# **Supporting Information**

for

## Facile access to a Ge(II) dication stabilized by isocyanides

V. S. V. S. N. Swamy,<sup>a</sup> Sandeep Yadav,<sup>a</sup> Shiv Pal,<sup>b</sup> Tamal Das,<sup>c</sup> Kumar Vanka<sup>\*c</sup> and Sakya S. Sen<sup>\*a</sup>

<sup>a</sup>Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India); <sup>b</sup>Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India); <sup>c</sup>Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India).

Author to whom correspondence should be addressed: E-mail: <u>ss.sen@ncl.res.in</u>

## Content:

- S1. Synthesis and experimental details of 1
- S2. Crystallographic data for the structural analysis of **1**
- S3. DFT Computations of **1**
- S4. References
- S1. Synthesis and experimental details of 1

All experiments were carried out under an inert atmosphere of argon applying standard Schlenk techniques or in a glove box. The solvents used were purified by an MBRAUN solvent purification system MB SPS-800. All chemicals purchased from Sigma Aldrich were used without further purification. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded in C<sub>6</sub>D<sub>6</sub> and toluene-*d*<sub>8</sub> using a Bruker Avance DPX 200 or a Bruker Avance DRX 400 spectrometer and were referenced to external SiMe<sub>4</sub>. However, high resolution mass spectra (HRMs) was obtained using a Q Exactive Thermo Scientific. Elemental analysis was performed by CSIR-National Chemical Laboratory, Pune. Melting point was measured in a sealed glass tube on a Stuart SMP-30 melting point apparatus.

#### Preparation of 2, 6-dimethylphenylisonitrile

The mixture of 2, 6 –dimethylaniline (10 g, 82.5 mmol) and ethylformate (15 mL) was heated under autoclave up to 200 °C overnight. The *n*-formyl derivative of 2, 6-dimethylaniline was obtained and purified in a very good yield (11.07g, 94%). The resultant compound (2.0 g, 13.4 mmol) was dissolved in 60 mL of dry dichloromethane and phosphorousoxychloride (3.61 mL, 39.02 mmol) was added drop by drop to this reaction mixture over a period of five minutes at – 60 °C under inert conditions. The reaction mixture was stirred for next 20 minutes and triethylamine (16.2 mL, 117 mmol) was added drop by drop to the reaction mixture over a period of 10 minutes at –60 °C. The reaction was transformed into a orange color when allowed to warm at room temperature for overnight. Finally, the mixture poured on to the 50 mL of cold water and extracted with dichloromethane (2 x 60mL). The organic layer was dried under reduced pressure. The isonitrile was obtained as a white crystalline solid compound through sublimation under vacuum ( $1.5*10^{-2}$  mbar) at 55 °C (1.54g, 87.5 %). <sup>1</sup>H NMR (200 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C)  $\delta$  2.06 (s, 6H, CH<sub>3</sub>), 6.60 (d, 2H, 7.68 Hz, Ph), 6.69 (m, 1H, Ph) ppm.



## **Preparation of 1**

The toluene solution (25 mL) of 2, 6–dimethylphenylisocyanide (0.56 g, 4.31mmol) was added drop by drop to the toluene solution (10 mL) of GeCl<sub>2</sub>·dioxane (1.0 g, 4.31 mmol) at ambient conditions. The resulting reaction mixture was stirred overnight and transformed to a brown red color. The final compound was filtered through celite, solvent was removed under vacuum and the following filtrate was reduced to 5 to 7 mL. Good quality of yellow colored crystal was obtained when crystallization was performed in toluene at –30 °C in a freezer. Yield: 220 mg (54 %). <sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C)  $\delta$  1.92 (S, 24H, CH<sub>3</sub>), 6.4 (d, 8H, 8.03Hz, Ph), 6.65 (m, 4H, Ph) ppm; <sup>13</sup>C NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C)  $\delta$  18.38 (CH<sub>3</sub>), 127.18, 130.69, 136.65 (Ph) ppm; Anal. Calcd for C<sub>36</sub>H<sub>36</sub>Cl<sub>6</sub>Ge<sub>3</sub>N<sub>4</sub> (955.9): C, 45.19; H, 3.76; N, 5.85. Found : C, 45.2; H, 3.14; N, 5.74.

### **S2.** Crystal Structure Determination

X-ray intensity data measurements of compound 1 was carried out on a Bruker SMART APEX II CCD diffractometer with graphite-monochromatized (MoK<sub> $\alpha$ </sub>= 0.71073Å) radiation. The X-ray generator was operated at 50 kV and 30 mA. A preliminary set of cell constants and an orientation matrix were calculated from three sets of 36 frames. Data were collected with  $\omega$  scan width of 0.5° at different settings of  $\varphi$  and  $2\theta$  keeping the sample-to-detector distance fixed at 5.00 cm. The X-ray data collection was monitored by APEX2 program (Bruker, 2006).<sup>S1</sup> All the data were corrected for Lorentzian, polarization, and absorption effects using SAINT and SADABS programs (Bruker, 2006). SHELX-97 was used for structure solution and full matrix least-squares refinement on  $F^{2,S^{2}}$  All the hydrogen atoms were placed in geometrically idealized position and constrained to ride on their parent atoms. An *ORTEP* III<sup>S3</sup> view of compound **1** was drawn with 50% probability displacement ellipsoids and H atoms omitted for clarity.

Crystal Data for compound 1.  $C_{36}$  H<sub>36</sub> Cl<sub>6</sub> Ge<sub>3</sub> N<sub>4</sub>, M =956.16, yellow color, 0.34 x 0.22 x 0.17 mm<sup>3</sup>, monoclinic, space group  $P2_1/c$ , a = 9.4793(10) Å, b = 16.9178(19) Å, c = 25.305(3) Å,  $\beta = 92.288(3)$  °, V = 4054.9(8) Å<sup>3</sup>, Z = 4, T = 150(2) K,  $2\theta_{max} = 50.498$ °,  $D_{calc}$  (g cm<sup>-3</sup>) = 1.566, F(000) = 1916,  $\mu$  (mm<sup>-1</sup>) = 2.636, 158406 reflections collected, 7348 unique reflections ( $R_{int} = 0.0621$ ), 5586 observed ( $I > 2\sigma$  (I)) reflections, multi-scan absorption correction,  $T_{min} = 0.776$ ,  $T_{max} = 0.768$ , 450 refined parameters, S = 1.041, R1 = 0.0612, wR2 = 0.1731 (all data R = 0.0877, wR2 = 0.1965), maximum and minimum residual electron densities;  $\Delta \rho_{max} = 4.907$ ,  $\Delta \rho_{min} = -0.621$  (eÅ<sup>-3</sup>).

#### **S3. DFT** Computations of 1

#### **Computational Details**

All the calculations in this study have been performed with density functional theory (DFT), with the aid of the Turbomole 6.4 suite of programs,<sup>S4</sup> employing the PBE functional<sup>S5</sup>and the TZVP<sup>3</sup> basis set. The resolution of identity (RI),<sup>S6</sup> along with the multipole accelerated resolution of identity (marij)<sup>S7</sup> approximations have been used for an accurate and efficient treatment of the electronic Coulomb term in the DFT calculations. Solvent correction were incorporated with optimization calculations using the COSMO model,<sup>S8</sup> with toluene ( $\varepsilon = 2.38$ ) as the solvent. Full frequency calculations on the optimized minima and also normal mode analysis was performed for compound **1** using the same level of theory. Consequently, all reported energy values represent gas phase data at 298.15 K temperature.

The nature of germanium-carbon interaction in compound **1** was investigated with the natural bond orbitals (NBO) analysis procedures as implemented in the Gaussian 09 program. The analyses was performed at the PBEPBE/TZVP optimized geometry using the PBEPBE density functional together with the all electron TZVP basis set.

In order to gain insight into the interaction of the isocyanide ligands with the central germanium atom, the intermolecular charge transfer in the complex has been analysed with the natural bond orbital (NBO) analysis. The energetic estimate of donor (i) – acceptor (j) orbital interactions can be obtained by the second order perturbation theory analysis of the Fock matrix in the NBO basis. The donor–acceptor interaction energy E(2) is given by

$$E(2) = \Delta E(i,j) = q(i,j)F(i,j)^2 / \{\varepsilon(i) - \varepsilon(j)\}$$

where q(i) is the donor orbital occupancy,  $\varepsilon(i)$  and  $\varepsilon(j)$  are the diagonal elements (orbital energies), and F(i,j) is the off-diagonal NBO Fock matrix element. In the present investigation, the important interactions between the central germanium and the isocyanide ligands have been analyzed.



Figure S1 (a) Strong  $\sigma$  (LP (C=N) $\rightarrow$ LP (Ge)) interactions and (b) weak  $\pi$ (LP(Ge) $\rightarrow \pi^*$ (C=N)) interaction



Figure S2: (a) LUMO of 1 and (b) LUMO of  $1^{2+}$  (contour value  $\pm 0.03$ ). Hydrogen atoms have been omitted for clarity.

The Cartesian coordinates of the optimized singlet geometry of complex 1  $[Ge(RNC)_4]^{2+}$ 2[:GeCl<sub>3</sub>]<sup>-</sup> is given below:



Figure S3 : Ge(1)–C(74) = 2.10, Ge(1)–C(75) = 2.22, Ge(1)–C(76) = 2.50, Ge(1)–C(77) = 2.05, C(74)–N(3)=1.167, C(75)–N(2)=1.173, C(76)–N(4)=1.175, C(77)–N(5)=1.163, Ge(1)–C(74)-N(3) = 164.1°; Ge(1)-C(75)-N(2) = 156.3°; Ge(1)-C(76)-N(4) = 142.0°; Ge(1)-C(77)-N(5) = 170.2°; The isocyanide ligands are almost linear about the nitrogen atoms with the C-N-C angles between 176.7° and 177.7°

85

| Ge | 3.593030  | 13.076805 | 9.174184  |
|----|-----------|-----------|-----------|
| Ν  | 1.473438  | 13.000861 | 6.609878  |
| Ν  | 6.009829  | 12.340042 | 7.132063  |
| Ν  | 5.985785  | 13.301296 | 11.726511 |
| Ν  | 2.992827  | 10.078158 | 10.115168 |
| С  | 6.526969  | 13.950043 | 12.818779 |
| С  | 7.099778  | 12.196599 | 6.302307  |
| С  | 0.526618  | 13.346690 | 5.665675  |
| С  | 3.470250  | 8.198102  | 11.518726 |
| С  | 0.510077  | 12.646149 | 4.436727  |
| С  | 2.635796  | 8.830054  | 10.568572 |
| С  | 8.382054  | 12.152731 | 6.896033  |
| С  | -0.371965 | 14.393594 | 5.985082  |
| С  | 6.298373  | 13.410997 | 14.104591 |
| С  | -1.323821 | 14.724452 | 5.015070  |
| Н  | -2.035151 | 15.524852 | 5.226803  |
| С  | 7.262479  | 15.134835 | 12.588987 |
| С  | 3.084740  | 6.921998  | 11.938470 |
| Η  | 3.704445  | 6.397713  | 12.668177 |
| С  | 6.869111  | 12.094230 | 4.912127  |
| С  | 1.443155  | 8.263984  | 10.059372 |

| С | 9.468089  | 12.003578 | 6.029992  |
|---|-----------|-----------|-----------|
| Η | 10.474716 | 11.957574 | 6.449368  |
| С | 1.112577  | 6.986977  | 10.521031 |
| Η | 0.201773  | 6.513084  | 10.150655 |
| С | 6.843174  | 14.108992 | 15.187841 |
| Η | 6.681555  | 13.723920 | 16.196509 |
| С | 7.784025  | 15.787530 | 13.709739 |
| Η | 8.354576  | 16.707566 | 13.568425 |
| С | 1.498860  | 11.555243 | 4.148933  |
| Η | 2.529611  | 11.940873 | 4.151702  |
| Η | 1.306015  | 11.103199 | 3.168323  |
| Η | 1.470327  | 10.760651 | 4.909494  |
| С | 1.923849  | 6.322067  | 11.444196 |
| Η | 1.644099  | 5.324159  | 11.787048 |
| С | 5.494392  | 12.158087 | 14.283953 |
| Η | 4.474146  | 12.278612 | 13.886620 |
| Η | 5.421060  | 11.889431 | 15.344859 |
| Η | 5.951608  | 11.313109 | 13.745526 |
| С | 7.996032  | 11.951945 | 4.098832  |
| Η | 7.858677  | 11.857738 | 3.020225  |
| С | 4.692662  | 8.884708  | 12.048808 |
| Η | 4.413678  | 9.831749  | 12.536865 |
| Η | 5.394005  | 9.120664  | 11.233405 |
| Η | 5.206665  | 8.252043  | 12.782420 |
| С | -0.465425 | 13.025068 | 3.508494  |
| Η | -0.509935 | 12.504694 | 2.550033  |
| С | -1.371825 | 14.049428 | 3.792653  |
| Η | -2.124271 | 14.325893 | 3.051803  |
| С | 7.577239  | 15.281364 | 14.995595 |
| Η | 7.989996  | 15.808998 | 15.857381 |
| С | 5.475181  | 12.097572 | 4.359788  |
| Η | 4.913804  | 11.232616 | 4.748808  |
| Η | 5.491651  | 12.037617 | 3.264764  |
| Η | 4.927175  | 13.008699 | 4.649177  |
| С | 8.548297  | 12.238665 | 8.385095  |
| Η | 9.609456  | 12.206916 | 8.660087  |
| Η | 8.031371  | 11.400882 | 8.879040  |
| Η | 8.114917  | 13.169125 | 8.785110  |
| С | 7.452673  | 15.668219 | 11.197501 |
| Η | 6.484469  | 15.897182 | 10.725172 |
| Η | 7.961991  | 14.934749 | 10.552272 |
| Η | 8.052960  | 16.586037 | 11.210707 |
| С | -0.295410 | 15.111539 | 7.301168  |
| Η | -0.393343 | 14.419026 | 8.151379  |
| Η | -1.086505 | 15.867584 | 7.376209  |
| Η | 0.674641  | 15.619991 | 7.421025  |

| С  | 0.590436  | 9.008706  | 9.074883  |
|----|-----------|-----------|-----------|
| Н  | 1.147859  | 9.193659  | 8.142405  |
| Η  | 0.288615  | 9.989975  | 9.474233  |
| Η  | -0.312999 | 8.434964  | 8.834670  |
| С  | 9.278518  | 11.906111 | 4.649039  |
| Η  | 10.142833 | 11.785090 | 3.993611  |
| С  | 5.090458  | 12.403593 | 7.848857  |
| С  | 2.246039  | 12.718328 | 7.445629  |
| С  | 5.481686  | 12.793864 | 10.793382 |
| С  | 3.268360  | 11.117401 | 9.671375  |
| Ge | 5.127233  | 7.976295  | 6.991646  |
| Cl | 6.288680  | 9.163600  | 8.668964  |
| Cl | 6.491409  | 8.573722  | 5.206816  |
| Cl | 3.441513  | 9.611450  | 6.592468  |
| Ge | 0.883269  | 13.321437 | 12.624641 |
| Cl | 2.835915  | 14.592371 | 12.404893 |
| Cl | 0.589908  | 12.875361 | 10.273216 |
| Cl | 1.907482  | 11.295751 | 13.160094 |

The cartesian coordinates of optimized triplet geometry of complex  $1 [Ge(RNC)_4]^{2+} 2[:GeCl_3]^{-}$  is given below 85

| Ge | 3.697343  | 14.577448 | 8.790389  |
|----|-----------|-----------|-----------|
| Ν  | 1.401317  | 12.971046 | 6.421340  |
| Ν  | 6.112399  | 13.151387 | 7.461996  |
| Ν  | 5.460183  | 14.905401 | 11.551182 |
| Ν  | 4.025799  | 11.564910 | 9.701800  |
| С  | 6.120900  | 14.935730 | 12.759063 |
| С  | 6.657056  | 11.943875 | 7.128826  |
| С  | 0.102239  | 12.633305 | 6.089361  |
| С  | 5.326177  | 9.966309  | 10.927413 |
| С  | -0.108192 | 11.522839 | 5.241435  |
| С  | 4.534772  | 10.298838 | 9.798277  |
| С  | 7.549664  | 11.327999 | 8.048434  |
| С  | -0.946215 | 13.414053 | 6.626145  |
| С  | 5.379606  | 14.651706 | 13.931915 |
| С  | -2.251376 | 13.039206 | 6.291801  |
| Η  | -3.085656 | 13.617699 | 6.693586  |
| С  | 7.505037  | 15.232088 | 12.757918 |
| С  | 5.884091  | 8.686032  | 10.956247 |
| Η  | 6.497914  | 8.399843  | 11.812985 |
| С  | 6.300908  | 11.339437 | 5.893314  |
| С  | 4.273642  | 9.388652  | 8.741994  |
| С  | 8.038316  | 10.062912 | 7.724087  |
| Н  | 8.705592  | 9.560888  | 8.427814  |
| С  | 4.859191  | 8.124235  | 8.829554  |
|    |           |           |           |

| Η | 4.682007  | 7.409444  | 8.023449  |
|---|-----------|-----------|-----------|
| С | 6.088026  | 14.657155 | 15.137706 |
| Η | 5.550978  | 14.439162 | 16.062873 |
| С | 8.153309  | 15.227154 | 13.995647 |
| Η | 9.221202  | 15.450938 | 14.032868 |
| С | 1.045452  | 10.729622 | 4.699960  |
| Н | 1.762141  | 11.368612 | 4.162008  |
| Η | 0.701241  | 9.946638  | 4.014130  |
| Н | 1.606513  | 10.239230 | 5.509294  |
| С | 5.659901  | 7.773985  | 9.920004  |
| Η | 6.108309  | 6.779999  | 9.966211  |
| С | 3.909401  | 14.362076 | 13.868354 |
| Η | 3.352081  | 15.196000 | 13.414956 |
| Н | 3.504517  | 14.182875 | 14.871571 |
| Η | 3.686668  | 13.476287 | 13.254004 |
| С | 6.820733  | 10.070394 | 5.628232  |
| Η | 6.533698  | 9.571996  | 4.700289  |
| С | 5.523719  | 10.944057 | 12.050282 |
| Η | 4.557102  | 11.217989 | 12.501390 |
| Η | 5.991821  | 11.879647 | 11.706254 |
| Η | 6.161855  | 10.515321 | 12.832793 |
| С | -1.435034 | 11.194968 | 4.942176  |
| Η | -1.632635 | 10.339154 | 4.293620  |
| С | -2.494876 | 11.942377 | 5.461312  |
| Η | -3.522286 | 11.666261 | 5.216688  |
| С | 7.455886  | 14.940283 | 15.172810 |
| Η | 7.984366  | 14.939312 | 16.127799 |
| С | 5.390791  | 12.042348 | 4.929751  |
| Η | 4.427594  | 12.301388 | 5.398812  |
| Η | 5.189863  | 11.412543 | 4.054787  |
| Η | 5.832673  | 12.990722 | 4.584904  |
| С | 7.947162  | 12.031481 | 9.313347  |
| Η | 8.514786  | 11.362483 | 9.971808  |
| Η | 7.068862  | 12.393910 | 9.867484  |
| Η | 8.572328  | 12.912684 | 9.094508  |
| С | 8.228945  | 15.534750 | 11.477376 |
| Η | 7.805900  | 16.419087 | 10.975946 |
| Η | 8.151998  | 14.698709 | 10.765088 |
| Η | 9.292324  | 15.724750 | 11.667070 |
| С | -0.656204 | 14.577589 | 7.528978  |
| Η | -0.144526 | 14.245680 | 8.445813  |
| Η | -1.583779 | 15.086456 | 7.819345  |
| Η | 0.003672  | 15.311908 | 7.041196  |
| С | 3.397155  | 9.784048  | 7.592449  |
| Η | 3.761988  | 10.701196 | 7.107593  |
| Η | 2.372390  | 9.994486  | 7.938839  |

| Н  | 3.358791 | 8.987520  | 6.839809  |
|----|----------|-----------|-----------|
| С  | 7.675427 | 9.431227  | 6.530752  |
| Н  | 8.057119 | 8.434451  | 6.304045  |
| С  | 5.584154 | 14.149542 | 7.849527  |
| С  | 2.503103 | 13.252849 | 6.731773  |
| С  | 4.897162 | 14.821739 | 10.523278 |
| С  | 3.582041 | 12.657862 | 9.615636  |
| Ge | 2.996046 | 6.720628  | 3.533901  |
| Cl | 3.942857 | 8.769179  | 3.363033  |
| Cl | 0.819081 | 7.136201  | 3.115424  |
| Cl | 3.033066 | 6.317055  | 5.759223  |
| Ge | 0.088248 | 12.373514 | 11.636327 |
| Cl | 0.998901 | 14.456793 | 11.274911 |
| Cl | 0.264608 | 11.436393 | 9.565160  |
| Cl | 1.788987 | 11.323280 | 12.750703 |
|    |          |           |           |

#### S4. References

[S1] Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

[S2] G. M. Sheldrick, *Acta Crystallogr.*, 2008, A64, 112–122.

[S3] L. J. Farrugia, J. Appl. Cryst., 1997, 30, 565–565.

[S4] R. Ahlrichs, M. Bar, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165–169.

[S5] J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 1996, 77, 3865–3868.

[S6] S. Ansgar, H. Christian, A. Reinhart, J. Chem. Phys. 1994, 100, 5829–5835.

[S7] K. Eichkorn, O. Treutler, H. Öhm, M. Haser, R. Ahlrichs, *Chem. Phys. Lett.* 1995, **240**, 283–289.

[S8] M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136–9148.

[S9] A. Klamt, G. Schuurmann, J. Chem. Soc., Perkin Trans. 1993, 2, 799–805.