.7653550	0.2767970	1.2031100
1	-12.6955440	1.4499110	0.2464080
1	-11.9077300	0.0913420	-0.5595550
6	-10.7524610	3.0877600	0.2509330
1	-10.2590910	3.6391160	-0.5568730
1	-11.8068450	3.3641530	0.2468440
1	-10.3111370	3.4089750	1.2052650
1	7.7359060	-1.4520520	0.3475130

Enol-HBO 1 excited-state structure in cyclohexane G -1529.794583 au

6	5.269350	-1.534870	-0.000026
6	5.608182	-0.144347	-0.000006
6	6.973931	0.257943	-0.000003
6	8.637661	1.649962	0.000015
6	9.451446	2.766513	0.000030
6	10.824977	2.516631	0.000025
6	11.331005	1.207946	0.000005
6	10.492865	0.097145	-0.000010
6	9.116082	0.332140	-0.000005
1	9.043487	3.770689	0.000045
1	11.514917	3.353988	0.000036
1	10.882889	-0.914667	-0.000026
8	7.272953	1.595696	0.000016
7	8.033487	-0.524551	-0.000016
8	6.211071	-2.497948	-0.000042
6	4.556890	0.807141	0.000012
6	3.943670	-1.913322	-0.000028
6	3.243532	0.423890	0.000009
1	4.818249	1.860520	0.000029
1	3.718930	-2.975762	-0.000044
1	7.102206	-2.077472	-0.000038
1	2.471060	1.184601	0.000028
6	1.544136	-1.417367	-0.000015
1	1.420850	-2.497976	-0.000023
6	0.403319	-0.619598	-0.000013
1	0.530195	0.460334	-0.000025
6	2.885634	-0.963773	-0.000012
6	-0.936695	-1.070728	-0.000001
6	-1.994982	-0.107922	-0.000014
6	-1.289737	-2.471083	0.000026
6	-3.278052	-0.573025	-0.000001
1	-1.777235	0.954661	-0.000033
6	-2.584946	-2.908061	0.000038
1	-0.493169	-3.206256	0.000041
6	-3.634865	-1.949786	0.000024
1	-2.812641	-3.968983	0.000059
1	12.406293	1.060365	0.000001
8	-4.410303	0.192678	-0.000010
6	-5.479117	-0.666550	0.000009
6	-5.036927	-1.987152	0.000028
1	-5.669124	-2.863417	0.000044
6	-6.782501	-0.092140	0.000005
6	-6.966351	1.308999	-0.000013
6	-7.939335	-0.904555	0.000019
6	-8.224573	1.866825	-0.000018

1	-6.094760	1.954610	-0.000022
6	-9.201022	-0.358390	0.000014
1	-7.836733	-1.985565	0.000034
6	-9.386599	1.050778	-0.000006
1	-8.317289	2.945727	-0.000029
1	-10.057641	-1.020660	0.000026
7	-10.634551	1.597726	-0.000012
6	-11.805754	0.740865	0.000007
1	-11.831470	0.100265	0.889662
1	-12.700289	1.362060	-0.000006
1	-11.831470	0.100229	-0.889621
6	-10.796019	3.039987	-0.000024
1	-10.341121	3.491909	-0.889535
1	-11.858562	3.278668	-0.000030
1	-10.341126	3.491926	0.889482

Keto-HBO 1 excited-state structure in cyclohexane G -1529.774607 au

6	5.297778	-1.481580	-0.000001
6	5.570952	-0.033288	0.000008
6	6.905114	0.356019	0.000005
6	8.716286	1.593116	-0.000001
6	9.599291	2.651511	-0.000002
6	10.957962	2.317380	-0.000011
6	11.380443	0.984309	-0.000017
6	10.474919	-0.077407	-0.000016
6	9.123883	0.252518	-0.000007
1	9.252167	3.677937	0.000003
1	11.696756	3.111353	-0.000012
1	10.803594	-1.109983	-0.000021
8	7.342649	1.642024	0.000007
7	7.960437	-0.484465	-0.000002
8	6.243392	-2.334346	-0.000010
6	4.509413	0.919209	0.000017
6	3.931076	-1.835181	-0.000001
6	3.210361	0.511930	0.000018
1	4.757445	1.976935	0.000022
1	3.701728	-2.897073	-0.000010
1	2.419489	1.253241	0.000023
6	1.536570	-1.346942	0.000006
1	1.418609	-2.428516	-0.000001
6	0.391995	-0.561797	0.000011
1	0.504410	0.519588	0.000015
6	2.883864	-0.895059	0.000009
6	-0.946455	-1.029459	0.000012
6	-2.012726	-0.078855	0.000007
6	-1.284218	-2.431745	0.000014
6	-3.292397	-0.556997	0.000004
1	-1.806257	0.986025	0.000007
6	-2.575692	-2.882513	0.000011
1	-0.480447	-3.158969	0.000018
6	-3.634623	-1.935963	0.000004
1	-2.791710	-3.945893	0.000012
1	12.443439	0.766969	-0.000024
8	-4.431788	0.197407	0.000000
6	-5.491974	-0.672517	-0.000004
6	-5.038215	-1.987101	0.000000
1	-5.661608	-2.869606	-0.000001
6	-6.802186	-0.108776	-0.000007
6	-6.998317	1.289747	0.000000
6	-7.950949	-0.931007	-0.000018

6	-8.261997	1.836690	0.000000
1	-6.132603	1.943263	0.000006
6	-9.218088	-0.396021	-0.000019
1	-7.838778	-2.011104	-0.000028
6	-9.416263	1.010797	-0.000007
1	-8.364156	2.914768	0.000003
1	-10.068617	-1.066156	-0.000031
7	-10.669926	1.546890	-0.000005
6	-11.832733	0.679295	-0.000010
1	-11.852784	0.038160	0.889520
1	-12.733180	1.291984	0.000007
1	-11.852799	0.038189	-0.889562
6	-10.843792	2.987329	0.000011
1	-10.392875	3.443643	-0.889405
1	-11.908405	3.216967	0.000024
1	-10.392859	3.443623	0.889429
1	7.676146	-1.498859	-0.000009

Enol-HBO 1 ground-state structure in dichloromethane G -1529.912473 au

-	0		
6	5.2847610	-1.5083650	0.0065800
6	5.6027680	-0.1340330	0.0033600
6	6.9909510	0.2800720	0.0027650
6	8.6445730	1.6710340	0.0000000
6	9.4546810	2.7931480	-0.0023340
6	10.8250480	2.5423640	-0.0014230
6	11.3359350	1.2335560	0.0016520
6	10.5004200	0.1217010	0.0039700
6	9.1266090	0.3608030	0.0031000
1	9.0462510	3.7968360	-0.0046920
1	11.5142460	3.3801040	-0.0031360
1	10.8919720	-0.8894350	0.0063420
8	7.2766420	1.6086590	-0.0002000
7	8.0328920	-0.5008900	0.0048070
8	6.2152220	-2.4786280	0.0091470
6	4.5614090	0.8092870	0.0008570
6	3.9430190	-1.8952630	0.0071480
6	3.2404130	0.4151410	0.0014110
1	4.8154390	1.8643090	-0.0014640
1	3.7228610	-2.9585990	0.0096250
1	7.1114500	-2.0683420	0.0083790
1	2.4630850	1.1704260	-0.0003050
6	1.5283540	-1.4499790	0.0049770
1	1.4355080	-2.5339960	0.0099840
6	0.4210010	-0.6892170	-0.0006640
1	0.5241570	0.3945990	-0.0063900
6	2.9101360	-0.9570210	0.0044670
6	-0.9670720	-1.1615400	-0.0005290
6	-1.9868110	-0.2017060	-0.0096480
6	-1.3077720	-2.5365200	0.0082530
6	-3.2933090	-0.6574690	-0.0097100
1	-1.7625330	0.8603070	-0.0165300
6	-2.6213820	-2.9697520	0.0079710
1	-0.5168940	-3.2791040	0.0156400
6	-3.6494570	-2.0135570	-0.0012620
1	-2.8510220	-4.0304070	0.0148700
1	12.4112170	1.0892730	0.0022360
8	-4.4109630	0.1194360	-0.0178110
6	-5.4900520	-0.7311900	-0.0146380
6	-5.0850980	-2.0338000	-0.0048870
1	-5.7249610	-2.9039860	-0.0013620

6	-6 8038090	-0 1056760	-0.0225260
6	6 9/95080	1 2871470	0.0366450
0	7 9692700	0.8840310	0.0111600
0	-7.9092700 8.2003300	1 8810880	0.0432650
0	-8.2003300	1.0019000	0.0200040
	-0.0031130	0.2052510	-0.0390940
0	-9.2255200	-0.3052510	-0.0178900
I	-7.8952480	-1.90//900	0.0072510
0	-9.3/82090	1.1011/80	-0.0425680
1	-8.2610290	2.9632720	-0.0480620
1	-10.0951770	-0.9501550	-0.0023190
1	-10.6215510	1.6825890	-0.0689910
6	-11.8015710	0.8548270	0.0887980
1	-11.8026450	0.3133580	1.0447580
1	-12.6869800	1.4886750	0.0502130
1	-11.8778540	0.1205560	-0.7207000
6	-10.7388170	3.1218930	0.0612950
1	-10.2316050	3.6336970	-0.7639860
1	-11.7927320	3.3963260	0.0287110
1	-10.3126910	3.4877580	1.0055620
Keto-HBO 1	ground-state st	tructure in dichle	oromethane G -1529.893473 au
6	5.3158600	-1.4908410	0.1267590
6	5.5753010	-0.0692350	-0.0097650
6	6.9151060	0.3405640	0.0036710
6	8.6876490	1.6270940	-0.0551980
6	9.5342080	2.7138420	-0.1326100
6	10.8971420	2.4251100	-0.0437350
6	11.3607780	1.1129190	0.1137240
6	10.4891480	0.0273110	0.1898030
6	9.1343090	0.3167260	0.1011160
1	9.1578420	3.7223310	-0.2544260
1	11 6121560	3 2384730	-0.0981780
1	10.8460140	-0 9884640	0.3115060
8	7 3087980	1 6204280	-0 1134230
7	7.9802000	-0.4569770	0.1324710
8	6 2335560	2 3501170	0.2541380
6	0.2353500	-2.3301170	0.151/800
0	4.3104740	1 9544920	0.1071050
0	3.9232110	-1.6344620	0.1615210
0	3.2138400 4.7624270	1.0217860	0.2522060
1	4.7024270	2.0128540	-0.2332900
1	5.09/9460 2.4227020	-2.9126340	0.2076400
	2.4237030	1.1090430	-0.2730920
0	1.3233090	-1.4207060	-0.0273170
	1.4294510	-2.30/8030	0.0542010
0	0.4137190	-0.0701100	-0.1034230
I	0.5162460	0.4118300	-0.16/4940
0	2.9001330	-0.9348260	-0.0273270
6	-0.9/15250	-1.1469620	-0.1037850
6	-1.9950600	-0.1914670	-0.0839810
6	-1.30/22/0	-2.5230460	-0.1218910
6	-3.2998290	-0.6524/50	-0.0739860
l	-1.//50430	0.8/14310	-0.0/31240
6	-2.6191880	-2.9616530	-0.1125660
1	-0.5131920	-3.2617270	-0.1516400
6	-3.6508340	-2.0098020	-0.0860020
1	-2.8446820	-4.0231280	-0.1290070
1	12.4285380	0.9342960	0.1784370
8	-4.4204340	0.1201600	-0.0521150
6	-5.4963000	-0.7346650	-0.0499590
6	-5.0865780	-2.0354760	-0.0704780

1	-5.7232510	-2.9080170	-0.0747800
6	-6.8123890	-0.1140960	-0.0271580
6	-6.9632820	1.2781700	-0.0184490
6	-7.9747440	-0.8968520	-0.0078550
6	-8.2162210	1.8682890	0.0045870
1	-6.0812750	1.9103900	-0.0263270
6	-9.2328410	-0.3227500	0.0149380
1	-7.8965490	-1.9804860	-0.0062520
6	-9.3911010	1.0832070	0.0134040
1	-8.2807710	2.9492940	0.0168100
1	-10.0999650	-0.9711870	0.0357750
7	-10.6370530	1.6604710	0.0161160
6	-11.8105230	0.8261780	0.1879490
1	-11.7905670	0.2735020	1.1373320
1	-12.6989170	1.4569080	0.1742560
1	-11.9002050	0.1012050	-0.6284550
6	-10.7565070	3.0966960	0.1754210
1	-10.2637740	3.6253010	-0.6479690
1	-11.8116180	3.3682830	0.1640530
1	-10.3167560	3.4464550	1.1196150
1	7.7886460	-1.4677190	0.2296200

Enol-HBO 1 excited-state structure in dichloromethane G -1529.807042 au

6	-5.268894	-1.535668	-0.000001
6	-5.608374	-0.145469	-0.000001
6	-6.973721	0.257445	0.000000
6	-8.638229	1.650012	0.000001
6	-9.450587	2.767904	0.000002
6	-10.824516	2.518753	0.000003
6	-11.331798	1.210277	0.000002
6	-10.494123	0.098336	0.000002
6	-9.117415	0.333098	0.000001
1	-9.042620	3.772069	0.000002
1	-11.513563	3.356698	0.000003
1	-10.886510	-0.912675	0.000001
8	-7.272309	1.594222	0.000001
7	-8.033543	-0.525027	0.000000
8	-6.215917	-2.498298	-0.000001
6	-4.554013	0.804028	-0.000001
6	-3.945484	-1.917620	-0.000002
6	-3.241102	0.420060	-0.000001
1	-4.811823	1.858455	-0.000001
1	-3.720768	-2.980312	-0.000002
1	-7.105295	-2.072547	-0.000001
1	-2.469413	1.181516	-0.000002
6	-1.545134	-1.425050	-0.000002
1	-1.421700	-2.505573	-0.000003
6	-0.399831	-0.623933	-0.000001
1	-0.528509	0.455967	0.000001
6	-2.881491	-0.969351	-0.000002
6	0.935384	-1.071296	-0.000002
6	1.994934	-0.103545	0.000000
6	1.292689	-2.473208	-0.000006
6	3.276425	-0.566235	-0.000001
1	1.773849	0.958473	0.000003
6	2.587636	-2.906883	-0.000007
1	0.498347	-3.210934	-0.000008
6	3.637343	-1.944396	-0.000005
1	2.819106	-3.966850	-0.000010
1	-12.407055	1.063320	0.000003

8	4.408701	0.200383	0.000000
6	5.479061	-0.657502	-0.000002
6	5.035360	-1.981912	-0.000005
1	5.667649	-2.858145	-0.000007
6	6.779792	-0.086566	0.000000
6	6.967417	1.316148	0.000004
6	7.936087	-0.903687	-0.000002
6	8.225560	1.870803	0.000006
1	6.098384	1.965345	0.000005
6	9.197846	-0.361260	0.000000
1	7.831287	-1.984362	-0.000005
6	9.387581	1.049997	0.000004
1	8.321463	2.949303	0.000008
1	10.052894	-1.025277	-0.000002
7	10.632333	1.591481	0.000007
6	11.804342	0.731649	0.000002
1	11.827126	0.092149	-0.889737
1	12.698472	1.352510	0.000008
1	11.827124	0.092138	0.889734
6	10.800364	3.035271	0.000007
1	10.346931	3.486956	0.889639
1	11.863701	3.267997	0.000010
1	10.346935	3.486957	-0.889626

Keto-HBO 1 excited-state structure in dichloromethane G -1529.788234 au

6	-5.301958	-1.522735	0.000003
6	-5.575010	-0.077000	0.000001
6	-6.904168	0.326284	0.000000
6	-8.687428	1.609430	-0.000002
6	-9.541034	2.692005	-0.000004
6	-10.907585	2.393216	-0.000004
6	-11.365619	1.071350	-0.000003
6	-10.488195	-0.014182	-0.000001
6	-9.130292	0.282350	-0.000001
1	-9.167634	3.709136	-0.000005
1	-11.625091	3.206356	-0.000006
1	-10.843585	-1.037807	0.000000
8	-7.311482	1.620582	-0.000001
7	-7.982604	-0.484992	0.000001
8	-6.248293	-2.376869	0.000001
6	-4.510269	0.875467	0.000001
6	-3.934838	-1.874645	0.000003
6	-3.211114	0.472680	0.000002
1	-4.758170	1.933342	0.000000
1	-3.701537	-2.936380	0.000003
1	-2.423007	1.216841	0.000001
6	-1.538784	-1.387272	0.000003
1	-1.417291	-2.468471	0.000004
6	-0.391481	-0.594588	0.000003
1	-0.510589	0.486215	0.000002
6	-2.881069	-0.934828	0.000003
6	0.943311	-1.051789	0.000003
6	2.006944	-0.090597	0.000002
6	1.292295	-2.454594	0.000004
6	3.286748	-0.560071	0.000002
1	1.791847	0.972672	0.000001
6	2.585304	-2.895765	0.000004
1	0.493985	-3.188002	0.000004
6	3.639979	-1.939495	0.000003
1	2.810527	-3.957079	0.000004

-12.433804	0.882120	-0.000003
4.422647	0.200757	0.000001
5.488684	-0.662709	0.000001
5.038656	-1.984227	0.000002
5.666388	-2.863703	0.000002
6.792588	-0.097416	0.000000
6.986441	1.304199	-0.000001
7.945024	-0.919542	-0.000001
8.247216	1.853335	-0.000002
6.120340	1.957310	0.000000
9.209392	-0.382680	-0.000002
7.835423	-1.999757	0.000000
9.405437	1.027523	-0.000003
8.347888	2.931412	-0.000002
10.061437	-1.050576	-0.000003
10.652906	1.563601	-0.000004
11.820848	0.698482	-0.000005
11.840805	0.058770	-0.889702
12.717863	1.315193	-0.000007
11.840807	0.058772	0.889694
10.827197	3.006520	-0.000004
10.375739	3.460338	0.889591
11.891548	3.234682	-0.000005
10.375737	3.460339	-0.889598
-7.768035	-1.499967	0.000002
	-12.433804 4.422647 5.488684 5.038656 5.666388 6.792588 6.986441 7.945024 8.247216 6.120340 9.209392 7.835423 9.405437 8.347888 10.061437 10.652906 11.820848 11.840805 12.717863 11.840807 10.375739 11.891548 10.375737 -7.768035	-12.4338040.8821204.4226470.2007575.488684-0.6627095.038656-1.9842275.666388-2.8637036.792588-0.0974166.9864411.3041997.945024-0.9195428.2472161.8533356.1203401.9573109.209392-0.3826807.835423-1.9997579.4054371.0275238.3478882.93141210.061437-1.05057610.6529061.56360111.8208480.69848211.8408050.05877012.7178631.31519311.8408070.05877210.8271973.00652010.3757393.46033811.8915483.23468210.3757373.460339-7.768035-1.499967

Enol-HBO 1 ground-state structure in dichloromethane + HCl G -1530.326043 au

6	5.2792540	1.4586110	0.3397540
6	5.6075020	0.1330740	-0.0143320
6	6.9908840	-0.2972280	0.0286280
6	8.6479910	-1.6679610	-0.1779400
6	9.4652830	-2.7613690	-0.4065650
6	10.8225550	-2.5534880	-0.1718000
6	11.3146100	-1.3127480	0.2672730
6	10.4724740	-0.2286500	0.4895970
6	9.1115470	-0.4252590	0.2576190
1	9.0717340	-3.7124810	-0.7452490
1	11.5165790	-3.3715710	-0.3325040
1	10.8492180	0.7300100	0.8283190
8	7.2890950	-1.5755870	-0.3214390
7	8.0158210	0.4255800	0.3772950
8	6.1929530	2.3654260	0.7250610
6	4.5846070	-0.7447760	-0.4092490
6	3.9431450	1.8631340	0.2924980
6	3.2687380	-0.3341980	-0.4509610
1	4.8488560	-1.7591130	-0.6900260
1	3.7137860	2.8874410	0.5703670
1	7.0870790	1.9503020	0.7144360
1	2.5051390	-1.0300830	-0.7790650
6	1.5470190	1.4831500	-0.0994290
1	1.4476550	2.5573160	0.0433380
6	0.4459250	0.7265130	-0.2342660
1	0.5519440	-0.3531990	-0.3228220
6	2.9282290	0.9858870	-0.0892600
6	-0.9412180	1.2053750	-0.2433070
6	-1.9642270	0.2557890	-0.1668610
6	-1.2689220	2.5829430	-0.3284300
6	-3.2677280	0.7259390	-0.1616650
1	-1.7488600	-0.8060660	-0.1066700
6	-2.5762990	3.0294520	-0.3238870

1	-0.4700270	3.3116130	-0.4145160
6	-3.6097690	2.0824400	-0.2357530
1	-2.7989140	4.0890490	-0.3938950
1	12.3803240	-1.2003600	0.4364020
8	-4.3906390	-0.0383580	-0.0866230
6	-5.4562870	0.8244670	-0.1126390
6	-5.0453490	2.1187920	-0.2027410
1	-5.6755990	2.9955980	-0.2372320
6	-6.7787110	0.2131230	-0.0334680
6	-6.9089180	-1.1760640	0.0971680
6	-7.9307730	1.0074650	-0.0833220
6	-8.1635360	-1.7638960	0.1822900
1	-6.0220550	-1.7974910	0.1345380
6	-9.1892420	0.4285350	0.0013910
1	-7.8506090	2.0838350	-0.1890980
6	-9.2877970	-0.9498640	0.1360900
1	-8.2454660	-2.8410650	0.2854450
1	-10.0783740	1.0513750	-0.0378600
7	-10.6316440	-1.5573510	0.2296730
1	-11.3052100	-0.7842500	0.2049970
6	-10.9405080	-2.4414460	-0.9447560
1	-10.2663370	-3.2962750	-0.9151970
1	-11.9754720	-2.7710700	-0.8613450
1	-10.7863220	-1.8649070	-1.8550660
6	-10.8473090	-2.2744700	1.5315140
1	-10.6256750	-1.5829540	2.3422640
1	-11.8851620	-2.6023550	1.5708980
1	-10.1777590	-3.1324020	1.5656170

Keto-HBO 1 ground-state structure in dichloromethane +HCl G -1530.307653 au

-	0		
6	5.3345580	1.4700000	0.2773970
6	5.6172710	0.0810060	-0.0331380
6	6.9597560	-0.3225190	0.0050720
6	8.7465040	-1.5835500	-0.1218340
6	9.6082240	-2.6472330	-0.2951740
6	10.9600990	-2.3686770	-0.0873220
6	11.3990960	-1.0883550	0.2733560
6	10.5126020	-0.0259590	0.4437370
6	9.1685710	-0.3053100	0.2365630
1	9.2510340	-3.6310440	-0.5745920
1	11.6862530	-3.1647270	-0.2088120
1	10.8506910	0.9649900	0.7222620
8	7.3732540	-1.5729660	-0.2603730
7	8.0056570	0.4532990	0.3039220
8	6.2322990	2.3073480	0.5746350
6	4.5813000	-0.8321190	-0.3670740
6	3.9406350	1.8284140	0.2228110
6	3.2782080	-0.4308490	-0.3992210
1	4.8462530	-1.8592650	-0.6019320
1	3.6970550	2.8623030	0.4523010
1	2.5034070	-1.1372910	-0.6717440
6	1.5569420	1.4073420	-0.0994530
1	1.4453860	2.4800130	0.0467710
6	0.4632890	0.6403670	-0.2381860
1	0.5783660	-0.4369030	-0.3398430
6	2.9457020	0.9295850	-0.0917610
6	-0.9293460	1.1044060	-0.2370290
6	-1.9413820	0.1420700	-0.1764590
6	-1.2740860	2.4792950	-0.2960060
6	-3.2503730	0.5963790	-0.1601950

1	-1.7134780	-0.9181130	-0.1359800
6	-2.5867630	2.9100540	-0.2810990
1	-0.4841520	3.2190780	-0.3686010
6	-3.6090600	1.9496370	-0.2082130
1	-2.8218180	3.9681420	-0.3305790
1	12.4592010	-0.9167930	0.4246820
8	-4.3636350	-0.1829090	-0.0959810
6	-5.4398920	0.6670630	-0.1020530
6	-5.0450930	1.9677880	-0.1697820
1	-5.6863490	2.8371590	-0.1865510
6	-6.7534550	0.0367210	-0.0278480
6	-6.8650580	-1.3551060	0.0624160
6	-7.9175230	0.8187130	-0.0407040
6	-8.1153040	-1.9562660	0.1446880
1	-5.9718750	-1.9684350	0.0712560
6	-9.1687760	0.2277280	0.0415670
1	-7.8488890	1.8985960	-0.1141100
6	-9.2484270	-1.1578690	0.1354850
1	-8.1949410	-3.0371100	0.2161730
1	-10.0574640	0.8505250	0.0329570
7	-10.5710250	-1.8083640	0.2405530
1	-10.3964130	-2.8177860	0.2984480
6	-11.2923690	-1.4211830	1.4997350
1	-11.5231660	-0.3581950	1.4504210
1	-12.2086000	-2.0065430	1.5612910
1	-10.6371650	-1.6312170	2.3433070
6	-11.4203660	-1.5875050	-0.9780260
1	-10.8515430	-1.9052390	-1.8500480
1	-12.3303580	-2.1763840	-0.8697930
1	-11.6607760	-0.5275670	-1.0431750
1	7.7986610	1.4410550	0.5248040

Enol-HBO 1 excited-state structure in dichloromethane +HCl G -1530.217207 au

6	5.306829	1.540540	0.039990
6	5.647613	0.148158	0.019414
6	7.015503	-0.250321	0.011921
6	8.685293	-1.629707	-0.018443
6	9.505549	-2.742579	-0.043204
6	10.875503	-2.480972	-0.041171
6	11.375708	-1.167405	-0.015435
6	10.533051	-0.062408	0.009187
6	9.156793	-0.309123	0.007218
1	9.105638	-3.749552	-0.063051
1	11.571535	-3.312830	-0.060096
1	10.917281	0.951313	0.028856
8	7.320504	-1.582632	-0.014848
7	8.068797	0.539503	0.026190
8	6.246505	2.503356	0.057394
6	4.602102	-0.810320	0.003511
6	3.981786	1.915301	0.041043
6	3.287991	-0.432952	0.006365
1	4.867846	-1.862133	-0.011911
1	3.748911	2.975621	0.055594
1	7.140508	2.086537	0.052765
1	2.519084	-1.196305	-0.007682
6	1.591744	1.406047	0.020465
1	1.458899	2.484841	0.024965
6	0.451163	0.591270	0.013828
		0.40.0010	0.000656
1	0.588990	-0.486919	0.023656

6	-0.883506	1.031712	-0.002436
6	-1.933467	0.054399	0.005815
6	-1.246145	2.432158	-0.029841
6	-3.218595	0.510630	-0.013824
1	-1.704084	-1.005364	0.028005
6	-2.544376	2.856194	-0.051441
1	-0.457066	3.174964	-0.035943
6	-3.582732	1.885259	-0.045041
1	-2.784177	3.913765	-0.073427
1	12.450026	-1.015291	-0.014954
8	-4.346071	-0.259387	-0.007713
6	-5.414669	0.598117	-0.035898
6	-4.987446	1.915318	-0.060053
1	-5.621278	2.790220	-0.081609
6	-6.725174	0.007585	-0.025730
6	-6.880023	-1.390845	0.042266
6	-7.877254	0.820381	-0.078814
6	-8.145279	-1.956624	0.066136
1	-6.004030	-2.027420	0.080477
6	-9.140312	0.258660	-0.057367
1	-7.781513	1.899000	-0.137629
6	-9.260052	-1.128302	0.019877
1	-8.256424	-3.036005	0.122839
1	-10.013620	0.901672	-0.100510
7	-10.602044	-1.742010	0.054661
1	-10.458855	-2.754785	0.137636
6	-11.395004	-1.315798	1.257045
1	-11.594782	-0.248501	1.175244
1	-12.328709	-1.876439	1.266665
1	-10.804195	-1.525921	2.146577
6	-11.369454	-1.514437	-1.216823
1	-10.758039	-1.856815	-2.049729
1	-12.300837	-2.076334	-1.158862
1	-11.574078	-0.448629	-1.305520

Keto-HBO 1 excited-state structure in dichloromethane + HCl G -1530.202560 au

6	5.342103	1.582678	0.066156
6	5.642248	0.120944	0.007052
6	6.986474	-0.290631	0.009137
6	8.719644	-1.637310	-0.026456
6	9.534440	-2.750695	-0.065653
6	10.908342	-2.498145	-0.033411
6	11.415484	-1.192176	0.034367
6	10.583173	-0.076047	0.073333
6	9.212574	-0.326160	0.041239
1	9.125712	-3.752459	-0.117903
1	11.598183	-3.334283	-0.061650
1	10.973949	0.933035	0.125355
8	7.350263	-1.595387	-0.045046
7	8.097715	0.476861	0.061381
8	6.295037	2.404766	0.118826
6	4.593145	-0.809166	-0.050368
6	3.975510	1.949549	0.058703
6	3.274413	-0.377138	-0.052974
1	4.816123	-1.870171	-0.093636
1	3.756653	3.012503	0.101352
1	2.491160	-1.125387	-0.100104
6	1.559857	1.445222	-0.004657
1	1.430691	2.525815	0.026190
6	0.447176	0.655668	-0.039314

1	0.563315	-0.425728	-0.059955
6	2.929509	1.014201	0.001059
6	-0.927405	1.110022	-0.045279
6	-1.950976	0.143967	-0.047568
6	-1.286493	2.491339	-0.048638
6	-3.256796	0.594216	-0.049367
1	-1.722119	-0.916719	-0.044840
6	-2.597531	2.915342	-0.052633
1	-0.501576	3.239570	-0.050787
6	-3.622824	1.950287	-0.052790
1	-2.834761	3.974280	-0.056032
1	12.489976	-1.045779	0.057172
8	-4.370665	-0.189520	-0.046312
6	-5.450785	0.658086	-0.047570
6	-5.053421	1.963727	-0.052529
1	-5.697013	2.831804	-0.051367
6	-6.761231	0.027997	-0.031515
6	-6.875934	-1.367662	0.015795
6	-7.927980	0.809107	-0.056457
6	-8.127027	-1.970418	0.046331
1	-5.982788	-1.980858	0.032822
6	-9.179573	0.215597	-0.026584
1	-7.859061	1.890685	-0.098382
6	-9.261164	-1.172707	0.028073
1	-8.207897	-3.052961	0.086095
1	-10.068417	0.838189	-0.044717
7	-10.585432	-1.826228	0.077139
1	-10.410936	-2.836331	0.124287
6	-11.352251	-1.460099	1.315422
1	-11.573273	-0.394553	1.279187
1	-12.274903	-2.038201	1.329130
1	-10.733163	-1.692296	2.180111
6	-11.393731	-1.585771	-1.165484
1	-10.792156	-1.878026	-2.024317
1	-12.301002	-2.185486	-1.102819
1	-11.641702	-0.526659	-1.214428
1	7.978118	1.493767	0.105339

Enol-HBO 1 ground-state structure in acetone G -1529.914292 au

6	5.2847450	-1.5081640	0.0067930
6	5.6027260	-0.1338460	0.0037380
6	6.9910490	0.2803650	0.0025720
6	8.6448450	1.6710240	-0.0009420
6	9.4549350	2.7932350	-0.0036550
6	10.8253220	2.5422400	-0.0034700
6	11.3362250	1.2332970	-0.0007130
6	10.5006770	0.1213850	0.0019990
6	9.1268160	0.3607550	0.0018520
1	9.0466880	3.7969870	-0.0057700
1	11.5145390	3.3799350	-0.0055170
1	10.8924560	-0.8896770	0.0041250
8	7.2767880	1.6086210	-0.0004600
7	8.0328310	-0.5008550	0.0040650
8	6.2158820	-2.4783590	0.0088230
6	4.5613040	0.8093820	0.0018300
6	3.9431900	-1.8954840	0.0077220
6	3.2401870	0.4150510	0.0027570
1	4.8148420	1.8645160	-0.0003700
1	3.7227280	-2.9587940	0.0100100
1	7.1119830	-2.0673900	0.0078030
1	2.4630110	1.1704990	0.0014380
---	-------------	------------	------------
6	1.5283220	-1.4503690	0.0062370
1	1.4355070	-2.5343880	0.0105800
6	0.4212090	-0.6890550	0.0013440
1	0.5243710	0.3947300	-0.0036750
6	2.9101050	-0.9571450	0.0055830
6	-0.9669300	-1.1614860	0.0012880
6	-1.9865850	-0.2013240	-0.0072400
6	-1.3076250	-2.5365900	0.0091120
6	-3.2930770	-0.6572750	-0.0078250
1	-1.7620240	0.8606560	-0.0133450
6	-2.6213670	-2.9698380	0.0083080
1	-0.5169250	-3.2793910	0.0161130
6	-3.6493620	-2.0134100	-0.0005070
1	-2.8511310	-4.0304520	0.0144240
1	12.4114830	1.0889780	-0.0007020
8	-4.4109140	0.1196110	-0.0156300
6	-5.4901670	-0.7312230	-0.0134530
6	-5.0850780	-2.0339010	-0.0045220
1	-5.7246250	-2.9043630	-0.0015240
6	-6.8038300	-0.1055880	-0.0213450
6	-6.9496480	1.2874830	-0.0303030
6	-7.9694860	-0.8841800	-0.0153640
6	-8.2004210	1.8824760	-0.0369160
1	-6.0655180	1.9168480	-0.0287100
6	-9.2255440	-0.3054150	-0.0221880
1	-7.8957030	-1.9680300	-0.0015080
6	-9.3786300	1.1014680	-0.0413530
1	-8.2610940	2.9637800	-0.0376810
1	-10.0953820	-0.9504250	-0.0111090
7	-10.6212380	1.6825000	-0.0674010
6	-11.8025920	0.8537660	0.0777160
1	-11.8078630	0.3046500	1.0291180
1	-12.6873910	1.4883850	0.0407020
1	-11.8753860	0.1259940	-0.7379700
6	-10.7396160	3.1221170	0.0616110
1	-10.2318190	3.6339650	-0.7633100
1	-11.7936430	3.3956750	0.0283260
1	-10.3145000	3.4882980	1.0060460

Keto-HBO 1 ground-state structure in acetone G -1529.895457 au

	0		
6	5.3158250	-1.4938680	0.1294140
6	5.5761520	-0.0732350	-0.0091840
6	6.9168910	0.3376030	0.0037130
6	8.6866310	1.6274760	-0.0578550
6	9.5308130	2.7160790	-0.1376460
6	10.8941620	2.4299000	-0.0482350
6	11.3605520	1.1187260	0.1120040
6	10.4913210	0.0314720	0.1904180
6	9.1359510	0.3185470	0.1011400
1	9.1526290	3.7236040	-0.2615930
1	11.6076380	3.2444710	-0.1044350
1	10.8499360	-0.9833870	0.3143200
8	7.3076120	1.6173690	-0.1159240
7	7.9829550	-0.4573210	0.1341050
8	6.2332830	-2.3540550	0.2583520
6	4.5184820	0.8648330	-0.1528220
6	3.9231210	-1.8564270	0.1098700
6	3.2168590	0.4573890	-0.1627680
1	4.7651930	1.9178330	-0.2563840

1	3.6962820	-2.9144250	0.2118320
1	2.4257330	1.1884290	-0.2782470
6	1.5231150	-1.4277170	-0.0263680
1	1.4287380	-2.5088650	0.0541170
6	0.4159510	-0.6701200	-0.1033590
1	0.5168150	0.4118740	-0.1638450
6	2.9062150	-0.9361140	-0.0264240
6	-0.9714530	-1.1468080	-0.1023810
6	-1.9947890	-0.1908920	-0.0806520
6	-1.3073190	-2.5229240	-0.1232790
6	-3.2996050	-0.6519450	-0.0717160
1	-1.7743820	0.8719230	-0.0677940
6	-2.6194610	-2.9614190	-0.1149640
1	-0.5135670	-3.2618810	-0.1545160
6	-3.6509050	-2.0092640	-0.0866050
1	-2.8452220	-4.0227790	-0.1336340
1	12.4286680	0.9425220	0.1770310
8	-4.4203020	0.1207210	-0.0486030
6	-5.4964380	-0.7341930	-0.0486300
6	-5.0866980	-2.0350800	-0.0715360
1	-5.7231320	-2.9078210	-0.0774490
6	-6.8123760	-0.1134670	-0.0253940
6	-6.9632490	1.2789540	-0.0087310
6	-7.9750540	-0.8963890	-0.0141140
6	-8.2161200	1.8692270	0.0144750
1	-6.0814040	1.9115220	-0.0105550
6	-9.2331410	-0.3223260	0.0087150
1	-7.8972120	-1.9800370	-0.0194640
6	-9.3914560	1.0840240	0.0156080
1	-8.2805900	2.9501560	0.0328910
1	-10.1003810	-0.9707810	0.0228230
7	-10.6365560	1.6608730	0.0190780
6	-11.8119870	0.8254270	0.1736210
1	-11.7976160	0.2618620	1.1164830
1	-12.6996050	1.4571140	0.1626030
1	-11.8973700	0.1098910	-0.6515740
6	-10.7574290	3.0972820	0.1781260
1	-10.2639390	3.6267070	-0.6443410
1	-11.8126930	3.3678490	0.1660560
1	-10.3190000	3.4466120	1.1229080
1	7.7975800	-1.4680530	0.2332530

Enol-HBO 1 excited-state structure in acetone G -1529.809848 au

6	-5.268890	-1.535950	-0.000002
6	-5.608364	-0.145793	-0.000002
6	-6.973663	0.257379	0.000000
6	-8.638186	1.650176	0.000002
6	-9.450106	2.768469	0.000003
6	-10.824141	2.519608	0.000005
6	-11.331850	1.211225	0.000006
6	-10.494402	0.098936	0.000004
6	-9.117679	0.333517	0.000002
1	-9.042032	3.772582	0.000003
1	-11.512900	3.357748	0.000006
1	-10.887477	-0.911830	0.000005
8	-7.271997	1.593903	0.000000
7	-8.033554	-0.525042	0.000001
8	-6.217078	-2.498404	-0.000001
6	-4.553247	0.803170	-0.000003
6	-3.945975	-1.918854	-0.000003

6	-3.240448	0.418901	-0.000004
1	-4.810128	1.857862	-0.000004
1	-3.721456	-2.981652	-0.000002
1	-7.106091	-2.071528	0.000000
1	-2.468907	1.180510	-0.000005
6	-1.545357	-1.427225	-0.000004
1	-1.421911	-2.507734	-0.000004
6	-0.399053	-0.625300	-0.000004
1	-0.528199	0.454570	-0.000003
6	-2.880594	-0.970966	-0.000004
6	0.935114	-1.071742	-0.000004
6	1.994905	-0.102762	-0.000002
6	1.293487	-2.474018	-0.000007
6	3.276055	-0.564844	-0.000003
1	1.772980	0.959121	-0.000001
6	2.588387	-2.906869	-0.000007
1	0.499701	-3.212398	-0.000009
6	3.638007	-1.943335	-0.000005
1	2.820795	-3.966597	-0.000009
1	-12.407110	1.064527	0.000007
8	4.408305	0.202046	-0.000001
6	5.479050	-0.655489	-0.000002
6	5.035066	-1.980836	-0.000004
1	5.667412	-2.857035	-0.000005
6	6.779109	-0.085279	0.000000
6	6.967472	1.317838	0.000003
6	7.935357	-0.903403	-0.000001
6	8.225547	1.871871	0.000005
1	6.098941	1.967742	0.000004
6	9.197073	-0.361710	0.000001
1	7.830132	-1.984003	-0.000003
6	9.387615	1.050040	0.000005
1	8.322091	2.950289	0.000007
1	10.051799	-1.026081	0.000000
7	10.631658	1.590364	0.000008
6	11.803808	0.729856	0.000004
1	11.825881	0.090581	-0.889741
1	12.697874	1.350604	0.000010
1	11.825878	0.090571	0.889743
6	10.801146	3.034466	0.000008
1	10.348016	3.486095	0.889658
1	11.864663	3.265881	0.000011
1	10.348021	3.486095	-0.889646

Keto-HBO 1 excited-state structure in acetone G -1529.791507 au

-			
6	5.302473	-1.528642	-0.000002
6	5.575939	-0.083572	0.000002
6	6.904693	0.321711	0.000001
6	8.683595	1.611572	0.000000
6	9.532786	2.697730	0.000001
6	10.900350	2.403981	-0.000002
6	11.363593	1.083740	-0.000004
6	10.490364	-0.005211	-0.000004
6	9.131566	0.286646	-0.000002
1	9.155700	3.713488	0.000002
1	11.614733	3.219834	-0.000001
1	10.849487	-1.027529	-0.000006
8	7.307235	1.616988	0.000002
7	7.986112	-0.485256	-0.000002
8	6.249170	-2.383405	-0.000009

6	4.510739	0.868808	0.000005
6	3.935578	-1.880413	-0.000002
6	3.211347	0.466948	0.000006
1	4.758538	1.926728	0.000008
1	3.701416	-2.942132	-0.000006
1	2.423966	1.211882	0.000008
6	1.539108	-1.393187	0.000001
1	1.416993	-2.474329	-0.000002
6	0.391046	-0.599044	0.000004
1	0.511345	0.481656	0.000006
6	2.880285	-0.940584	0.000001
6	-0.942833	-1.054422	0.000002
6	-2.006271	-0.091331	0.000004
6	-1.293727	-2.457474	-0.000001
6	-3.285920	-0.559466	0.000002
1	-1.789722	0.971679	0.000007
6	-2.586874	-2.897098	-0.000003
1	-0.496367	-3.191974	-0.000002
6	-3.640996	-1.939129	-0.000001
1	-2.813682	-3.958037	-0.000005
1	12.432467	0.898670	-0.000006
8	-4.421392	0.202255	0.000003
6	-5.488310	-0.660266	0.000000
6	-5.038561	-1.983122	-0.000003
1	-5.666830	-2.862225	-0.000006
6	-6.791099	-0.095245	0.000000
6	-6.985112	1.306962	0.000003
6	-7.943918	-0.917955	-0.000003
6	-8.245514	1.855967	0.000003
1	-6.119226	1.960386	0.000005
6	-9.207933	-0.381311	-0.000003
1	-7.834333	-1.998132	-0.000005
6	-9.404182	1.029550	0.000000
1	-8.346400	2.933995	0.000006
1	-10.059956	-1.049166	-0.000005
7	-10.650591	1.564949	0.000001
6	-11.819130	0.699689	-0.000002
1	-11.838634	0.060253	0.889715
1	-12.715766	1.316731	0.000000
1	-11.838634	0.060258	-0.889723
6	-10.825802	3.008289	0.000003
1	-10.374466	3.461813	-0.889623
1	-11.890235	3.235519	0.000003
1	-10.374467	3.461810	0.889632
1	7.781638	-1.500444	-0.000003

Coordinates for HBO 2:

Enol-HBO 2 ground-state structure in cyclohexane G -1866.844341 au

	-	-	
6	3.7167220	-1.7062440	0.2346380
6	4.0765710	-0.3848200	-0.1061900
6	5.4690940	0.0044620	-0.0887400
6	7.1527060	1.3400740	-0.3127490
6	7.9912440	2.4176700	-0.5449060
6	9.3457260	2.1758150	-0.3527520
6	9.8095470	0.9123610	0.0511910
6	8.9543110	-0.1581060	0.2799540
6	7.5949310	0.0779000	0.0884410
1	7.6135360	3.3833460	-0.8583260

1	10.0634450	2.9721950	-0.5203130
1	9.3242490	-1.1284120	0.5887030
7	6.4861900	-0.7482740	0.2204500
8	4.6071340	-2.6472250	0.5843280
6	3.0705530	0.5295020	-0.4646930
6	2.3679260	-2.0685910	0.2118770
6	1.7443670	0.1585480	-0.4833150
1	3.3592840	1.5397730	-0.7359900
1	2.1164390	-3.0899130	0.4807520
1	5.5137840	-2.2666240	0.5618380
1	0.9942660	0.8805190	-0.7848640
6	-0.0232260	-1.6122710	-0.1207670
1	-0.1524290	-2.6838640	0.0166130
6	-1.1046870	-0.8232340	-0.2308200
1	-0.9638070	0.2531990	-0.3160170
6	1.3709000	-1.1573710	-0.1333500
6	-2.5062590	-1.2514250	-0.2211520
6	-3.4962840	-0.2641540	-0.1554170
6	-2.8870470	-2.6139450	-0.2781850
6	-4.8149170	-0.6816320	-0.1348920
1	-3.2416660	0.7902080	-0.1156130
6	-4.2121090	-3.0092080	-0.2577040
1	-2.1172480	-3.3747430	-0.3545220
6	-5.2107670	-2.0257810	-0.1813480
1	-4.4730520	-4.0615320	-0.3066100
8	-5.9072340	0.1264410	-0.0697380
6	-7.0103430	-0.6909150	-0.0741500
6	-6.6456870	-2.0033040	-0.1413690
I	-7.3126740	-2.8524980	-0.161/660
6	-8.3032190	-0.0261530	-0.0090250
6	-8.4015550	1.3693750	0.0347580
6	-9.4921910	-0.7655670	0.0176160
6	-9.6308/90	2.0039170	0.0982850
I	-7.4958570	1.966/000	0.0225320
6	-10./2/19/0	-0.1460920	0.0806060
I	-9.4533270	-1.8510540	-0.0060400
6	-10.8322130	1.2629650	0.1139450
1	-9.6549//0	3.0859280	0.1369230
1	-11.61/4030	-0.7622700	0.1059160
6	-12.0585550	1.8808390	0.1500270
0	-13.2330340	1.0919790	0.3348390
1	-13.224/830	0.3231830	1.2902910
1	-14.119/340	1.7320200	0.3733000
1	-13.3930780	0.3623970	-0.4080430
1	-12.11//320	3.3164100	0.3098800
1 1	-11.0195210	3 63210200	-0.4430270
1	-13.1014130	3.6178000	1 3176010
1 8	5 79/1070	1 28/0500	-0.4236140
6	11 2876000	0.7528370	0.7625850
9	11 9865630	1 2103880	-0 7888170
9	11 6382120	-0 5254570	0 4542180
9	11 7107220	1 4469240	1 3320160
-	11.,10,220	1	1.2220100

Keto-HBO 2 ground-state structure in cyclohexane G -1866.822127 au

6	3.7711520	-1.6261760	0.1224840
6	4.0532250	-0.2148700	-0.0991080
6	5 3920000	0 1650200	-0.0925220
6	7 1989350	1 4002880	-0.2022610
6	8 0760950	2 4561380	-0.3375180
0	8.0700930	2.4501580	-0.5575180

6	9.4292310	2.1431590	-0.2154370
6	9.8471000	0.8309730	0.0286770
6	8.9511230	-0.2294380	0.1619570
6	7.6075260	0.0881010	0.0404660
1	7.7290950	3.4637780	-0.5305310
1	10.1726840	2.9258900	-0.3177820
1	9.2908980	-1.2417240	0.3439660
7	6.4387770	-0.6526440	0.1003170
8	4.6738240	-2.4837710	0.3139320
6	3 0053540	0.7265420	-0.3155460
6	2 3732670	-1 9742820	0.1079100
6	1 70/6860	0.3302010	-0.3162380
1	3 2657310	1 7677760	-0.4837840
1	2 1366000	3 0214610	-0.4837840
1	2.1300090	1 0569550	0.2730380
1	0.9212040	1.0306330	-0.4933300
0	-0.0105120	-1.5201750	-0.0802300
I	-0.1290040	-2.5962100	0.0352850
6	-1.1111250	-0.7473920	-0.1/48560
I	-0.9916270	0.3311170	-0.2595710
6	1.3/35680	-1.0525250	-0.0954540
6	-2.5059420	-1.1989000	-0.15/9430
6	-3.5121960	-0.2265610	-0.1242830
6	-2.8656160	-2.5683960	-0.1763970
6	-4.8245120	-0.6638920	-0.0989430
1	-3.2743780	0.8324200	-0.1133430
6	-4.1843440	-2.9837660	-0.1516940
1	-2.0841190	-3.3194820	-0.2220020
6	-5.1988430	-2.0147290	-0.1093690
1	-4.4283350	-4.0411560	-0.1696600
8	-5.9301250	0.1283230	-0.0619150
6	-7.0199850	-0.7065840	-0.0484260
6	-6.6342170	-2.0141530	-0.0767720
1	-7.2873860	-2.8742780	-0.0767410
6	-8.3243780	-0.0622660	-0.0084250
6	-8.4480580	1.3318520	-0.0111340
6	-9.5000260	-0.8216040	0.0399690
6	-9.6890260	1.9456980	0.0282060
1	-7.5532870	1.9448480	-0.0408670
6	-10.7462580	-0.2229140	0.0792030
1	-9.4415570	-1.9063760	0.0530660
6	-10.8768190	1.1841790	0.0652940
1	-9.7326440	3.0278020	0.0309120
1	-11.6251280	-0.8541430	0.1231420
7	-12.1145470	1.7870870	0.0830340
6	-13.2944790	0.9778600	0.3098820
1	-13.2578480	0.4466890	1.2716930
1	-14.1734730	1.6224640	0.3045650
1	-13.4194620	0.2359970	-0.4864590
6	-12.1996480	3.2229020	0.2557460
1	-11.7076910	3.7461360	-0.5714830
1	-13.2487450	3.5186160	0.2598600
1	-11.7391350	3.5578400	1.1961020
1	6.1990940	-1.6518740	0.2559690
8	5.8271940	1.4298570	-0.2817390
6	11.3176850	0.5733440	0.2058800
9	11.6271730	-0.7139680	0.0015680
9	12.0521460	1.3087050	-0.6409990
9	11.7258790	0.8859610	1.4454250

Enol-HBO 2 excited-state structure in cyclohaxane G -1866.736499 au

6	-3.718535	1.735135	0.003679
6	-4.089643	0.352395	-0.022544
6	-5.461355	-0.018178	-0.022557
6	-7.151914	-1.378134	-0.041361
6	-7.986887	-2.479508	-0.064220
6	-9.353252	-2.207131	-0.050365
6	-9.825267	-0.886463	-0.014878
6	-8.973372	0.213287	0.007393
6	-7.603018	-0.050122	-0.007338
1	-7.599669	-3.490942	-0.094427
1	-10.066502	-3.024318	-0.072661
1	-9.353628	1.227457	0.031070
7	-6.507579	0.784503	0.002973
8	-4.636805	2.720356	0.028446
6	-3.059447	-0.623409	-0.048082
6	-2.384788	2.082595	0.003773
6	-1.738408	-0.269765	-0.046789
1	-3.344154	-1.670473	-0.068834
1	-2.135677	3 139338	0.024521
1	-5 537910	2 324408	0.027053
1	-0.983490	-1.047626	-0.067688
6	0.002712	1 531812	-0.015717
1	0.150230	2 609262	0.000735
6	1 12/609	0.709232	-0.026278
1	0 074470	0.367608	0.035448
6	1 3/0100	1 100002	0.020050
6	-1.349190	1.109002	0.021077
6	2.474930	0.145401	-0.021977
6	2 8 5 8 2 7 8	0.143491	-0.021910
6	2.030370	2.323031	-0.017012
0	4.805/5/	0.381/30	-0.013145
I	3.268/81	-0.9118//	-0.025516
0	4.162997	2.931058	-0.011154
l	2.078456	3.2/6368	-0.019325
6	5.190923	1.949961	-0.009482
1	4.414374	3.98/125	-0.00/94/
8	5.918308	-0.209038	-0.0118/0
6	7.005537	0.625568	-0.003964
6	6.593339	1.956185	-0.002721
1	7.245063	2.817990	0.003187
6	8.295624	0.022767	0.002650
6	8.448499	-1.382225	0.003348
6	9.469660	0.810273	0.009773
6	9.693801	-1.967333	0.011282
1	7.563007	-2.008569	-0.002099
6	10.718808	0.237064	0.017541
1	9.390410	1.893199	0.009126
6	10.873607	-1.176304	0.018876
1	9.762883	-3.047931	0.011870
1	11.589559	0.880463	0.022828
7	12.108379	-1.749690	0.027239
6	13.298550	-0.918525	0.034975
1	13.332121	-0.278838	0.924867
1	14.179032	-1.559333	0.040809
1	13.343758	-0.279184	-0.854629
6	12.239188	-3.195532	0.029921
1	11.780608	-3.638269	-0.862132
1	13.296342	-3.456552	0.037081
1	11.769066	-3.636015	0.917088
8	-5.790814	-1.352008	-0.050915
6	-11.310246	-0.680415	0.045776

9	-11.956358	-1.461556	-0.836454
9	-11.660210	0.587871	-0.210480
9	-11.806562	-0.987948	1.257059

Enol-HBO 2 ground-state structure in dichloromethane G -1866.853311 au

6	-3.7261450	1.7154700	0.1610580
6	-4.0793080	0.3700220	-0.0751810
6	-5.4733590	-0.0171220	-0.0629200
6	-7.1535430	-1.3658520	-0.2160880
6	-7.9872400	-2.4607280	-0.3745480
6	-9.3455780	-2.2026780	-0.2402670
6	-9.8169640	-0.9078140	0.0380620
6	-8 9668420	0 1795100	0 1941770
6	-7 6033840	-0.0733330	0.0603830
1	-7 6040070	-3 4507050	-0 5897190
1	-10.0590130	-3 0124950	-0 3535860
1	-9 3422740	1 1730510	0.4076270
7	-6 4959270	0.7609200	0.1506960
8	-4.6269100	2 6828220	0.1300500
6	-4.0209100	0.5713170	0.4030020
6	-3.0033380	2 0761600	-0.3239000
6	-2.3771310	2.0701000	0.1450540
1	-1./3//320	-0.2020340	-0.3371000
1	-3.3400330	-1.0022670	-0.3123310
1	-2.1290390	3.1108270	0.3520010
1	-5.5529980	2.2983760	0.5870880
I C	-0.9823440	-0.9509150	-0.54/2560
0	0.0213440	1.5983320	-0.0842720
I	0.1442180	2.6/52600	0.009/400
6	1.1065660	0.8095510	-0.1584770
I	0.9722800	-0.2693510	-0.2162820
6	-1.3717780	1.1390690	-0.0938950
6	2.5068700	1.2434440	-0.1512500
6	3.4995970	0.2568100	-0.1046190
6	2.8845350	2.6080030	-0.1916850
6	4.8175520	0.6775150	-0.0908070
1	3.2465130	-0.7983510	-0.0767960
6	4.2093680	3.0059140	-0.1776490
1	2.1139140	3.3698720	-0.2451920
6	5.2106820	2.0230490	-0.1240440
1	4.4679010	4.0593350	-0.2123300
8	5.9129900	-0.1288700	-0.0458950
6	7.0149950	0.6917850	-0.0504650
6	6.6462250	2.0043760	-0.0970970
1	7.3100880	2.8563030	-0.1112940
6	8.3099240	0.0296290	-0.0073840
6	8.4136480	-1.3663780	0.0360310
6	9.4978580	0.7731880	-0.0037260
6	9.6456110	-1.9977780	0.0776090
1	7.5107880	-1.9684200	0.0408560
6	10.7356840	0.1576090	0.0372830
1	9.4562580	1.8585520	-0.0299270
6	10.8463500	-1.2526490	0.0709520
1	9.6735980	-3.0797050	0.1165460
1	11.6242800	0.7765910	0.0443350
7	12.0717690	-1.8710030	0.0922190
6	13 2729550	-1 0727040	0.2422200
1	13 2704560	-0 4927520	1 1752940
1	14 1392920	-1 7334440	0 2489900
1	13 3884960	-0 3748190	-0 5943740
6	12.1428750	-3 3070160	0 2798740
0	12.1 120730	2.2070100	0.2770710

1	11.6349840	-3.8351530	-0.5346290	
1	13.1883110	-3.6138800	0.2777080	
1	11.6889890	-3.6229800	1.2292010	
8	-5.7920010	-1.3204270	-0.2932150	
6	-11.3005210	-0.7309710	0.1815620	
9	-11 9586640	-1 1858590	-0.8978820	
9	-11 6482880	0 5513190	0.3511890	
9	-11 7801050	-1 4164810	1 2335080	
	11.7001050	1.4104010	1.2555000	
Koto HRO 2	ground state s	tructure in dichl	oromothana G	1866 831500 au
Keto-11DO 2	3 7731210	1 6656680		-1800.851500 au
0	-3.7751210	0.2501450	0.0789380	
6	-4.0338030	0.2301430	-0.0892970	
6	-3.39/91/0	-0.1300140	-0.0817300	
0	-7.1880340	-1.3962980	-0.1607730	
6	-8.049/100	-2.4693210	-0.2624290	
6	-9.4065530	-2.16/4080	-0.1649910	
6	-9.842/340	-0.8506880	0.023/590	
6	-8.9627650	0.2257940	0.1234520	
6	-7.6148020	-0.0821240	0.0259820	
1	-7.6896700	-3.4796260	-0.4119420	
1	-10.1383220	-2.9639730	-0.2424540	
1	-9.3134740	1.2407600	0.2641550	
7	-6.4536200	0.6745780	0.0675470	
8	-4.6768720	2.5343350	0.2257170	
6	-3.0105030	-0.7018130	-0.2541860	
6	-2.3744040	2.0080500	0.0675240	
6	-1.7056900	-0.3119590	-0.2551200	
1	-3.2724480	-1.7484090	-0.3815080	
1	-2.1326410	3.0599490	0.1930750	
1	-0.9246020	-1.0504100	-0.3891670	
6	0.0177430	1.5422720	-0.0725670	
1	0.1311700	2.6207450	0.0174450	
6	1.1111280	0.7642510	-0.1438490	
1	0.9900130	-0.3152070	-0.2118760	
6	-1.3732160	1.0755360	-0.0870100	
6	2.5073940	1.2125660	-0.1253270	
6	3.5103460	0.2354770	-0.1047850	
6	2.8717660	2.5813990	-0.1276750	
6	4.8241980	0.6687450	-0.0788390	
1	3.2679070	-0.8225650	-0.1055240	
6	4.1925300	2.9921030	-0.1024240	
1	2.0937030	3.3368940	-0.1573200	
6	5.2037310	2.0184580	-0.0750270	
1	4.4403720	4.0486730	-0.1067550	
8	5.9278750	-0.1275460	-0.0536260	
6	7.0214540	0.7041840	-0.0333020	
6	6.6394520	2.0136240	-0.0458160	
1	7.2946010	2.8723640	-0.0371320	
6	8.3234530	0.0550270	-0.0037360	
6	8.4437370	-1.3401680	-0.0214300	
6	9.5021340	0.8113460	0.0490040	
6	9.6828550	-1.9583480	0.0076920	
1	7.5483560	-1.9523590	-0.0554490	
6	10.7468440	0.2090900	0.0783590	
1	9.4474960	1.8961720	0.0727670	
6	10.8743560	-1.1997950	0.0502400	
1	9.7235300	-3.0405500	-0.0016390	
1	11.6275610	0.8374850	0.1257160	
7	12.1070650	-1.8042890	0.0599520	
6	13.2960660	-0.9996240	0.2632980	

1	13.2747880	-0.4644730	1.2225970
1	14.1705310	-1.6495050	0.2499040
1	13.4130940	-0.2616870	-0.5379340
6	12.1930150	-3.2460160	0.1881130
1	11.7027300	-3.7450890	-0.6549820
1	13.2420590	-3.5403500	0.1877440
1	11.7301870	-3.6070970	1.1168390
1	-6.2495030	1.6804990	0.1871930
8	-5.8146300	-1.4094480	-0.2251870
6	-11.3182900	-0.6081530	0.1735980
9	-11.6412220	0.6742290	-0.0410590
9	-12.0311540	-1.3549000	-0.6826700
9	-11.7469720	-0.9214440	1.4071390

Enol-HBO 2 excited-state structure in dichloromethane G -1866.748842 au

6	-3.7182950	1.7377560	0.0071010
6	-4.0895280	0.3551900	-0.0291850
6	-5.4603500	-0.0167280	-0.0278480
6	-7.1506610	-1.3778330	-0.0520870
6	-7.9835900	-2.4806510	-0.0811860
6	-9.3503230	-2.2099490	-0.0599070
6	-9.8234870	-0.8900250	-0.0116130
6	-8.9729160	0.2113200	0.0168680
6	-7.6029910	-0.0510910	-0.0051760
1	-7.5962460	-3.4916160	-0.1213230
1	-10.0610540	-3.0291400	-0.0862190
1	-9.3543310	1.2248960	0.0508710
7	-6.5070840	0.7853440	0.0081970
8	-4.6423130	2.7218090	0.0427280
6	-3.0558790	-0.6181090	-0.0659430
6	-2.3870780	2.0893310	0.0061310
6	-1.7355790	-0.2632590	-0.0653650
1	-3.3368920	-1.6661450	-0.0946810
1	-2.1382420	3.1461760	0.0349210
1	-5.5416010	2.3200920	0.0411430
1	-0.9811910	-1.0412830	-0.0950500
6	0.0011650	1.5427540	-0.0229080
1	0.1489190	2.6199290	0.0008980
6	1.1278800	0.7164240	-0.0390100
1	0.9755580	-0.3602250	-0.0530070
6	-1.3449050	1.1174840	-0.0282220
6	2.4728820	1.1345160	-0.0327990
6	3.5094240	0.1429010	-0.0347640
6	2.8612600	2.5279290	-0.0230940
6	4.8010800	0.5762580	-0.0242100
1	3.2640780	-0.9137140	-0.0418850
6	4.1656630	2.9320330	-0.0141860
1	2.0839470	3.2835150	-0.0245630
6	5.1929830	1.9457330	-0.0135690
1	4.4211930	3.9863580	-0.0075980
8	5.9154170	-0.2158020	-0.0206330
6	7.0044250	0.6170350	-0.0073620
6	6.5912850	1.9516160	-0.0035140
1	7.2432960	2.8132130	0.0066350
6	8.2916890	0.0170090	0.0020380
6	8.4475550	-1.3896570	0.0009030
6	9.4657090	0.8083910	0.0146880
6	9.6925610	-1.9723670	0.0126680
1	7.5642530	-2.0191860	-0.0088190
6	10.7147160	0.2380610	0.0261950

1	9.3849900	1.8910890	0.0154200
6	10.8727950	-1.1774100	0.0261900
1	9.7641190	-3.0526980	0.0118530
1	11.5842960	0.8827210	0.0356940
7	12.1044080	-1.7461750	0.0388380
6	13.2956750	-0.9127340	0.0524500
1	13.3231890	-0.2752100	0.9433700
1	14.1755010	-1.5535810	0.0608340
1	13.3418290	-0.2731190	-0.8361640
6	12.2405900	-3.1936320	0.0408320
1	11.7869370	-3.6351550	-0.8536380
1	13.2984380	-3.4496300	0.0523100
1	11.7677600	-3.6344370	0.9256980
8	-5.7888370	-1.3493640	-0.0663310
6	-11.3076870	-0.6843140	0.0583890
9	-11.9615890	-1.4707830	-0.8133930
9	-11.6610880	0.5822650	-0.2032330
9	-11.7962760	-0.9830480	1.2758380

Keto-HBO 2 excited-state structure in dichloromethane G -1866.727909 au

	- ononcou brate b	diactare in arein	of office finance of
6	3.7590050	-1.6515240	-0.0141490
6	4.0578350	-0.2102760	-0.0029180
6	5.3909400	0.1648490	-0.0074970
6	7.2007850	1.4100150	-0.0063980
6	8.0769410	2.4737610	-0.0074960
6	9.4364990	2.1503240	-0.0226190
6	9.8569350	0.8184670	-0.0375990
6	8.9621320	-0.2546370	-0.0379010
6	7.6140380	0.0712330	-0.0207360
1	7.7273520	3.4988220	-0.0012110
1	10.1752540	2.9435930	-0.0297260
1	9.3041040	-1.2822970	-0.0565390
7	6.4540600	-0.6705580	-0.0217630
8	4.6901820	-2.5228200	-0.0265740
6	3.0081510	0.7615300	0.0114490
6	2.3864690	-1.9792760	-0.0103870
6	1.7034680	0.3807500	0.0140100
1	3.2741800	1.8149210	0.0201550
1	2.1343400	-3.0365800	-0.0190240
1	0.9279590	1.1379980	0.0253740
6	0.0002670	-1.4521170	0.0036250
1	-0.1375560	-2.5312560	-0.0033230
6	-1.1350230	-0.6425030	0.0101790
1	-1.0006060	0.4364690	0.0138730
6	1.3493370	-1.0208600	0.0026480
6	-2.4758000	-1.0817260	0.0102290
6	-3.5257070	-0.1056860	0.0113240
6	-2.8435050	-2.4799890	0.0086070
6	-4.8115880	-0.5574910	0.0095610
1	-3.2956510	0.9543900	0.0125600
6	-4.1420710	-2.9033640	0.0074410
1	-2.0553670	-3.2241940	0.0088390
6	-5.1834570	-1.9322610	0.0075560
1	-4.3821410	-3.9613410	0.0064130
8	-5.9370890	0.2184720	0.0088820
6	-7.0141200	-0.6301160	0.0062580
6	-6.5817360	-1.9585210	0.0056740
1	-7.2211750	-2.8295040	0.0036440
6	-8.3100120	-0.0490810	0.0037830
6	-8.4866090	1.3552040	0.0028720

6	-9.4723390	-0.8578280	0.0014440
6	-9.7401590	1.9193200	-0.0005940
1	-7.6125760	1.9976150	0.0047100
6	-10.7296840	-0.3060850	-0.0019160
1	-9.3755110	-1.9391990	0.0022780
6	-10.9085700	1.1069210	-0.0033090
1	-9.8279490	2.9984620	-0.0013630
1	-11.5897550	-0.9634810	-0.0036530
7	-12.1484980	1.6574920	-0.0071770
6	-13.3274470	0.8066620	-0.0099270
1	-13.3574220	0.1682650	0.8802710
1	-14.2165890	1.4345600	-0.0128820
1	-13.3523900	0.1669620	-0.8993540
6	-12.3060260	3.1027630	-0.0094010
1	-11.8467220	3.5496130	-0.8983490
1	-13.3676030	3.3430950	-0.0127660
1	-11.8518870	3.5518200	0.8810770
1	6.2123740	-1.6816590	-0.0286250
8	5.8305060	1.4526290	0.0015880
6	11.3287230	0.5246910	0.0092570
9	11.6236450	-0.6469530	-0.5737060
9	12.0498300	1.4739100	-0.6055480
9	11.7822570	0.4529600	1.2726540

Enol-HBO 2 ground-state structure in dichloromethane + HCl G -1867.266000 au

6	-3.7430710	1.6693830	-0.2666400
6	-4.1236180	0.3757980	0.1488300
6	-5.5207060	-0.0026690	0.1193910
6	-7.2242700	-1.3034730	0.3828210
6	-8.0802670	-2.3569020	0.6603130
6	-9.4249370	-2.1169990	0.4081050
6	-9.8625340	-0.8792540	-0.0953080
6	-8.9907600	0.1671350	-0.3671660
6	-7.6407230	-0.0676840	-0.1155590
1	-7.7233220	-3.3031620	1.0481330
1	-10.1541260	-2.8968380	0.6025020
1	-9.3398630	1.1166510	-0.7546410
7	-6.5187450	0.7375230	-0.2698790
8	-4.6174030	2.5931560	-0.6986060
6	-3.1369030	-0.5225020	0.5896140
6	-2.3920230	2.0224530	-0.2335270
6	-1.8065160	-0.1625700	0.6161460
1	-3.4414530	-1.5108280	0.9181240
1	-2.1217580	3.0221730	-0.5597160
1	-5.5279200	2.2191430	-0.6759570
1	-1.0711550	-0.8703310	0.9812440
6	-0.0134810	1.5644800	0.1791360
1	0.1296750	2.6285470	0.0025130
6	1.0557950	0.7656040	0.3263090
1	0.9053670	-0.3061310	0.4440200
6	-1.4136860	1.1243680	0.1917590
6	2.4615030	1.1864440	0.3069980
6	3.4431260	0.1945590	0.2264240
6	2.8464000	2.5503810	0.3664360
6	4.7642230	0.6108400	0.1887660
1	3.1833690	-0.8582470	0.1861510
6	4.1706320	2.9427840	0.3302300
1	2.0795680	3.3120730	0.4582290
6	5.1626640	1.9531020	0.2349020
1	4.4374840	3.9931970	0.3807650

8	5.8530480	-0.1999330	0.1018620
6	6.9531340	0.6186090	0.0910510
6	6.5976140	1.9299620	0.1705160
1	7.2642560	2.7801600	0.1795220
6	8.2470050	-0.0481140	-0.0083500
6	8.3195530	-1.4428340	-0.0928980
6	9.4310140	0.7029920	-0.0255900
6	9.5515550	-2.0776270	-0.1979570
1	7.4105740	-2.0324420	-0.0791030
6	10.6640250	0.0785390	-0.1309990
1	9.3920500	1.7847560	0.0415050
6	10.7051170	-1.3091740	-0.2178370
1	9.6012820	-3.1605400	-0.2644330
1	11.5688200	0.6774470	-0.1465090
7	12.0088850	-1.9934090	-0.3425860
6	12.7253530	-1.6191200	-1.6085300
1	12.9812590	-0.5619570	-1.5584210
1	13.6271850	-2.2252100	-1.6819210
1	12.0565430	-1.8109660	-2.4456980
6	12.8776710	-1.7986560	0.8670120
1	12.3093610	-2.1004730	1.7450080
1	13.7688360	-2.4137990	0.7485680
1	13.1496260	-0.7462060	0.9305750
8	-5.8684430	-1.2526790	0.5298230
6	-11.3340100	-0.7185820	-0.3448230
9	-11.7786800	-1.6006280	-1.2559080
9	-11.6457160	0.5053710	-0.7900640
9	-12.0506810	-0.9336390	0.7711640
1	11.8081780	-2.9977460	-0.4020000

Keto-HBO 2 ground-state structure in dichloromethane + HCl *G* -1867.244875 au

	0		
6	3.8022410	1.6379680	0.1759520
6	4.1013710	0.2413730	-0.0891780
6	5.4474150	-0.1351050	-0.0747940
6	7.2496790	-1.3724760	-0.2072020
6	8.1225830	-2.4306760	-0.3611300
6	9.4730790	-2.1276320	-0.2053090
6	9.8934880	-0.8243520	0.0880480
6	9.0029370	0.2359480	0.2420270
6	7.6603180	-0.0732690	0.0860780
1	7.7744750	-3.4312910	-0.5853450
1	10.2127200	-2.9143050	-0.3078270
1	9.3408090	1.2386700	0.4722700
7	6.4911570	0.6691870	0.1606660
8	4.6927740	2.4994480	0.4135690
6	3.0709720	-0.7023150	-0.3577120
6	2.4006220	1.9711370	0.1483790
6	1.7627560	-0.3225840	-0.3686020
1	3.3465460	-1.7336610	-0.5590170
1	2.1458010	3.0088910	0.3452740
1	0.9927530	-1.0519510	-0.5887730
6	0.0183780	1.4997660	-0.0967980
1	-0.1075120	2.5724270	0.0362880
6	-1.0648500	0.7143890	-0.2139080
1	-0.9345910	-0.3615860	-0.3102420
6	1.4144150	1.0451300	-0.1049970
6	-2.4647250	1.1554620	-0.2016280
6	-3.4599310	0.1750220	-0.1532600
6	-2.8331590	2.5249390	-0.2391710
6	-4.7765740	0.6062080	-0.1301230

1	-3.2136370	-0.8815140	-0.1286030
6	-4.1530440	2.9325240	-0.2171230
1	-2.0566780	3.2798520	-0.2990780
6	-5.1585890	1.9535780	-0.1582800
1	-4.4062740	3.9870250	-0.2497370
8	-5.8761000	-0.1930870	-0.0774070
6	-6.9668360	0.6380810	-0.0710800
6	-6.5946600	1.9463700	-0.1194780
1	-7.2510640	2.8045180	-0.1245800
6	-8.2694050	-0.0158820	-0.0076830
6	-8.3575790	-1.4111900	0.0482010
6	-9.4461140	0.7468730	0.0035390
6	-9.5973670	-2.0349950	0.1210640
1	-7.4543940	-2.0096810	0.0378700
6	-10.6869800	0.1332780	0.0763900
1	-9.3955060	1.8292860	-0.0422970
6	-10.7434040	-1.2553070	0.1373020
1	-9.6589510	-3.1184150	0.1661680
1	-11.5858300	0.7412310	0.0875500
7	-12.0552300	-1.9289740	0.2319120
6	-12.7889210	-1.5629590	1.4901930
1	-13.0333830	-0.5027290	1.4491520
1	-13.6979710	-2.1602770	1.5404230
1	-12.1364420	-1.7722910	2.3360280
6	-12.9028920	-1.7129900	-0.9889000
1	-12.3240050	-2.0114400	-1.8611030
1	-13.8018190	-2.3204390	-0.8907620
1	-13.1632200	-0.6572050	-1.0452370
1	6.2767060	1.6622590	0.3484140
8	5.8779530	-1.3907290	-0.3027520
6	11.3710510	-0.5722780	0.1981420
9	11.6403850	0.6156500	0.7548970
9	11.9761430	-1.5135910	0.9381150
9	11.9645400	-0.5901020	-1.0062460
1	-11.8642960	-2.9357340	0.2831650
BO	2 excited-state st	tructure in dichle	oromethane +]

Enol-HB HCl G -1867.158045 au

6	-3.7596090	1.7424460	0.0473260
6	-4.1254420	0.3571480	-0.0141090
6	-5.4981690	-0.0175560	-0.0156500
6	-7.1866900	-1.3734210	-0.0654330
6	-8.0221580	-2.4749220	-0.1169210
6	-9.3859530	-2.1994370	-0.0872430
6	-9.8582880	-0.8780330	-0.0092390
6	-9.0080700	0.2196630	0.0415380
6	-7.6377150	-0.0473850	0.0112320
1	-7.6377590	-3.4857040	-0.1795700
1	-10.0993180	-3.0157940	-0.1299920
1	-9.3861500	1.2333370	0.0983800
7	-6.5411240	0.7855480	0.0404520
8	-4.6808410	2.7213540	0.1075750
6	-3.0968870	-0.6188380	-0.0748280
6	-2.4284430	2.0937060	0.0445440
6	-1.7768870	-0.2643670	-0.0748370
1	-3.3808620	-1.6648980	-0.1219410
1	-2.1767310	3.1487010	0.0917460
1	-5.5825890	2.3243480	0.1027880
1	-1.0221600	-1.0402880	-0.1238970
6	-0.0479730	1.5423560	-0.0142350
1	0.1061950	2.6176960	0.0223640

1 0.9163490 -0.3696020 -0.060 6 -1.3906190 1.1190350 -0.013 6 2.4195340 1.1178010 -0.052 6 3.4461770 0.1165330 -0.063 6 2.8139560 2.5099570 -0.043 6 4.7412500 0.5434970 -0.053 1 3.1924240 -0.9378850 -0.063 6 4.1218930 2.9040810 -0.043 1 2.0420610 3.2706440 -0.043 6 5.1375820 1.9093070 -0.053 1 4.3858330 3.9559910 -0.043 8 5.8497150 -0.2528200 -0.053 6 6.9378100 0.5785580 -0.053 6 6.5432450 1.9059710 -0.056 1 7.1984400 2.7652660 -0.043 6 8.2324470 -0.0482740 -0.033 6 8.3431200 -1.4515360 -0.000 6 9.4084290 0.7302260 -0.033 6 9.5898130 -2.0559860 0.033 1 7.4480340 -2.0620670 0.000 6 10.7297130 -1.2618150 0.033 1 9.6669480 -3.1391780 0.065 1 11.5459710 0.7479110 -0.00 7 12.0494880 -1.9207060 0.09 6 12.8707770 -1.6819420 -1.133 1 13.7769350 -2.2825100 -1.06 1 12.2770780 -1.9745010	80380
	63320
	52370
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21820
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16510
	57660
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94670
	54640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20550
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38060
$\begin{array}{llllllllllllllllllllllllllllllllllll$	38140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89880
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31890
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33550
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90350
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67960
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08030
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030710
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00560
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	391380
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58540
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$)59050
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	981380
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	368380
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	839700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	647970
	010280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	444810
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)24460
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	543130
8 -5.8257550 -1.3461160 -0.08 6 -11.3438620 -0.6748130 0.05 9 -11.9873330 -1.4081470 -0.86 9 -11.6923630 0.6049590 -0.13 9 -11.8412110 -1.0460210 1.25 1 11.8706110 -2.9301980 0.14	135540
6-11.3438620-0.67481300.059-11.9873330-1.4081470-0.869-11.69236300.6049590-0.139-11.8412110-1.04602101.25111.8706110-2.93019800.14	317810
9 -11.9873330 -1.4081470 -0.86 9 -11.6923630 0.6049590 -0.13 9 -11.8412110 -1.0460210 1.25 1 11.8706110 -2.9301980 0.14	594140
9-11.69236300.6049590-0.139-11.8412110-1.04602101.25111.8706110-2.93019800.14	640540
9 -11.8412110 -1.0460210 1.25 1 11.8706110 -2.9301980 0.14	305110
1 11.8706110 -2.9301980 0.14	520840
	118020

Keto-HBO 2 excited-state structure in dichloromethane + HCl G -1867.139264 au

6	-3.7863820	1.7546330	-0.0976770
6	-4.1211850	0.3048430	0.0220350
6	-5.4759890	-0.0737720	0.0154810
6	-7.2398750	-1.3770500	0.0843840
6	-8.0802150	-2.4695870	0.1581020
6	-9.4461620	-2.1923860	0.0840000
6	-9.9124700	-0.8792860	-0.0570480
6	-9.0603250	0.2211150	-0.1321960
6	-7.6993980	-0.0589870	-0.0565480
1	-7.6973800	-3.4770630	0.2624770
1	-10.1599320	-3.0072450	0.1296480
1	-9.4339120	1.2310580	-0.2472360
6	-6.5679710	0.7158600	-0.0958320
8	-4.7197020	2.5942060	-0.2018170
6	-3.0967360	-0.6424900	0.1387330
6	-2.4118500	2.0915340	-0.0857860
6	-1.7648320	-0.2389130	0.1414100

1	-3.3425510	-1.6955670	0.2275820
1	-2.1689160	3.1464570	-0.1728690
1	-1.0008000	-1.0023380	0.2370810
6	-0.0068290	1.5411390	0.0318380
1	0.1433760	2.6173330	-0.0350730
6	1.0866280	0.7324370	0.0977810
1	0.9497190	-0.3458510	0.1442740
6	-1.3881140	1.1364980	0.0282090
6	2.4727820	1.1612330	0.0984460
6	3.4754490	0.1759320	0.0957180
6	2.8566670	2.5343800	0.1005060
6	4.7905540	0.6010000	0.0869180
1	3.2260190	-0.8800910	0.0944840
6	4.1761120	2.9335640	0.0942210
1	2.0860470	3.2972240	0.1130070
6	5.1818410	1.9491590	0.0854960
1	4.4333810	3.9877450	0.0972240
8	5.8887190	-0.2040720	0.0745070
6	6.9845600	0.6224810	0.0639200
6	6.6135030	1.9350310	0.0716200
1	7.2737190	2.7904470	0.0634600
6	8.2830700	-0.0335480	0.0331960
6	8.3700950	-1.4311260	-0.0028240
6	9.4640010	0.7255080	0.0304890
6	9.6088980	-2.0582170	-0.0505720
1	7.4653580	-2.0273320	0.0019260
6	10.7034240	0.1079030	-0.0170980
1	9.4163000	1.8085660	0.0629320
6	10.7577940	-1.2819200	-0.0612360
1	9.6684640	-3.1423740	-0.0813620
1	11.6039950	0.7134550	-0.0221770
6	12.0690460	-1.9593390	-0.1328710
6	12.8185370	-1.6075550	-1.3857940
1	13.0600300	-0.5463090	-1.3544240
1	13.7296910	-2.2028600	-1.4168840
1	12.1779090	-1.8286470	-2.2376460
6	12.9040190	-1.7328610	1.0946450
1	12.3140590	-2.0173950	1.9640550
1	13.8008430	-2.3461300	1.0142900
1	13.1691280	-0.6777330	1.1406240
1	-6.4229920	1.7273210	-0.1845800
8	-5.8745020	-1.3665770	0.1261820
6	-11.3976550	-0.6473400	-0.0705030
9	-11.7185890	0.5008870	-0.6824930
9	-12.0489400	-1.6373530	-0.6974480
9	-11.8981360	-0.5813980	1.1739620
1	11.8762910	-2.9661230	-0.1762390

Enol-HBO 2 ground-state structure in acetone G -1866.854224 au

	0		
6	-3.7282330	1.7168650	0.1390460
6	-4.0799830	0.3656840	-0.0638370
6	-5.4744680	-0.0206870	-0.0534060
6	-7.1541900	-1.3717710	-0.1870260
6	-7.9871270	-2.4700650	-0.3249260
6	-9.3463350	-2.2080380	-0.2084280
6	-9.8191150	-0.9062450	0.0334490
6	-8.9698180	0.1844340	0.1692270
6	-7.6054720	-0.0724980	0.0530800
1	-7.6029390	-3.4653870	-0.5117510
1	-10.0590840	-3.0204270	-0.3067920

1	-9.3462830	1.1831510	0.3548810
7	-6.4981010	0.7632080	0.1318900
8	-4.6311930	2.6906230	0.3477750
6	-3.0643020	-0.5823340	-0.2776450
6	-2.3791210	2.0770040	0.1253700
6	-1.7362620	-0.2144330	-0.2892490
1	-3.3440410	-1.6182200	-0.4394450
1	-2.1324030	3.1222920	0.2852050
1	-5.5371810	2.3053280	0.3341260
1	-0.9797310	-0.9691950	-0.4699020
6	0.0209420	1 5938210	-0.0725780
1	0.1422640	2 6721250	0.0061010
6	1 1071110	0.8051220	-0 1343520
1	0.97/5120	-0.2744410	-0.1817260
6	1 3710/20	1 1335120	0.0805040
6	2 5070410	1.1333120	0.1287010
6	2.5070410	0.2544160	-0.1287910
6	2 8826270	0.2344100	-0.0877070
0	2.8830370	2.0037730	-0.1032090
0	4.8185470	0.0702310	-0.0/6/8/0
I	5.2481620	-0.8009780	-0.0626900
0	4.2083130	3.0046400	-0.1540010
I	2.1126590	3.3677260	-0.2119410
6	5.2104890	2.0221670	-0.10/0560
1	4.4660290	4.0583570	-0.1851160
8	5.9147400	-0.1294350	-0.0379360
6	7.0162650	0.6922840	-0.0435280
6	6.6461960	2.0047970	-0.0846600
1	7.3089890	2.8576130	-0.0980420
6	8.3118000	0.0309370	-0.0073100
6	8.4169760	-1.3652350	0.0342290
6	9.4993660	0.7755960	-0.0091360
6	9.6496050	-1.9958380	0.0687690
1	7.5148980	-1.9684770	0.0430760
6	10.7378880	0.1609850	0.0248130
1	9.4570570	1.8609510	-0.0344650
6	10.8500490	-1.2495700	0.0567460
1	9.6786150	-3.0777950	0.1063920
1	11.6259830	0.7807150	0.0275720
7	12.0753770	-1.8664890	0.0713720
6	13.2778770	-1.0673300	0.2086850
1	13.2825170	-0.4847420	1.1399350
1	14.1442110	-1.7279440	0.2107390
1	13.3863340	-0.3717300	-0.6307760
6	12.1494910	-3.3037170	0.2505040
1	11.6387840	-3.8283140	-0.5645530
1	13.1953330	-3.6087810	0.2426610
1	11.7000130	-3.6250990	1.1999480
8	-5.7919600	-1.3288640	-0.2534900
6	-11.3038780	-0.7248970	0.1557790
9	-11.9486010	-1.1798740	-0.9319220
9	-11.6508600	0.5586280	0.3178790
9	-11.8004330	-1.4071910	1.2020330

Keto-HBO 2 ground-state structure in acetone G -1866.833598 au

6	-3.7730870	1.6720480	0.0782120
6	-4.0563990	0.2569450	-0.0867580
6	-5.3994190	-0.1303180	-0.0799920
6	-7.1863340	-1.3945680	-0.1588800
6	-8.0452460	-2.4700490	-0.2595470
6	-9.4026690	-2.1706660	-0.1644410

6	-9.8420060	-0.8542690	0.0211810
6	-8.9648840	0.2244570	0.1198900
6	-7.6162370	-0.0812230	0.0246800
1	-7.6830010	-3.4798880	-0.4066040
1	-10.1323400	-2.9692160	-0.2412020
1	-9.3173120	1.2390950	0.2584820
7	-6.4563620	0.6780670	0.0662440
8	-4.6767550	2.5421990	0.2217930
6	-3.0120280	-0.6960790	-0.2479000
6	-2.3742690	2.0132520	0.0674550
6	-1 7062010	-0 3077060	-0 2483950
1	-3 2746050	-1 7428020	-0 3727390
1	-2 1310940	3.0652270	0 1904390
1	-0.9260110	-1 0476740	-0 3794620
6	0.0181770	1.5459500	-0.0691160
1	0.1320110	2 62/6390	0.0180060
6	1 1110850	0.7668580	0.1377230
1	0.0804650	0.2126660	-0.1377230
1	1 2720610	1 0704670	-0.2033310
6	-1.5/50010	1.0794070	-0.0830300
0	2.50/0490	0.2266710	-0.1190880
0	3.5100000	0.2300/10	-0.0992790
0	2.8727930	2.5855550	-0.1225740
0	4.8241070	0.6694070	-0.0744120
I	3.2667200	-0.8212000	-0.0996670
6	4.1939380	2.9933580	-0.0984350
I	2.0953430	3.3395390	-0.1515560
6	5.2045500	2.0189440	-0.0715410
1	4.4424820	4.0497460	-0.1031770
8	5.9275180	-0.1274670	-0.0497850
6	7.0217780	0.7038280	-0.0308820
6	6.6403680	2.0135550	-0.0435020
1	7.2956660	2.8722230	-0.0351520
6	8.3232970	0.0537350	-0.0025450
6	8.4424770	-1.3418620	-0.0113010
6	9.5030230	0.8095800	0.0396070
6	9.6811480	-1.9610320	0.0164860
1	7.5467190	-1.9539730	-0.0371860
6	10.7473580	0.2064910	0.0675210
1	9.4496840	1.8946200	0.0554130
6	10.8737940	-1.2030370	0.0486980
1	9.7208570	-3.0433140	0.0142720
1	11.6287780	0.8344980	0.1061320
7	12.1053180	-1.8080200	0.0574020
6	13.2971550	-1.0027270	0.2431600
1	13.2828580	-0.4572190	1.1965610
1	14.1704040	-1.6540980	0.2313090
1	13.4096260	-0.2736040	-0.5667680
6	12.1916660	-3.2498330	0.1875600
1	11.6981950	-3.7505740	-0.6527090
1	13.2406300	-3.5440980	0.1844650
1	11.7319940	-3.6086730	1.1185530
1	-6.2589470	1.6845420	0.1841270
8	-5 8127050	-1 4042460	-0 2213270
6	-11 3182060	-0 6148000	0 1683350
9	-11 6440550	0.6666530	-0 0477580
9	-12 028/1550	-1 3636360	-0 688///00
o o	-11 7/87300	-0.0280820	1 4014740
/	11.7-07500	-0.7200020	1.4014/40

Enol-HBO 2 excited-state structure in acetone G -1866.751492 au

6 -3.7183960 1.7387650 0.0082400

6	-4.0894010	0.3562490	-0.0319430
6	-5.4600530	-0.0162420	-0.0300520
6	-7.1500240	-1.3778300	-0.0560900
6	-7.9823100	-2.4810850	-0.0873510
6	-9.3491590	-2.2110430	-0.0632570
6	-9.8228200	-0.8914610	-0.0103290
6	-8.9727130	0.2103530	0.0202690
6	-7 6028570	-0.0515400	-0.0045080
1	-7 5947840	-3 4918080	-0.1311190
1	-10.0591900	-3 0307620	-0.0909750
1	9 35/6160	1 2236480	0.0570240
1	-9.3340100 6 5060250	0.7854070	0.0079240
/ Q	-0.3009230	0.7834970	0.0098550
6	-4.0437320	2.7223380	0.0480140
6	-3.0346700	-0.0102470	-0.0750550
0	-2.38//400	2.0915440	0.0009410
0	-1./34//00	-0.2608870	-0.0726800
1	-3.3348620	-1.6645030	-0.1049080
1	-2.1392270	3.1484440	0.0388100
1	-5.5426310	2.3192910	0.0462720
I	-0.9804540	-1.0388350	-0.1057960
6	0.0008040	1.5462620	-0.0255730
1	0.1485700	2.6233470	0.0010620
6	1.1285960	0.7190640	-0.0436770
1	0.9757240	-0.3574970	-0.0594230
6	-1.3439940	1.1203080	-0.0313980
6	2.4724570	1.1360550	-0.0367560
6	3.5091120	0.1430160	-0.0394580
6	2.8621630	2.5297590	-0.0253290
6	4.8004380	0.5755570	-0.0274940
1	3.2627530	-0.9133980	-0.0479090
6	4.1665620	2.9327970	-0.0152780
1	2.0855480	3.2861230	-0.0265420
6	5.1936150	1.9452730	-0.0150130
1	4.4232360	3.9868160	-0.0074670
8	5.9146190	-0.2169590	-0.0237950
6	7.0041310	0.6153250	-0.0085300
6	6.5909570	1.9508940	-0.0037270
1	7.2431100	2.8123740	0.0079690
6	8.2906190	0.0156840	0.0018890
6	8.4468040	-1.3914250	-0.0000900
6	9.4648350	0.8076600	0.0167120
6	9 691 5840	-1 9739150	0.0130480
1	7 5638230	-2.0214110	-0.0115050
6	10 7136490	0 2376380	0.0295870
1	9 3840660	1 8903190	0.0180780
6	10 8720840	-1 1783/70	0.0100700
1	0.7634440	3 05/2010	0.0207200
1	9.7034440 11 5831120	-3.0342010	0.0113330
1	12 1028200	17462870	0.0407380
6	12.1020000	-1.7403670	0.0431730
0	13.2944/80	-0.9120400	0.0392820
1	13.3199030	-0.2/38120	0.9303960
1	14.1/40690	-1.5556040	0.068/950
I	13.3416300	-0.2727060	-0.8288870
0	12.2399710	-3.1942030	0.0445240
1	11.7879890	-3.6350060	-0.8509940
1	13.2979170	-3.4493240	0.0576720
1	11.7657550	-3.6353520	0.9283250
8	-5.7880410	-1.3485370	-0.0721510
6	-11.3068310	-0.6859600	0.0633060
9	-11.9633960	-1.4751820	-0.8038910

9	-11.6613810	0.5797800	-0.2012880
9	-11.7919680	-0.9805180	1.2832950

Keto-HBO 2 excited-state structure in acetone G -1866.731086 au

IIDU			1000.751
6	3.7590810	-1.6680710	-0.0162240
6	4.0581900	-0.2273390	0.0028970
6	5.3905800	0.1507350	-0.0025790
6	7.1941800	1.4057460	0.0012150
6	8.0640680	2.4747250	0.0041860
6	9.4251450	2.1588530	-0.0166840
6	9.8530190	0.8293010	-0.0408980
6	8.9644080	-0.2488530	-0.0450560
6	7.6148640	0.0699120	-0.0222450
1	7 7090140	3 4978160	0.0176630
1	10 1592170	2 9564880	-0.0209270
1	9 3115200	-1 2746320	-0.0705710
7	6 4582960	-0.6784620	-0.0705710
8	4 6007050	2 5302540	0.0243320
6	4.0907930	-2.3392340	-0.0337280
0	3.0080870	1.0057800	0.0234130
0	2.380/010	-1.9957800	-0.0110900
0	1.7032770	0.3042140	0.0281160
1	3.2/39390	1.7976360	0.0401/20
1	2.1337990	-3.0529950	-0.0263460
I	0.9285540	1.1221230	0.0459600
6	-0.0000440	-1.4681530	0.0089110
1	-0.1393800	-2.5470710	-0.0030700
6	-1.1353710	-0.6559940	0.0189690
1	-0.9985800	0.4226700	0.0257710
6	1.3480630	-1.0374610	0.0088130
6	-2.4757400	-1.0915200	0.0176080
6	-3.5238950	-0.1119350	0.0193700
6	-2.8475760	-2.4893770	0.0135100
6	-4.8103070	-0.5603340	0.0151580
1	-3.2907280	0.9474990	0.0224520
6	-4.1469800	-2.9091000	0.0102820
1	-2.0615690	-3.2359150	0.0138230
6	-5.1862530	-1.9346730	0.0104850
1	-4.3903010	-3.9663020	0.0075340
8	-5.9340660	0.2183730	0.0138540
6	-7.0133690	-0.6274670	0.0080890
6	-6.5835380	-1.9578530	0.0063670
1	-7.2249360	-2.8274020	0.0018990
6	-8.3071730	-0.0442780	0.0036420
6	-8 4812680	1 3608860	0.0032650
6	-9 4713920	-0.8513210	-0.0016670
6	-9 7333950	1 9272880	-0.0027160
1	-7 6062540	2 0019770	0.0073990
6	-107273680	-0.2973630	-0.007/1830
1	0 3766600	1 0328420	0.0011040
6	10.0037650	-1.9520420	-0.0011940
1	-10.9057050	2.0065560	-0.0080220
1	-9.0192090	0.0520000	-0.0050750
1	-11.3880300	-0.9330900	-0.0114550
1	-12.1410//0	1.0088900	-0.0152390
6	-13.322/550	0.8201560	-0.0211780
1	-13.3556000	0.1816650	0.8686/40
1	-14.2103570	1.4500140	-0.0259470
1	-13.3463590	0.1811220	-0.9109490
6	-12.2972700	3.1148550	-0.0175940
1	-11.8349770	3.5607040	-0.9053310
1	-13.3584600	3.3563740	-0.0235910

1	-11.8446210	3.5626300	0.8741210
1	6.2306640	-1.6900620	-0.0369740
8	5.8234750	1.4401870	0.0131040
6	11.3266140	0.5440480	-0.0006190
9	11.6262680	-0.6251660	-0.5861190
9	12.0396540	1.4981200	-0.6173310
9	11.7862030	0.4736540	1.2608160

au

Coordinates for HBT:

Enol-HBT	ground-state stru	cture in cyclohe	exane G -1852.873129
6	4.9924880	-1.4605140	0.0048750
6	5.3121550	-0.0829920	0.0036040
6	6.7038730	0.3465950	0.0029850
6	8.8311180	1.5844130	0.0016690
6	9.9692050	2.3899910	0.0008670
6	11.2088010	1.7654490	0.0010320
6	11.3141790	0.3657050	0.0019740
6	10.1831590	-0.4340240	0.0027750
6	8.9258970	0.1803980	0.0026240
1	9.8884510	3.4717720	0.0001350
1	12.1092840	2.3708050	0.0004180
1	10.2483210	-1.5168550	0.0035040
7	7.7107220	-0.4792420	0.0033470
8	5.9173440	-2.4310600	0.0054740
6	4.2550900	0.8449110	0.0031880
6	3.6506570	-1.8527550	0.0055770
6	2.9362450	0.4484480	0.0038680
1	4.4846920	1.9076230	0.0024980
1	3.4415630	-2.9182680	0.0064950
1	6.8114440	-2.0122140	0.0048450
1	2.1563490	1.2010310	0.0040950
6	1.2330580	-1.4246930	0.0054050
1	1.1464870	-2.5092290	0.0105450
6	0.1205270	-0.6723710	-0.0006020
1	0.2179250	0.4120730	-0.0070730
6	2.6115850	-0.9248670	0.0048830
6	-1.2646440	-1.1519240	-0.0001970
6	-2.2902030	-0.1993340	-0.0117180
6	-1.5975640	-2.5283890	0.0113780
6	-3.5941120	-0.6619320	-0.0114170
1	-2.0733590	0.8641480	-0.0207970
6	-2.9080720	-2.9691310	0.0114460
1	-0.8017450	-3.2655750	0.0208880
6	-3.9419260	-2.0198240	-0.0001840
1	-3.1310690	-4.0312570	0.0205820
1	12.2964330	-0.0951950	0.0020740
8	-4.7154110	0.1086490	-0.0216290
6	-5.7888690	-0.7472780	-0.0170540
6	-5.3771810	-2.0472500	-0.0043670
1	-6.0131510	-2.9201190	0.0002110
6	-7.1063580	-0.1291450	-0.0269650
6	-7.2583550	1.2620210	-0.0487200
6	-8.2672100	-0.9123290	-0.0095500
6	-8.5123120	1.8501500	-0.0573180
1	-6.3758720	1.8932920	-0.0552690
6	-9.5260510	-0.3394910	-0.0181870
1	-8.18/0810	-1.9954830	0.0159230
6	-9.6848570	1.0643780	-0.0517350

1	-8.5782570	2.9310690	-0.0677020
1	-10.3927740	-0.9884410	0.0028300
7	-10.9344180	1.6413870	-0.0822810
6	-12.1049200	0.8100940	0.1110070
1	-12.0920180	0.2895900	1.0792180
1	-12.9961670	1.4361270	0.0673180
1	-12.1859680	0.0577290	-0.6811720
6	-11.0551270	3.0770720	0.0687910
1	-10.5462090	3.6005440	-0.7479730
1	-12.1096780	3.3504770	0.0336500
1	-10.6341350	3.4331270	1.0198300
16	7.1528310	2.0555750	0.0016930

Keto-HBT ground-state structure in cyclohexane G -1852.855175 au

6	5.0159940	-1.4104500	0.2044190
6	5.2855380	-0.0031000	-0.0482410
6	6.6254770	0.4215650	-0.0282480
6	8.8651550	1.5139030	-0.0694570
6	10.0344710	2.2646510	-0.1267910
6	11.2431390	1.6121600	0.0920910
6	11.2802490	0.2389890	0.3622310
6	10.1150610	-0.5139800	0.4202940
6	8.9032300	0.1391990	0.2010550
1	10.0034710	3.3284770	-0.3363800
1	12.1678770	2.1774610	0.0520150
1	10.1341090	-1.5781270	0.6286640
7	7.6379090	-0.4188750	0.2131200
8	5.9276330	-2.2559050	0.4389320
6	4.2162440	0.8979910	-0.3098730
6	3.6293310	-1.7899530	0.1721080
6	2.9201790	0.4805900	-0.3268710
1	4.4446800	1.9443070	-0.5051730
1	3.4145680	-2.8378480	0.3613590
1	2.1291210	1.1883270	-0.5433830
6	1.2319190	-1.3957530	-0.0742300
1	1.1403180	-2.4728120	0.0509730
6	0.1222210	-0.6475300	-0.1886130
1	0.2196350	0.4331360	-0.2751920
6	2.6114550	-0.8980280	-0.0751860
6	-1.2621820	-1.1309630	-0.1874910
6	-2.2916300	-0.1840810	-0.1361940
6	-1.5887740	-2.5078790	-0.2391340
6	-3.5931430	-0.6535260	-0.1243950
1	-2.0794780	0.8798150	-0.1006430
6	-2.8971540	-2.9554730	-0.2279720
1	-0.7888930	-3.2380720	-0.3027880
6	-3.9347630	-2.0123940	-0.1665190
1	-3.1154870	-4.0177110	-0.2723760
1	12.2350850	-0.2478730	0.5293610
8	-4.7177840	0.1108490	-0.0731090
6	-5.7871640	-0.7501860	-0.0822050
6	-5.3699370	-2.0469890	-0.1387330
1	-6.0020150	-2.9224940	-0.1587690
6	-7.1070760	-0.1388700	-0.0310050
6	-7.2647020	1.2509880	0.0156270
6	-8.2642320	-0.9275170	-0.0204780
6	-8.5206630	1.8327690	0.0675140
1	-6.3849170	1.8860510	0.0154400
6	-9.5249900	-0.3609170	0.0307210
1	-8.1794960	-2.0102760	-0.0479220

6	-9.6897050	1.0420480	0.0675290
1	-8.5906870	2.9126650	0.1094190
1	-10.3884610	-1.0144150	0.0436030
7	-10.9422070	1.6140860	0.0978170
6	-12.1023840	0.7688990	0.2936670
1	-12.0548800	0.2061890	1.2369640
1	-12.9969330	1.3916380	0.3075590
1	-12.2074810	0.0519040	-0.5278580
6	-11.0625740	3.0394550	0.3271020
1	-10.5769070	3.6065380	-0.4744670
1	-12.1184070	3.3101820	0.3336670
1	-10.6173300	3.3474400	1.2839600
1	7.3100700	-1.4098160	0.3805470
16	7.2076370	2.0515990	-0.3005040

Enol-HBT excited-state structure in cyclohexane G -1852.764416 au

6	4.976560	-1.488404	-0.000009
6	5.317607	-0.091683	-0.000002
6	6.682813	0.323998	0.000000
6	8.822689	1.564677	0.000006
6	9.959334	2.367543	0.000008
6	11.203833	1.746761	0.000004
6	11.307107	0.347138	-0.000003
6	10.177453	-0.454277	-0.000005
6	8.911610	0.153089	-0.000001
1	9.876701	3.449586	0.000014
1	12.103431	2.353495	0.000007
1	10.246152	-1.537011	-0.000011
7	7.711219	-0.505313	-0.000004
8	5.918105	-2.447707	-0.000014
6	4.248600	0.844355	0.000004
6	3.652670	-1.873209	-0.000010
6	2.937946	0.456188	0.000002
1	4.483614	1.905889	0.000010
1	3.436431	-2.937461	-0.000016
1	6.806466	-2.011903	-0.000012
1	2.162485	1.213815	0.000009
6	1.249360	-1.393493	-0.000007
1	1.132282	-2.474829	-0.000009
6	0.104470	-0.603270	-0.000010
1	0.224139	0.477490	-0.000021
6	2.587673	-0.932965	-0.000005
6	-1.233466	-1.063761	-0.000003
6	-2.295517	-0.107293	-0.000013
6	-1.577672	-2.465167	0.000014
6	-3.576628	-0.579532	-0.000005
1	-2.083692	0.956512	-0.000026
6	-2.871128	-2.909292	0.000021
1	-0.777244	-3.196111	0.000023
6	-3.925177	-1.957187	0.000011
1	-3.092861	-3.971452	0.000034
1	12.289542	-0.114497	-0.000006
8	-4.712662	0.179566	-0.000011
6	-5.776061	-0.685160	0.000002
6	-5.328716	-2.001960	0.000014
1	-5.956188	-2.881521	0.000024
6	-7.083912	-0.115314	0.000001
6	-7.273176	1.283889	-0.000004
6	-8.235919	-0.932481	0.000004
6	-8.534148	1.836757	-0.000005

1	-6.404500	1.933469	-0.000005
6	-9.500585	-0.391899	0.000003
1	-8.128658	-2.013072	0.000008
6	-9.692242	1.015971	-0.000003
1	-8.631302	2.915248	-0.000006
1	-10.354138	-1.058095	0.000006
7	-10.942788	1.557588	-0.000006
6	-12.109986	0.695438	0.000004
1	-12.133015	0.054670	0.889629
1	-13.007365	1.312550	-0.000003
1	-12.133015	0.054652	-0.889608
6	-11.110218	2.999080	-0.000003
1	-10.657327	3.453105	-0.889485
1	-12.173768	3.233367	-0.000010
1	-10.657338	3.453101	0.889487
16	7.144723	2.042311	0.000012

Keto-HBT excited-state structure in cyclohexane G -1852.750818 au

		J · · ·	
6	5.009489	-1.453760	-0.000013
6	5.286305	0.002596	-0.000009
6	6.623064	0.425079	-0.000007
6	8.865897	1.511325	0.000008
6	10.035592	2.261130	0.000018
6	11.253387	1.585545	0.000012
6	11.294820	0.184907	-0.000003
6	10.132741	-0.572211	-0.000013
6	8.904934	0.100937	-0.000007
1	9.999549	3.345520	0.000029
1	12.178191	2.152222	0.000020
1	10.158742	-1.656446	-0.000026
7	7.654923	-0.450814	-0.000017
8	5.962276	-2.300619	-0.000019
6	4.208895	0.931357	-0.000008
6	3.650620	-1.822772	-0.000010
6	2.909748	0.509667	-0.000006
1	4.428683	1.997054	-0.000011
1	3.436468	-2.887568	-0.000011
1	2.114259	1.246066	-0.000008
6	1.245663	-1.354494	0.000000
1	1.134156	-2.436933	-0.000003
6	0.102553	-0.579120	0.000006
1	0.206376	0.503286	0.000008
6	2.593727	-0.896157	-0.000005
6	-1.241044	-1.055088	0.000009
6	-2.302614	-0.108646	0.000007
6	-1.573351	-2.453122	0.000014
6	-3.585572	-0.588343	0.000008
1	-2.098245	0.956815	0.000003
6	-2.867494	-2.906122	0.000015
1	-0.769141	-3.180079	0.000019
6	-3.923938	-1.963219	0.000012
1	-3.080965	-3.970069	0.000019
1	12.255264	-0.320191	-0.000007
8	-4.723787	0.164977	0.000005
6	-5.782817	-0.705467	0.000007
6	-5.335141	-2.014042	0.000011
1	-5.958253	-2.896562	0.000013
6	-7.098066	-0.132715	0.000004
6	-7.287885	1.262747	0.000001
6	-8.246092	-0.949409	0.000003

6	-8.551346	1.815752	-0.000003
1	-6.420352	1.914028	0.000002
6	-9.513657	-0.409984	0.000000
1	-8.137812	-2.030050	0.000006
6	-9.707056	0.995465	-0.000004
1	-8.648623	2.894310	-0.000005
1	-10.365885	-1.078019	-0.000001
7	-10.960979	1.536826	-0.000009
6	-12.125193	0.672594	-0.000010
1	-12.148015	0.030899	0.889330
1	-13.024387	1.287433	-0.000014
1	-12.148010	0.030894	-0.889346
6	-11.128213	2.977144	-0.000013
1	-10.675585	3.432705	-0.889233
1	-12.191901	3.211819	-0.000017
1	-10.675590	3.432709	0.889208
1	7.296972	-1.459465	-0.000019
16	7.205054	2.083327	0.000012

Enol-HBT ground-state structure in dichloromethane *G* -1852.880667 au

ШI	ground-state stru	icture in utemor	officinatic O -1
6	4.9926430	-1.4578880	0.0054790
6	5.3120830	-0.0804070	0.0033090
6	6.7046280	0.3498480	0.0023830
6	8.8334030	1.5827630	0.0001030
6	9.9724030	2.3878210	-0.0013420
6	11.2111430	1.7609090	-0.0008290
6	11.3151030	0.3604530	0.0010870
6	10.1831300	-0.4384400	0.0025370
6	8.9266520	0.1785380	0.0020390
1	9.8930440	3.4695970	-0.0028260
1	12.1123470	2.3650500	-0.0019360
1	10.2481010	-1.5213470	0.0040220
7	7.7096230	-0.4788490	0.0032890
8	5.9210460	-2.4279680	0.0067790
6	4.2548010	0.8471040	0.0021610
6	3.6517270	-1.8520490	0.0063270
6	2.9354470	0.4495150	0.0029730
1	4.4825620	1.9100790	0.0006720
1	3.4411110	-2.9174310	0.0079530
1	6.8146900	-2.0050910	0.0058940
1	2.1560560	1.2026260	0.0023460
6	1.2330970	-1.4248780	0.0055490
1	1.1466780	-2.5094500	0.0099570
6	0.1214350	-0.6703740	0.0005330
1	0.2187100	0.4140070	-0.0047510
6	2.6116030	-0.9238330	0.0049340
6	-1.2639640	-1.1504640	0.0006850
6	-2.2892790	-0.1965790	-0.0085270
6	-1.5967890	-2.5273960	0.0095270
6	-3.5931280	-0.6599250	-0.0087140
1	-2.0712310	0.8667360	-0.0154410
6	-2.9078630	-2.9682460	0.0091370
1	-0.8016090	-3.2653750	0.0170830
6	-3.9414670	-2.0180380	-0.0002680
1	-3.1313360	-4.0302230	0.0160900
1	12.2968590	-0.1013440	0.0014370
8	-4.7152500	0.1105420	-0.0170050
6	-5.7894280	-0.7462850	-0.0139860
6	-5.3769840	-2.0465270	-0.0040940
1	-6.0118220	-2.9203800	-0.0005880

6	-7.1067810	-0.1283550	-0.0222210
6	-7.2605150	1.2636110	-0.0356470
6	-8.2677430	-0.9134350	-0.0119860
6	-8.5147640	1.8512010	-0.0427040
1	-6.3797520	1.8976160	-0.0372050
6	-9.5271330	-0.3419290	-0.0191620
1	-8.1874690	-1.9967660	0.0058200
6	-9.6881050	1.0635970	-0.0431900
1	-8.5817550	2.9321190	-0.0469580
1	-10.3932680	-0.9918420	-0.0044630
7	-10.9347640	1.6378680	-0.0701550
6	-12.1101170	0.8032440	0.0862380
1	-12.1088880	0.2612790	1.0419190
1	-12.9991260	1.4320080	0.0472160
1	-12.1814770	0.0689650	-0.7237010
6	-11.0603930	3.0763860	0.0609030
1	-10.5556720	3.5916060	-0.7637830
1	-12.1158560	3.3447540	0.0278770
1	-10.6369290	3.4441540	1.0056310
16	7.1554120	2.0565800	-0.0001140

Keto-HBT ground-state structure in dichloromethane G -1852.864767 au

6	5.0210080	-1.4326760	0.1640810
6	5.2891100	-0.0194680	-0.0419460
6	6.6315860	0.4126740	-0.0240300
6	8.8592700	1.5269090	-0.0557890
6	10.0202750	2.2926950	-0.1018550
6	11.2370220	1.6443250	0.0804530
6	11.2916700	0.2623920	0.3036410
6	10.1353910	-0.5048180	0.3501990
6	8.9155290	0.1450390	0.1672330
1	9.9765680	3.3624680	-0.2746310
1	12.1556190	2.2199530	0.0486790
1	10.1679070	-1.5749300	0.5225260
7	7.6535140	-0.4246390	0.1752150
8	5.9342790	-2.2897490	0.3581320
6	4.2188880	0.8910770	-0.2571460
6	3.6336390	-1.8079980	0.1351200
6	2.9194580	0.4779710	-0.2730270
1	4.4454770	1.9437080	-0.4161010
1	3.4164740	-2.8616090	0.2888150
1	2.1288250	1.1970610	-0.4502670
6	1.2322280	-1.4057440	-0.0672640
1	1.1423440	-2.4854710	0.0344810
6	0.1220370	-0.6543490	-0.1596380
1	0.2187890	0.4274640	-0.2305390
6	2.6118840	-0.9066750	-0.0680910
6	-1.2629040	-1.1373490	-0.1566600
6	-2.2910440	-0.1874120	-0.1164100
6	-1.5914900	-2.5147270	-0.1940060
6	-3.5932280	-0.6554850	-0.1034980
1	-2.0764600	0.8763640	-0.0914410
6	-2.9010780	-2.9603750	-0.1817790
1	-0.7936090	-3.2482030	-0.2440020
6	-3.9373030	-2.0143960	-0.1329760
1	-3.1212780	-4.0225920	-0.2141430
1	12.2534610	-0.2193120	0.4428380
8	-4.7176170	0.1108080	-0.0623100
6	-5.7889930	-0.7496050	-0.0651390
6	-5.3727300	-2.0478090	-0.1077090

1	-6.0049040	-2.9235320	-0.1197040
6	-7.1079820	-0.1363020	-0.0232170
6	-7.2655460	1.2547320	0.0149790
6	-8.2663860	-0.9250940	-0.0142000
6	-8.5211630	1.8379920	0.0573320
1	-6.3866100	1.8912760	0.0152590
6	-9.5270980	-0.3578670	0.0275800
1	-8.1829070	-2.0081070	-0.0363310
6	-9.6921380	1.0470180	0.0567050
1	-8.5909710	2.9181710	0.0922480
1	-10.3909740	-1.0108620	0.0391620
7	-10.9407670	1.6178990	0.0793310
6	-12.1092310	0.7743150	0.2395130
1	-12.0803470	0.2000990	1.1757750
1	-13.0005700	1.4009760	0.2462980
1	-12.2010910	0.0678320	-0.5927310
6	-11.0661730	3.0499030	0.2691180
1	-10.5820430	3.5980020	-0.5466190
1	-12.1226610	3.3162940	0.2710050
1	-10.6212620	3.3822010	1.2171790
1	7.3576580	-1.4208430	0.3134220
16	7.1939370	2.0536840	-0.2480630

Enol-HBT excited-state structure in dichloromethane G -1852.776914 au

	exerce state stre	icture in diction	officinatie O 1
6	4.9760310	-1.4900620	0.0000010
6	5.3172610	-0.0934520	0.0000000
6	6.6814110	0.3231830	-0.0000010
6	8.8217470	1.5651660	-0.0000030
6	9.9572370	2.3703710	-0.0000040
6	11.2026100	1.7504610	-0.0000050
6	11.3076810	0.3508380	-0.0000050
6	10.1782200	-0.4522680	-0.0000040
6	8.9122890	0.1543210	-0.0000030
1	9.8734160	3.4522190	-0.0000040
1	12.1013470	2.3582680	-0.0000060
1	10.2497540	-1.5349400	-0.0000040
7	7.7105680	-0.5057470	-0.0000020
8	5.9236170	-2.4485850	0.0000000
6	4.2450890	0.8407320	0.0000010
6	3.6547840	-1.8785750	0.0000020
6	2.9352100	0.4516380	0.0000020
1	4.4769120	1.9030900	0.0000010
1	3.4384960	-2.9430690	0.0000020
1	6.8100960	-2.0069130	-0.0000010
1	2.1603810	1.2098250	0.0000030
6	1.2507730	-1.4021440	0.0000030
1	1.1331720	-2.4833320	0.0000030
6	0.1012490	-0.6079530	0.0000020
1	0.2230380	0.4726980	0.0000010
6	2.5833650	-0.9396230	0.0000020
6	-1.2316120	-1.0644700	0.0000030
6	-2.2949390	-0.1029030	0.0000020
6	-1.5801140	-2.4676240	0.0000050
6	-3.5744090	-0.5727560	0.0000020
1	-2.0796560	0.9603160	0.0000000
6	-2.8733180	-2.9083140	0.0000050
1	-0.7818730	-3.2010760	0.0000060
6	-3.9270360	-1.9518910	0.0000040
1	-3.0989820	-3.9695050	0.0000060
1	12.2904670	-0.1097780	-0.0000060

8	-4.7105350	0.1872420	0.0000010
6	-5.7753230	-0.6762070	0.0000020
6	-5.3265520	-1.9967400	0.0000030
1	-5.9541480	-2.8762430	0.0000040
6	-7.0806010	-0.1097520	0.0000010
6	-7.2735160	1.2909740	-0.0000010
6	-8.2320620	-0.9314940	0.0000010
6	-8.5344190	1.8407780	-0.0000020
1	-6.4073340	1.9440250	-0.0000010
6	-9.4968000	-0.3945060	0.0000000
1	-8.1226940	-2.0117550	0.0000020
6	-9.6925060	1.0153830	-0.0000020
1	-8.6346380	2.9188730	-0.0000020
1	-10.3488140	-1.0624050	0.0000010
7	-10.9399450	1.5517260	-0.0000040
6	-12.1079120	0.6866800	0.0000000
1	-12.1280980	0.0469660	0.8896920
1	-13.0048950	1.3034670	-0.0000040
1	-12.1280960	0.0469570	-0.8896870
6	-11.1137600	2.9946820	-0.0000020
1	-10.6622780	3.4484990	-0.8895850
1	-12.1780590	3.2231690	-0.0000050
1	-10.6622830	3.4484960	0.8895860
16	7.1422050	2.0415120	-0.0000020

Keto-HBT excited-state structure in dichloromethane G -1852.763352 au

6	-5.0097940	-1.4770830	0.0000020
6	-5.2890830	-0.0251090	0.0000030
6	-6.6205880	0.4030320	0.0000020
6	-8.8548180	1.5175250	0.0000010
6	-10.0142790	2.2837770	0.0000010
6	-11.2405660	1.6234310	-0.0000020
6	-11.3004150	0.2236720	-0.0000050
6	-10.1469460	-0.5484970	-0.0000060
6	-8.9129080	0.1100820	-0.0000020
1	-9.9642440	3.3674600	0.0000030
1	-12.1577280	2.2022520	-0.0000020
1	-10.1877700	-1.6322160	-0.0000080
7	-7.6656840	-0.4579120	-0.0000020
8	-5.9591320	-2.3326840	0.0000020
6	-4.2094470	0.9090190	0.0000040
6	-3.6499830	-1.8384670	0.0000000
6	-2.9106050	0.4983920	0.0000030
1	-4.4338400	1.9738460	0.0000050
1	-3.4270790	-2.9022170	-0.0000020
1	-2.1197430	1.2396660	0.0000040
6	-1.2476950	-1.3661740	-0.0000010
1	-1.1322200	-2.4481190	-0.0000030
6	-0.0989070	-0.5824720	-0.0000010
1	-0.2089730	0.4992890	0.0000000
6	-2.5883400	-0.9081270	0.0000000
6	1.2367420	-1.0513520	-0.0000020
6	2.3012670	-0.0978740	-0.0000010
6	1.5752920	-2.4531590	-0.0000020
6	3.5810130	-0.5746610	-0.0000010
1	2.0924130	0.9667190	-0.0000010
6	2.8680890	-2.9017230	-0.0000030
1	0.7734360	-3.1826940	-0.0000030
6	3.9248750	-1.9528020	-0.0000020
1	3.0867670	-3.9644110	-0.0000030

1	-12.2669440	-0.2693850	-0.0000080
8	4.7198170	0.1797250	-0.0000010
6	5.7802200	-0.6891230	-0.0000010
6	5.3288840	-2.0038500	-0.0000020
1	5.9522280	-2.8862810	-0.0000020
6	7.0909380	-0.1233180	0.0000000
6	7.2865440	1.2748490	0.0000010
6	8.2385480	-0.9468180	0.0000000
6	8.5498800	1.8225300	0.0000010
1	6.4221760	1.9304090	0.0000010
6	9.5059490	-0.4127170	0.0000000
1	8.1267250	-2.0269240	0.0000000
6	9.7051570	0.9954250	0.0000010
1	8.6520280	2.9004850	0.0000020
1	10.3559940	-1.0832060	0.0000010
7	10.9554610	1.5294180	0.0000010
6	12.1202200	0.6611070	0.0000010
1	12.1391910	0.0208180	-0.8895170
1	13.0193370	1.2749790	0.0000010
1	12.1391910	0.0208170	0.8895190
6	11.1317120	2.9714400	0.0000020
1	10.6811980	3.4269620	0.8894230
1	12.1964820	3.1983000	0.0000020
1	10.6811980	3.4269630	-0.8894180
1	-7.3506640	-1.4643340	-0.0000050
16	-7.1855520	2.0680140	0.0000040

Enol-HBT ground-state structure in dichloromethane "+ HCl G -1853.294437 au

	-		
6	5.0151210	1.4914000	-0.0362450
6	5.3589160	0.0913710	-0.0190100
6	6.7247490	-0.3207970	-0.0102470
6	8.8692840	-1.5423790	0.0187730
6	10.0121110	-2.3385410	0.0379860
6	11.2497550	-1.7064110	0.0316100
6	11.3453400	-0.3039840	0.0062040
6	10.2122280	0.4898750	-0.0129130
6	8.9504200	-0.1293240	-0.0063840
1	9.9383650	-3.4207120	0.0576250
1	12.1539870	-2.3057090	0.0465860
1	10.2737610	1.5727970	-0.0324950
7	7.7462440	0.5186900	-0.0220640
8	5.9557390	2.4492730	-0.0497700
6	4.2936600	-0.8511440	-0.0081260
6	3.6925100	1.8731210	-0.0379050
6	2.9833280	-0.4675220	-0.0115150
1	4.5320230	-1.9112660	0.0036880
1	3.4688320	2.9355090	-0.0495590
1	6.8467930	2.0149160	-0.0447980
1	2.2107780	-1.2272030	-0.0015180
6	1.2976740	1.3803660	-0.0213510
1	1.1709980	2.4599660	-0.0235500
6	0.1536900	0.5734130	-0.0163260
1	0.2839680	-0.5057480	-0.0261350
6	2.6292890	0.9259990	-0.0246420
6	-1.1805830	1.0230680	-0.0007410
6	-2.2334720	0.0529370	-0.0083960
6	-1.5340630	2.4240010	0.0254360
6	-3.5178340	0.5165870	0.0110220
1	-2.0104070	-1.0082530	-0.0296020
6	-2.8311100	2.8554940	0.0466930

1	-0.7410680	3.1626430	0.0306510
6	-3.8730570	1.8912460	0.0412390
1	-3.0646770	3.9145200	0.0677140
1	12.3252580	0.1621700	0.0016120
8	-4.6488270	-0.2473460	0.0057890
6	-5.7122040	0.6160210	0.0336960
6	-5.2809290	1.9284200	0.0566340
1	-5.9100440	2.8066760	0.0775900
6	-7.0281270	0.0296520	0.0243870
6	-7.1885910	-1.3664050	-0.0459900
6	-8.1745170	0.8476970	0.0807850
6	-8.4569530	-1.9270280	-0.0690360
1	-6.3154720	-2.0067780	-0.0868080
6	-9.4408720	0.2921870	0.0602370
1	-8.0732540	1.9256880	0.1416040
6	-9.5669110	-1.0934440	-0.0195820
1	-8.5731320	-3.0057390	-0.1277060
1	-10.3111030	0.9390350	0.1060980
7	-10.9124680	-1.6998650	-0.0527730
6	-11.6733580	-1.4733820	1.2228150
1	-11.8693010	-0.4064990	1.3178970
1	-12.6092580	-2.0276600	1.1652110
1	-11.0615820	-1.8249700	2.0516250
6	-11.7069610	-1.2632100	-1.2502960
1	-11.1197800	-1.4713710	-2.1427300
1	-12.6431770	-1.8196220	-1.2600920
1	-11.9017210	-0.1954810	-1.1620660
16	7.1969900	-2.0316720	0.0214580
1	-10.7755590	-2.7130410	-0.1413330

Keto-HBT ground-state structure in dichloromethane + HCl *G* -1853.278678 au

6	-5.0483270	1.4242570	0.2270580
6	-5.3330100	0.0295910	-0.0628490
6	-6.6786180	-0.3958670	-0.0321900
6	-8.9126860	-1.4953500	-0.0706710
6	-10.0793300	-2.2515130	-0.1329580
6	-11.2859570	-1.6107570	0.1260400
6	-11.3254950	-0.2458470	0.4398600
6	-10.1636830	0.5115630	0.5026390
6	-8.9538530	-0.1307940	0.2429880
1	-10.0473050	-3.3079080	-0.3761240
1	-12.2088330	-2.1787630	0.0833870
1	-10.1843700	1.5684240	0.7443020
7	-7.6880620	0.4312700	0.2513290
8	-5.9475900	2.2719670	0.5053030
6	-4.2785190	-0.8711050	-0.3724930
6	-3.6585540	1.7923720	0.1798990
6	-2.9763350	-0.4662310	-0.4010320
1	-4.5190400	-1.9085710	-0.5971130
1	-3.4278030	2.8319610	0.3962990
1	-2.1977130	-1.1747220	-0.6566760
6	-1.2673890	1.3854960	-0.1168030
1	-1.1637410	2.4605350	0.0170660
6	-0.1684060	0.6235050	-0.2409720
1	-0.2769650	-0.4554510	-0.3315440
6	-2.6524080	0.8987260	-0.1122820
6	1.2215470	1.0949740	-0.2387290
6	2.2384590	0.1381960	-0.1710600
6	1.5592320	2.4713440	-0.3040530
6	3.5450350	0.5993530	-0.1552010

1	2.0160210	-0.9229400	-0.1254610
6	2.8696080	2.9089530	-0.2892620
1	0.7656590	3.2067330	-0.3812990
6	3.8967450	1.9541990	-0.2099560
1	3.0992880	3.9679790	-0.3436700
1	-12.2799000	0.2299830	0.6375980
8	4.6622470	-0.1737910	-0.0855210
6	5.7340530	0.6817270	-0.0950180
6	5.3325710	1.9800180	-0.1699510
1	5.9692500	2.8526520	-0.1904340
6	7.0509200	0.0587820	-0.0168970
6	7.1699640	-1.3316680	0.0843980
6	8.2108310	0.8467670	-0.0376200
6	8.4235080	-1.9255830	0.1691570
1	6.2800160	-1.9495620	0.0995910
6	9.4653190	0.2630490	0.0470580
1	8.1364250	1.9256410	-0.1196640
6	9.5524170	-1.1213700	0.1511660
1	8.5089570	-3.0054180	0.2491540
1	10.3507110	0.8904110	0.0319390
7	10.8785920	-1.7641590	0.2582810
6	11.7274840	-1.5410420	-0.9601700
1	11.9612800	-0.4798120	-1.0279150
1	12.6411090	-2.1238110	-0.8496450
1	11.1614090	-1.8646530	-1.8318220
6	11.5967800	-1.3703320	1.5172300
1	10.9416430	-1.5813710	2.3605960
1	12.5157300	-1.9511830	1.5813620
1	11.8224080	-0.3063500	1.4654190
1	-7.3840900	1.4148030	0.4455510
16	-7.2570090	-2.0157390	-0.3442750
1	10.7096260	-2.7744510	0.3180390

Enol-HBT excited-state structure in dichloromethane + HCl *G* -1853.187198 au

-	enencea	state stractary		/methane + 1
6		-5.015121	1.491400	0.036245
6		-5.358916	0.091371	0.019010
6		-6.724749	-0.320797	0.010247
6		-8.869284	-1.542379	-0.018773
6		-10.012111	-2.338541	-0.037986
6		-11.249755	-1.706411	-0.031610
6		-11.345340	-0.303984	-0.006204
6		-10.212228	0.489875	0.012913
6		-8.950420	-0.129324	0.006384
1		-9.938365	-3.420712	-0.057625
1		-12.153987	-2.305709	-0.046586
1		-10.273761	1.572797	0.032495
7		-7.746244	0.518690	0.022064
8		-5.955739	2.449273	0.049770
6		-4.293660	-0.851144	0.008126
6		-3.692510	1.873121	0.037905
6		-2.983328	-0.467522	0.011515
1		-4.532023	-1.911266	-0.003688
1		-3.468832	2.935509	0.049559
1		-6.846793	2.014916	0.044798
1		-2.210778	-1.227203	0.001518
6		-1.297674	1.380366	0.021351
1		-1.170998	2.459966	0.023550
6		-0.153690	0.573413	0.016326
1		-0.283968	-0.505748	0.026135
6		-2.629289	0.925999	0.024642

6	1.180583	1.023068	0.000741
6	2.233472	0.052937	0.008396
6	1.534063	2.424001	-0.025436
6	3.517834	0.516587	-0.011022
1	2.010407	-1.008253	0.029602
6	2.831110	2.855494	-0.046693
1	0.741068	3.162643	-0.030651
6	3.873057	1.891246	-0.041239
1	3.064677	3.914520	-0.067714
1	-12.325258	0.162170	-0.001612
8	4.648827	-0.247346	-0.005789
6	5.712204	0.616021	-0.033696
6	5.280929	1.928420	-0.056634
1	5.910044	2.806676	-0.077590
6	7.028127	0.029652	-0.024387
6	7.188591	-1.366405	0.045990
6	8.174517	0.847697	-0.080785
6	8.456953	-1.927028	0.069036
1	6.315472	-2.006778	0.086808
6	9.440872	0.292187	-0.060237
1	8.073254	1.925688	-0.141604
6	9.566911	-1.093444	0.019582
1	8.573132	-3.005739	0.127706
1	10.311103	0.939035	-0.106098
7	10.912468	-1.699865	0.052773
6	11.673358	-1.473382	-1.222815
1	11.869301	-0.406499	-1.317897
1	12.609258	-2.027660	-1.165211
1	11.061582	-1.824970	-2.051625
6	11.706961	-1.263210	1.250296
1	11.119780	-1.471371	2.142730
1	12.643177	-1.819622	1.260092
1	11.901721	-0.195481	1.162066
16	-7.196990	-2.031672	-0.021458
1	10.775559	-2.713041	0.141333

Keto-HBT excited-state structure in dichloromethane + HCl *G* -1853.179104 au

	5.051000	1 520504	0.000000
6	-5.051082	1.530504	0.060/36
6	-5.358306	0.067612	-0.006809
6	-6.705313	-0.368447	-0.002130
6	-8.899575	-1.547611	-0.019536
6	-10.034295	-2.352046	-0.039580
6	-11.278382	-1.732056	0.016838
6	-11.384537	-0.333852	0.092588
6	-10.261653	0.477378	0.113227
6	-9.005230	-0.142013	0.055460
1	-9.948713	-3.431688	-0.097782
1	-12.177139	-2.338644	0.002226
1	-10.337644	1.557413	0.172514
7	-7.780728	0.460193	0.061888
8	-5.990290	2.369326	0.121510
6	-4.292211	-0.845031	-0.074496
6	-3.682266	1.899630	0.052507
6	-2.973992	-0.414629	-0.077500
1	-4.494762	-1.911634	-0.126511
1	-3.470430	2.963844	0.102266
1	-2.190585	-1.162271	-0.132821
6	-1.263727	1.418979	-0.016518
1	-1.145262	2.500576	0.020884
6	-0.150404	0.640275	-0.054920

1	-0.259089	-0.441964	-0.081800
6	-2.635122	0.972756	-0.013346
6	1.226265	1.104600	-0.056781
6	2.251264	0.144080	-0.057121
6	1.575402	2.486098	-0.057748
6	3.556178	0.601004	-0.054357
1	2.027605	-0.917737	-0.056313
6	2.885095	2.917506	-0.057268
1	0.786114	3.229743	-0.061961
6	3.914023	1.957917	-0.055228
1	3.116820	3.977621	-0.059009
1	-12.367508	0.123127	0.136065
8	4.673439	-0.177081	-0.048800
6	5.748678	0.675838	-0.046027
6	5.346444	1.978631	-0.050734
1	5.985541	2.849923	-0.046547
6	7.063250	0.050631	-0.026938
6	7.183294	-1.343742	0.024018
6	8.225646	0.836993	-0.052764
6	8.437131	-1.941220	0.057238
1	6.292751	-1.960699	0.041792
6	9.480136	0.249133	-0.020339
1	8.151820	1.918112	-0.097690
6	9.567412	-1.138419	0.037925
1	8.522658	-3.023273	0.099889
1	10.366259	0.875539	-0.039536
7	10.894458	-1.786178	0.089285
6	11.701315	-1.546198	-1.154415
1	11.943737	-0.486011	-1.207331
1	12.611667	-2.140953	-1.089518
1	11.101150	-1.844809	-2.012061
6	11.659943	-1.412721	1.326250
1	11.040964	-1.641820	2.191823
1	12.583480	-1.989313	1.342956
1	11.879310	-0.347010	1.285179
1	-7.559119	1.466966	0.107600
16	-7.219838	-2.039607	-0.076711
1	10.724202	-2.796859	0.139763

Enol-HBT ground-state structure in acetone G -1852.882467 au

6	4.9926120	-1.4571070	0.0057500
6	5.3120720	-0.0796370	0.0036460
6	6.7048420	0.3506450	0.0022580
6	8.8340360	1.5822170	-0.0008760
6	9.9733510	2.3870380	-0.0028060
6	11.2118380	1.7594590	-0.0027450
6	11.3153460	0.3588280	-0.0007930
6	10.1830700	-0.4397590	0.0011440
6	8.9268180	0.1779180	0.0010970
1	9.8944520	3.4688280	-0.0043190
1	12.1132580	2.3632400	-0.0042420
1	10.2478890	-1.5226910	0.0026620
7	7.7093340	-0.4788520	0.0028370
8	5.9216610	-2.4271820	0.0066850
6	4.2547880	0.8478710	0.0029210
6	3.6518670	-1.8516200	0.0068800
6	2.9352910	0.4500980	0.0040310
1	4.4821560	1.9109050	0.0014970
1	3.4408840	-2.9169700	0.0084020
1	6.8152770	-2.0035760	0.0056150

1	2.1560750	1.2034040	0.0036630
6	1.2330570	-1.4245420	0.0066000
1	1.1466580	-2.5091190	0.0103960
6	0.1216100	-0.6695140	0.0022820
1	0.2188520	0.4148450	-0.0023400
6	2.6115740	-0.9232550	0.0058670
6	-1.2638230	-1.1498180	0.0022720
6	-2.2891560	-0.1957120	-0.0063690
6	-1.5965070	-2.5269090	0.0102320
6	-3.5929530	-0.6593810	-0.0070030
1	-2.0709330	0.8675920	-0.0125640
6	-2.9076640	-2.9679130	0.0093950
1	-0.8014280	-3.2650220	0.0174090
6	-3.9412850	-2.0175800	0.0004100
1	-3.1311520	-4.0298720	0.0156300
1	12.2969490	-0.1032530	-0.0008020
8	-4.7153430	0.1109440	-0.0149800
6	-5.7895900	-0.7462130	-0.0128360
6	-5.3768680	-2.0464750	-0.0037280
1	-6.0113010	-2.9206650	-0.0006990
6	-7.1069290	-0.1283380	-0.0210070
6	-7.2609900	1.2638470	-0.0298760
6	-8.2679650	-0.9138240	-0.0154710
6	-8.5152800	1.8514030	-0.0368600
1	-6.3805830	1.8984160	-0.0279390
6	-9.5274410	-0.3425260	-0.0226650
1	-8.1877550	-1.9972200	-0.0017110
6	-9.6888310	1.0634210	-0.0417780
1	-8.5824080	2.9323290	-0.0375770
1	-10.3934650	-0.9926600	-0.0119300
7	-10.9348390	1.6371060	-0.0682500
6	-12.1113720	0.8013840	0.0758340
1	-12.1140340	0.2519500	1.0270620
1	-12.9998660	1.4307990	0.0384370
1	-12.1793350	0.0734410	-0.7401220
6	-11.0617950	3.0759980	0.0605340
1	-10.5568830	3.5907770	-0.7643440
1	-12.1174250	3.3432760	0.0270170
1	-10.6390640	3.4448200	1.0050110
16	7.1561770	2.0567830	-0.0005000

Keto-HBT ground-state structure in acetone G -1852.866785 au

6	5.0227200	-1.4371280	0.1460140
6	5.2903040	-0.0211500	-0.0368300
6	6.6338490	0.4117080	-0.0213990
6	8.8594170	1.5290350	-0.0503480
6	10.0190260	2.2975650	-0.0916910
6	11.2377260	1.6477100	0.0709080
6	11.2959920	0.2620690	0.2703170
6	10.1412840	-0.5077280	0.3120330
6	8.9194040	0.1437620	0.1486280
1	9.9727190	3.3700190	-0.2459050
1	12.1552890	2.2251310	0.0424270
1	10.1766740	-1.5804890	0.4661430
7	7.6577340	-0.4275000	0.1557820
8	5.9368880	-2.2988850	0.3178890
6	4.2194530	0.8937590	-0.2269750
6	3.6350310	-1.8106760	0.1207990
6	2.9189410	0.4823130	-0.2405880
1	4.4454300	1.9490840	-0.3675020

1	3.4174860	-2.8667280	0.2568660
1	2.1280460	1.2060370	-0.3966200
6	1.2322310	-1.4045940	-0.0579590
1	1.1430580	-2.4851840	0.0349150
6	0.1216450	-0.6526980	-0.1428260
1	0.2177520	0.4294870	-0.2083660
6	2.6118970	-0.9052140	-0.0590880
6	-1.2631810	-1.1363180	-0.1401410
6	-2.2915660	-0.1862160	-0.1041330
6	-1.5914610	-2.5140120	-0.1734950
6	-3.5936760	-0.6546920	-0.0922790
1	-2.0770040	0.8776460	-0.0821280
6	-2.9010850	-2.9599160	-0.1622760
1	-0.7936520	-3.2478920	-0.2185880
6	-3.9375420	-2.0138050	-0.1183980
1	-3.1211170	-4.0222440	-0.1912470
1	12.2594600	-0.2203160	0.3946000
8	-4.7184890	0.1114180	-0.0554800
6	-5.7898330	-0.7494540	-0.0578570
6	-5.3730310	-2.0477620	-0.0956780
1	-6.0046580	-2.9239340	-0.1062000
6	-7.1089900	-0.1363520	-0.0208300
6	-7.2672740	1.2549140	0.0141360
6	-8.2673380	-0.9257420	-0.0140170
6	-8.5231680	1.8379640	0.0511660
1	-6.3888240	1.8922000	0.0158770
6	-9.5283760	-0.3589340	0.0224380
1	-8.1836330	-2.0087810	-0.0340200
6	-9.6942110	1.0463380	0.0484660
1	-8.5934770	2.9182000	0.0835210
1	-10.3920540	-1.0122120	0.0322300
7	-10.9422870	1.6162600	0.0663360
6	-12.1125680	0.7724370	0.2141550
1	-12.0903230	0.1948550	1.1483190
1	-13.0034700	1.3995590	0.2173380
1	-12.1985900	0.0689070	-0.6212680
6	-11.0701260	3.0499400	0.2433880
1	-10.5850680	3.5921140	-0.5758210
1	-12.1269340	3.3146560	0.2416570
1	-10.6273380	3.3902350	1.1894110
1	7.3676700	-1.4259840	0.2787290
16	7.1921410	2.0563320	-0.2213940

Enol-HBT excited-state structure in acetone *G* -1852.779697 au

6	4.9758970	-1.4901160	0.0000000
6	5.3172200	-0.0935410	0.0000000
6	6.6812700	0.3231990	-0.0000010
6	8.8218600	1.5650090	-0.0000030
6	9.9572600	2.3705520	-0.0000030
6	11.2027090	1.7505860	-0.0000040
6	11.3079560	0.3509370	-0.0000050
6	10.1783950	-0.4523540	-0.0000040
6	8.9125580	0.1543180	-0.0000030
1	9.8733980	3.4523720	-0.0000030
1	12.1013560	2.3584720	-0.0000050
1	10.2503840	-1.5350260	-0.0000040
7	7.7103890	-0.5059240	-0.0000020
8	5.9246830	-2.4485280	0.0000000
6	4.2443810	0.8402730	0.0000010
6	3.6551850	-1.8794600	0.0000010

1 1 1	4.4754800 3.4389500	1.9028160	0.0000000
1 1	3.4389500	0.0440010	
1	01100/000	-2.9440310	0.0000010
	6.8108320	-2.0056760	-0.0000010
1	2.1599990	1.2093840	0.0000020
6	1.2510210	-1.4037290	0.0000020
1	1.1333040	-2.4848860	0.0000030
6	0.1004530	-0.6086070	0.0000020
1	0.2227420	0.4720030	0.0000010
6	2.5823880	-0.9407620	0.0000020
6	-1.2312670	-1.0642720	0.0000030
6	-2.2949460	-0.1015660	0.0000020
6	-1.5806880	-2.4678730	0.0000050
6	-3.5740100	-0.5709700	0.0000020
1	-2.0789220	0.9615390	0.0000000
6	-2.8737910	-2.9078590	0.0000050
1	-0.7829180	-3.2018820	0.0000060
6	-3.9275010	-1.9504900	0.0000040
1	-3.1003000	-3.9688330	0.0000070
1	12.2907460	-0.1095970	-0.0000050
8	-4.7102200	0.1891580	0.0000010
6	-5.7752460	-0.6740820	0.0000020
6	-5.3260580	-1.9954790	0.0000040
1	-5.9536150	-2.8750160	0.0000050
6	-7.0799520	-0.1085170	0.0000010
6	-7.2737800	1.2925700	0.0000000
6	-8.2312380	-0.9314040	0.0000020
6	-8.5346980	1.8415910	-0.0000020
1	-6.4081790	1.9464290	-0.0000010
6	-9.4960140	-0.3953050	0.0000000
1	-8.1213040	-2.0115740	0.0000030
6	-9.6927110	1.0150320	-0.0000020
1	-8.6356870	2.9195910	-0.0000020
1	-10.3476150	-1.0636750	0.0000010
7	-10.9395370	1.5500710	-0.0000040
6	-12.1075160	0.6841970	0.0000000
1	-12.1269210	0.0446940	0.8896930
1	-13.0045250	1.3007480	-0.0000040
1	-12.1269190	0.0446860	-0.8896880
6	-11.1149840	2.9933000	-0.0000020
1	-10.6638630	3.4471350	-0.8896000
1	-12.1794870	3.2203460	-0.0000050
1	-10.6638680	3.4471330	0.8896000
	E 1 1000 CO	0.0410(00	0 0000000

Keto-HBT excited-state structure in acetone *G* -1852.766388 au

6	-5.0101550	-1.4831780	0.0000020
6	-5.2895710	-0.0318330	0.0000000
6	-6.6200520	0.3983310	0.0000000
6	-8.8512560	1.5204960	0.0000010
6	-10.0078920	2.2912390	0.0000010
6	-11.2364630	1.6351090	0.0000020
6	-11.3014160	0.2355740	0.0000010
6	-10.1504880	-0.5407750	0.0000010
6	-8.9145700	0.1137340	0.0000000
1	-9.9539900	3.3746960	0.0000010
1	-12.1515010	2.2172430	0.0000020
1	-10.1953970	-1.6243080	0.0000000
7	-7.6683780	-0.4587210	-0.0000010
8	-5.9595930	-2.3398030	0.0000050
6	-4.2090930	0.9024550	-0.0000020
----	-------------	------------	------------
6	-3.6505210	-1.8441200	0.0000000
6	-2.9103080	0.4930570	-0.0000030
1	-4.4334700	1.9672920	-0.0000040
1	-3.4265570	-2.9078260	0.0000010
1	-2.1201690	1.2350920	-0.0000050
6	-1.2480680	-1.3719940	-0.0000030
1	-1.1318690	-2.4538610	-0.0000020
6	-0.0982000	-0.5865340	-0.0000030
1	-0.2096490	0.4950790	-0.0000040
6	-2.5871570	-0.9136810	-0.0000020
6	1.2361020	-1.0535150	-0.0000030
6	2.3006650	-0.0980350	-0.0000030
6	1.5765900	-2.4558390	-0.0000040
6	3.5800480	-0.5735680	-0.0000020
1	2.0903320	0.9662860	-0.0000030
6	2.8693960	-2.9028410	-0.0000030
1	0.7756060	-3.1863650	-0.0000050
6	3.9257420	-1.9521430	-0.0000020
1	3.0897090	-3.9651430	-0.0000030
1	-12.2696510	-0.2540490	0.0000020
8	4.7185470	0.1816160	-0.0000010
6	5.7796870	-0.6863470	-0.0000010
6	5.3283870	-2.0025490	-0.0000010
1	5.9522210	-2.8846460	-0.0000010
6	7.0891940	-0.1211060	0.0000000
6	7.2850810	1.2777230	0.0000010
6	8.2371870	-0.9453160	0.0000000
6	8.5480440	1.8251440	0.0000030
1	6.4209570	1.9336290	0.0000020
6	9.5042300	-0.4115110	0.0000010
1	8.1253040	-2.0253740	0.0000000
6	9.7037390	0.9973180	0.0000030
1	8.6504920	2.9030410	0.0000040
1	10.3542210	-1.0820010	0.0000010
7	10.9529740	1.5305490	0.0000040
6	12.1183240	0.6620540	0.0000030
1	12.1368120	0.0220490	-0.8895360
1	13.0170760	1.2762370	0.0000040
1	12.1368110	0.0220470	0.8895410
6	11.1302570	2.9730020	0.0000050
1	10.6798940	3.4282500	0.8894580
1	12.1951220	3.1988460	0.0000060
1	10.6798950	3.4282520	-0.8894470
1	-7.3627510	-1.4651620	-0.0000020
16	-7.1798780	2.0650800	0.0000000

Frontier molecular orbitals

In Figures S4, S5 and S6, we report the frontier molecular orbitals involved in the lowest energy transition in different solvent for **E-HBO 1**, **E-HBO 2** and **E-HBT**, respectively. This transition presents a major HOMO -> LUMO contribution and minor HOMO-1 -> LUMO and HOMO -> LUMO+1 contributions for the non-protonated dyes, whereas the transition of the protonated species shows a major HOMO -> LUMO contribution and a minor HOMO-1 -> LUMO +1 contribution.

Qualitatively, when going from cyclohexane to dichloromethane to acetonitrile, the orbitals of the neutral species present the same topology.

Interestingly, one observes a change in the orbitals' topology (particularly on the HOMO and LUMO orbitals) when protonating the terminal dimethylamino group. Indeed, one can clearly see a charge-transfer character of the HOMO-LUMO transition for the neutral species, *i.e.*, the HOMO is centered on the π -extention with no density on the ESIPT system (hydroxyphenylbenzazole) whereas the LUMO is localized over the whole molecule except on the terminal dimethylaminophenyl. In contrast, when considering protonated compounds, one observes that the frontier orbitals are located all along the molecule except on the terminal -NHMe₂⁺. This is consistent with the density difference plots given in the main text.

In Figures S7, S8 and S9, we report the frontier orbitals for the keto form of the **HBO-1**, **HBT** and **HBO-2** species. As observed for the enol form, the orbitals present similar general topology irrespective of the considered compound. Nevertheless, when comparing the three derivatives, one can notice that the density on the heteroatom is larger for **HBT** orbitals than for **HBO** ones.

Figure S4. Representation of the frontier orbitals (isovalue=0.02 a.u.) in different solvents for the **E-HBO 1** molecule.

Figure S5. Representation of the frontier orbitals (isovalue=0.02 a.u.) in different solvents for the **E-HBO 2** molecule.

Figure S6. Representation of the frontier orbitals (isovalue=0.02 a.u.) in different solvents for the **E-HBT** molecule.

Figure S7. Representation of the frontier orbitals (isovalue=0.02 a.u.) in different solvents for the **K-HBO 1**

Figure S8. Representation of the frontier orbitals (isovalue=0.02 a.u.) in different solvents for the **K-HBT**

Figure S9. Representation of the frontier orbitals (isovalue=0.02 a.u.) in different solvents for the **K-HBO-2**

Density difference plots

Figure S10. Density difference plots (isovalue=0.0008 a.u.) for **E-HBO 1**, **E-HBO 2** and **E-HBT** in different solvents. The blue (red) regions indicate a decrease (increase) of electron density upon absorption of light.

In Figure S10, we report the density difference plots corresponding to the $S_0 \rightarrow S_1$ transition for the three compounds in different solvents. Qualitatively, no striking changes can be observed for the neutral species when changing the solvent, the nature of the heteroatom (X=O or S) or the R group (from H to CF₃).

CC2 additional calculations

Table S2: Free energy differences corrected with ADC(2) or CC2 approach with the aug-cc-pVDZ basis set for the **E-HBT** series.

HBT- aug-cc-pVDZ in eV	$\Delta G^{ES}(adc2)$	$\Delta G^{ES}(cc2)$	$\Delta\Delta G^{ES}(cc2-adc2)$
Cyclohexane	0.231	0.207	0.024
Dichloromethane	0.245	0.203	0.041
Dichloromethane + HCl	0.091	0.124	-0.032
Acetone	0.238	0.194	0.044

MK Charges

Table S3: Merz-kollman charges (in *e*) for **E-HBO 1-2** and **E-HBT** on the N, O and H aoms involved in the ESIPT process.

E-HBO 1	GS N	GS O	GS H	ES N	ES O	ES H	ΔΝ	ΔΟ	ΔH
Cyclohexane	-0.605	-0.595	0.421	-0.641	-0.609	0.424	-0.036	-0.04	0.002
CH ₂ Cl ₂	-0.607	-0.612	0.424	-0.646	-0.627	0.426	-0.038	-0.015	0.002
$CH_2Cl_2 + HCl_g$	-0572	-0.586	0.396	-0.584	-0.583	0.395	-0.012	0.003	-0.001
Acetone	-0.609	-0.616	0.425	-0.647	630	0.427	-0.039	-0.014	0.002
E-HBO 2	GS N	GS O	GS H	ES N	ES O	ES H	ΔN	ΔΟ	ΔH
Cyclohexane	-0.536	-0.567	0.394	-0.569	-0.581	0.396	-0.033	-0.014	0.002
CH_2Cl_2	-0.549	-0.592	0.406	-0.583	-0.606	0.407	-0.034	-0.014	0.001
$CH_2Cl_2 + HCl_g$	-0.576	-0.591	0.405	-0.593	-0.590	0.405	-0.017	0.001	0.000
Acetone	-0.569	-0.601	0.416	-0.605	-0.615	0.417	-0.036	-0.013	0.001
E-HBT	GS N	GS O	GS H	ES N	ES O	ES H	ΔN	ΔΟ	ΔH
Cyclohexane	-0.371	-0.579	0.375	-0.421	-0.588	0.379	-0.050	-0.009	0.003
CH_2Cl_2	-0.366	-0.598	0.380	-0.417	-0.608	0.383	-0.051	-0.011	0.002
$CH_2Cl_2 + HCl_g$	-0.371	-0.599	0.388	-0.404	-0.601	0.390	-0.033	-0.003	0.002
Acetone	-0.365	-0.602	0.381	-0.416	-0.612	0.383	-0.051	-0.011	0.002

Vibrationally resolved spectra

In Figure S11, we compare the theoretical and experimental band shapes for a typical case (**E-HBO 1** in cyclohexane). It is rather clear that there is a very good match between the experimental and theoretical band topologies. For the emission, the second band (at ca. 454 nm) is mainly provoked by a vibronic coupling with a vibrational mode corresponding to the elongation of single/contraction of double bonds, i.e., to the so-called ECC (effective conjugation coordinate) mode. This finding is consistent with the density difference plots appearing in the main text. Similar effects are found for absorption.

Figure S11. Vibrationally resolved absorption (HWHM=0.08 eV) and emission (HWHM=0.065 eV) for **E-HBO 1** in cyclohexane (full lines + stick contributions) as compared to the experimental spectrum (broken lines).. For the sake of clarity, the 0-0 energies have been set to the same value in both experiment and theory. Note that the experimental spectra have been renormalised to obtain lineshapes directly comparable to theoretical values (see above).

S10 References

(1) Y.M. Choi-Sledeski, D.G. McGarry, D.M. Green, H.J. Mason, M.R. Becker, R.S. Davis, W.R. Ewing, W.P. Dankulich, V.E. Manetta, R.L. Morris, A.P. Spada, D.L. Cheney, K.D. Brown, D.J. Colussi, V. Chu, C.L. Heran, S.R. Morgan, R.G. Bentley, R.J. Leadley, S. Maignan, J.P. Guilloteau, C.T. Dunwiddie, H.W. Pauls, *J. Med. Chem.*, **1999**, 42, 3572, 3587.

(2) J. J.Miller, J. A.Marsden, M.M. Haley, Synlett, 2004, 1, 165-168.

(3) J. Massue, D. Frath, P. Retailleau, G. Ulrich, R. Ziessel, Chem. Eur. J., 2013, 19, 5375-5386.

(4) N. Sakai, A.L. Sisson, S. Bhosale, A. Furstenberg, N. Banerji, E. Vauthey, S. Matile, *Org. Biomol. Chem.*, **2007**, 5, 2560-2563.0

(5) J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer Academic/Plenum Publishers: New York, **1999**.

(6) N. Mataga, Y. Kaifu, M. Koizumi, Bull. Chem. Soc. Jpn. 1956, 29, 465-470

(7) (a) S. Y. Fung, J. Duhamel, P. Chen, J. Phys. Chem. A, **2006**, 110, 11446-11454. (b) J. Dey, I. M. Warner, J. Photochem. Photobiol. A : Chemistry, **1998**, 116, 27-37.

(8) (a) K. Nagy, S. Gokturk, L. Biczok, *J. Phys. Chem. A*, **2003**, 107, 8784-8790. (b) N. Kitamura, E. Sakuda, *J. Phys. Chem. A*, **2005**, 109, 7429-7434.

(9) J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999–3094.

(10) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 Revision D.01, **2009**, Gaussian Inc. Wallingford CT.

(11) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215–241.

(12) Y. Houari, A. Charaf-Eddin, A. D. Laurent, J. Massue, R. Ziessel, G. Ulrich and D. Jacquemin, *Phys. Chem. Chem. Phys.*, **2014**, 16, 1319–1321.

(13) R. Li, J. Zheng and D. G. Truhlar, Phys. Chem. Chem. Phys., 2010, 12, 12697-12701.

(14) D. Jacquemin, A. Planchat, C. Adamo and B. Mennucci, J. Chem. Theory Comput., 2012, 8, 2359–2372.

(15) M. Isegawa, R. Peverati and D. G. Truhlar, J. Chem. Phys., 2012, 137, 244104.

(16) S. S. Leang, F. Zahariev and M. S. Gordon, J. Chem. Phys., 2012, 136, 104101.

(17) A. Charaf-Eddin, A. Planchat, B. Mennucci, C. Adamo and D. Jacquemin, J. Chem. Theory Comput., 2013, 9, 2749–2760.

(18) A. D. Laurent and D. Jacquemin, Int. J. Quantum Chem., 2013, 113, 2019–2039.

(19) M. Caricato, B. Mennucci, J. Tomasi, F. Ingrosso, R. Cammi, S. Corni and G. Scalmani, J. Chem. Phys., 2006, 124, 124520.

(20) TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007 ; available from http://www.turbomole.com.

(21) A. Dreuw and M. Wormit, WIREs Comput. Mol. Sci., 2015, 5, 82-95.

(22) C. Hättig and F. Weigend, J. Chem. Phys., 2000, 113, 5154–5161.

- (23) C. Hättig, Phys. Chem. Chem. Phys., 2005, 7, 59-66.
- (24) F. Santoro, http://village. pi. iccom. cnr. it
- (25) F. Santoro,, R. Improta, A. Lami, J. Bloino, and V. Barone, J. Chem. Phys., 2007, 126, 084509.
- (26) F. Santoro, A. Lami, R. Improta and V. Barone, J. Chem. Phys., 2007, 126, 184102.

(27) F. J. Avilla-Ferrer, J. Cerezo, E. Stendardo, R. Improta and F. Santoro, *J. Chem. Theory Comput.*, **2013**, 9, 2072-2082.

- (28) T. Le Bahers, C. Adamo, and I. Ciofini, J. Chem. Theory Comput., 2011, 7, 2498–2507.
- (29) D. Jacquemin, T. Le Bahers, C. Adamo, and I. Ciofini, *Phys. Chem. Chem. Phys.*, **2012**, 14, 5383–5388.
- (30) Code available at: http://www.sciences.univ-nantes.fr/CEISAM/erc/marches/?cat=39
- (31) B. H. Besler, K. M. Merz and P. A. Kollman, J. Comput. Chem., 1990, 11, 431-439.