Organocatalytic Silyl Transfer from Silylborane to Nitroalkenes for

the Synthesis of β -silyl nitroalkanes and β -Silyl Amines

Chen-ran Jiang, Chun-liang Zhao, Huifang Guo and Wei He* School of Pharmaceutical Sciences and Tsinghua-Peking Joint Centers for Life Science, Tsinghua University, Beijing 100084 (China) whe@mail.tsinghua.edu.cn

Table of Contents

1.	General Information
2.	Reaction Opitmization
	2.1 Effect of Zn(II) salts
	2.2 Effect of Additives S4
	2.3 Effect of Other Lewis acids S5
	2.4 Effect of Other Protic Acids S6
3.	Preliminary Mechanistic Study S7
	3.1 Silylation Using Putative Zn(SiMe ₂ Ph) ₂ ,
	3.2 Attempts to Trapping with Electronphiles
	3.3 Test with Phase Transfer Agents and Surfactants
	3.4 Deuterium Labelled Experiments S8
4.	General Procedure for β -Silylation and Reduction of β -Silyl Nitroalkane S9
	4.1 General Procedure I: β-Silylation
	4.2 General Procedure II: Reduction of β-Silyl Nitroalkane
5.	References S10
6.	Spectroscopic Data of Key Compounds S11
7.	Copy of NMR spectra

1. General Information.

Components were visualized by UV and/or Phosphomolybdic acid staining. ¹H-, ¹³C- and ²⁹Si-NMR were recorded on a Bruker AscendTM 400 spectrometers. Chemical shifts (in ppm) were referenced to internal solvent peaks (¹H, ¹³C). Toluene, DCM, Et₂O, THF were removed from *Solvent Processing System*. All reagent were commercial available or synthesized according to literature reports.^{1, 2}

2. Reaction Optimization.

General Procedure for Optimization: 0.1 mmol of nitroalkene **1b** and 0.15 mmol Me₂PhSiBPin **2** were added into an over-dried thick-wall pressure vessel (10 mL) after catalyst and additives were added. Then 0.5 mL toluene/water (v/v = 4/1) mixed solvent was added. The reaction was heated at 50°C for 12 h. After the reaction was over, yield was determined by ¹H NMR, using 4-acetylnitrobenzene as internal standard.

2.1 Effect of Zn(II) salts

Table S1a	Optimization	of zinc	salts.	a, b
-----------	--------------	---------	--------	------

	NO ₂ -	PhMe ₂ Si-B cat.Zinc catalyst / Solvent, he	Pin 2 / Additive eat	Ph Si NO	2
	1b			4b	
Entry	Catalyst	Additives	Temp.[°C]	Solvent	Yield[%]
1	ZnCl ₂	None	50	Dioxane/water	nr
2	Zn(OAc) ₂	None	50	Dioxane/water	9
3	$Zn(acac)_2$	None	50	Dioxane/water	Trace
4	Zn(OTf) ₂	None	50	Dioxane/water	Trace
5	Zinc undecylenate	None	50	Dioxane/water	13
6	Zinc undecylenate	A1	50	Dioxane/water	70
7	Zinc undecylenate	B1	50	Dioxane/water	25
8	Zinc undecylenate	A1 + B1	50	Dioxane/water	77
9	ZnCl ₂	A1 + B1	50	Dioxane/water	nr
10	Zn(OAc) ₂	A1 + B1	50	Dioxane/water	69
11	$Zn(acac)_2$	A1 + B1	50	Dioxane/water	47
12	Zn(OTf) ₂	A1 + B1	50	Dioxane/water	46
13	Zn(OH) ₂	A1 + B1	50	Dioxane /water	Trace
14	Zinc methacrylate	A1 + B1	50	Toluene/water	93
15	Zinc undecylenate	A1 + B1	50	MeOH	Trace
16	Zinc undecylenate	A1 + B1	50	DCM/water	70
17 ^c	Zinc undecylenate	A1 + B1	50	Toluene/water	>95

^{*a*}General procedure: Nitroalkene **1b** (0.1 mmol), Me₂PhSiBPin **2** (1.5 equiv), and 10 mol% catalyst with 20 mol% **A1** or/and 20 mol% **B1** in 0.5 mL toluene/water (v/v = 4/1) mix solvent for 12 h. ^{*b*}400M ¹H-NMR was used to determine the yields. 4-acetylnitrobenzene was used as internal standard. ^cReaction underwent with 5 mol% **A1** and 5 mol% **B1**.

2.2 Effect of Additives

	NO ₂	PhMe ₂ Si-BPin 2 Zinc undecylenate / Additives Toluene/water, 50°C		Ph Si	NOa
	1b			4b	
Entry	Catalyst	Additives	Temp.[°C]	Solvent	Yield[%]
1	Zinc undecylenate	A2 + B1	50	Toluene/water	89
2	Zinc undecylenate	A1 + B2	50	Toluene/water	51
3	Zinc undecylenate	A1 + B3	50	Toluene/water	84
4	Zinc undecylenate	A1 + B4	50	Toluene/water	39
5	Zinc undecylenate	A1 + B5	50	Toluene/water	46
6	Zinc undecylenate	A1 + B6	50	Toluene/water	51
7	Zinc undecylenate	A1 + B7	50	Toluene/water	82
8	Zinc undecylenate	A1 + B8	50	Toluene/water	59
9	Zinc undecylenate	A1 + B9	50	Toluene/water	nr
10	Zinc undecylenate	A1 + B10	50	Toluene/water	nr
11	Undecylenic acid	A1 + B1	50	Toluene/water	93
12	Undecylenic acid	A1	50	Toluene/water	60
13	Undecylenic acid	B1	50	Toluene/water	20
14	Undecylenic acid		50	Toluene/water	nr
15	Undecylenic acid	A2 + B1	50	Toluene/water	24

Table S1b Optimization of additive	s. ^{a, b}
------------------------------------	--------------------

^{*a*}General procedure: Nitroalkene **1b** (0.1 mmol), Me₂PhSiBPin **2** (1.5 equiv), 10 mol% zinc undecylenate with 5 mol% **A1** and 5 mol% **B1** in 0.5 mL toluene/water (v/v = 4/1) mix solvent for 12 h. ^{*b*}400M ¹H-NMR was used to determine the yields. 4-acetylnitrobenzene was used as internal standard.

Figure S1 Additives in optimization.

2.3 Effect of Other Lewis acids

	NO	PhMe ₂ s D ₂ Lewis acio Toluene/wa	Si-BPin 2 I / A1+B1 ater, 50°C ►	Ph Si NO ₂	
	1b			4b	
Entry	Catalyst	Additives	Temp.[°C]	Solvent	Yield[%]
1	AlCl ₃	A1 + B1	50	Dioxane/water	NR
2	TiCl ₄	A1 + B1	50	Dioxane/water	NR
3	Ag ₂ CO ₃	A1 + B1	50	Dioxane/water	35
4	AgNO ₃	A1 + B1	50	Dioxane/water	NR
5	CF ₃ COOAg	A1 + B1	50	Dioxane/water	NR
6	PhCOOAg	A1 + B1	50	Dioxane/water	54
7	$Co(OAc)_2$	A1 + B1	50	Dioxane/water	Trace
8	TiCl ₂ Cp ₂	A1 + B1	50	Dioxane/water	NR
9	Mn(OAc) ₂	A1 + B1	50	Dioxane/water	90
10	AgOAc	A1 + B1	50	Dioxane/water	94
11	Ti(O <i>i</i> -Pr) ₄	A1 + B1	50	Dioxane/water	92

Table S1c Optimization of Lewis acids. ^{*a, b*}

^{*a*}General procedure: Nitroalkene **1b** (0.1 mmol), Me₂PhSiBPin **2** (1.5 equiv), and 10 mol% catalyst with 5 mol% **A1** and 5 mol% **B1** in 0.5 mL toluene/water (v/v = 4/1) mix solvent for 12 h. ^{*b*}400M ¹H-NMR was used to determine the yields. 4-acetylnitrobenzene was used as internal standard.

2.4 Effect of Other Protic Acids

Table S1d Optimization of acids.^{*a, b*}

"General procedure: Nitroalkene **1b** (0.1 mmol), Me₂PhSiBPin **2** (1.5 equiv), and 10 mol% acid catalyst with 5 mol% **A1** and 5 mol% **B1** in 0.5 mL toluene/water (v/v = 4/1) mix solvent for 12 h. ^{*b*}400M ¹H-NMR was used to determine the yields. 4-acetylnitrobenzene was used as internal standard.

3. Preliminary Mechanistic Study.

3.1 Silylation Using Putative Zn(SiMe₂Ph)₂

		NO ₂ Zn(SiMe ₂ Pr Toluene/w	a) ₂ , A1 + B1 ater, 50°C	SiMe ₂ Ph NO ₂	
	1b		4b		
Entry	Catalyst	Additives	Temp.[°C]	Solvent	Yield[%]
1	None	A1	50	Dioxane/water	NR
2	None	B1	50	Dioxane/water	NR
3	None	A1 + B1	50	Dioxane/water	NR
4	Undecylenate acid	None	50	Dioxane/water	NR
5	Undecylenate acid	A1 + B1	50	Dioxane/water	NR

Table S2 Optimization with Zn(SiMePh)₂.

General procedure: Nitroalkene **1b** (0.1 mmol), $Zn(SiMePh)_2$ (2.0 equiv), and 10 mol% undecylenate acid catalyst with 5 mol% **A1** and 5 mol% **B1** in 0.5 mL dioxane/water (v/v = 4/1) mix solvent for 12 h.

 $Zn(SiMe_2Ph)_2$ was prepared and verified the reactivity according to work of Oestreich's.³ 1.0 equiv of Nitroalkene **1b** (0.1 mmol) was added into an over-dried thick-wall pressure vessel (10 mL) in 0.5 mL dioxane/water (v/v = 4/1) under Ar protection. 2.0 equiv of $Zn(SiMe_2Ph)_2$ was added by syringe in a little amount of toluene afterwards. The reaction was heated for 12 h at 50°C, and monitored by TLC.

3.2 Attempts to Trapping with Electronphiles⁴

Nitroalkene **1b** (0.1 mmol), Me₂PhSiBPin **2** (1.5 equiv), and 10 mol% zinc undecylenate with 5 mol% **A1** and 5 mol% **B1** in 0.5 mL toluene were added into an over-dried thick-wall pressure vessel (10 mL) under Ar protection. Electronphile was added using a syringe after heated for 2 h at 50°C. The reaction was heated for another 12 h at 50°C. After the reaction was over, water was

added to the mixed system to quench the reaction. After another 30 mins stirring, yield was determined by ¹H NMR, using 4-acetylnitrobenzene as internal standard.

3.3 Test with Phase Transfer Agents and Surfactants

TBAX = TBAC, or TBAB, or TBAI

Nitroalkene **1b** (0.1 mmol), Me₂PhSiBPin **2** (1.5 equiv), and 10 mol% TBAX (TBAX = TBAC, or TBAB, or TBAI), with 5 mol% **A1** and 5 mol% **B1** in 0.5 mL toluene/water (v/v = 4/1) were added into an over-dried thick-wall pressure vessel (10 mL) under Ar protection. The reaction was heated for 12 h at 50°C. After the reaction was over, yield was determined by ¹H NMR, using 4-acetylnitrobenzene as internal standard.

3.4 Deuterium Labeled Experiments

Nitroalkene **1b** (0.1 mmol), 10 mol% undecylenate acid, 5 mol% **A1**, 5 mol% **B1**, 1.5 equiv Me₂PhSiBPin **2** were added into an over-dried thick-wall pressure vessel (10 mL) under Ar protection. Next, 0.2 M toluene/D₂O (v/v = 4/1) mixed solvent was added to vessel. The reaction was heated at 50°C for 12 h, monitored by TLC. After the reaction was over, the resulted mixture was extracted 3 times with DCM. The organic phases were collected, dried with MgSO₄, filtered and the solvent was evaporated in vacuo. The resulting oil was purified with silica gel chromatography. A mobile phase consisting of petroleum ether/ethyl acetate (v/v) 60/1 was used as eluent.

Nitroalkene **1b** (0.1 mmol), 10 mol% undecylenate acid, 5 mol% **A1**, 5 mol% **B1**, 1.5 equiv Me₂PhSiBPin **2** were added into an over-dried thick-wall pressure vessel (10 mL). Next, 0.2 M toluene/H₂O/D₂O (v/v/v = 4/0.5/0.5) mixed solvent was added to vessel. The reaction was heated at 50°C for 12 h, monitored by TLC. After the reaction was over, the resulted mixture was extracted 3 times with DCM. The organic phases were collected, dried with MgSO₄, filtered and the solvent was evaporated in vacuo. The resulting oil was purified with silica gel chromatography. A mobile phase consisting of petroleum ether/ethyl acetate (v/v) 60/1 was used as eluent

4. General Procedure for β-Silylation and Reduction of β-Silyl Nitroalkane.

4.1 General Procedure I: β-Silylation.

1.0 equiv of nitroalkene 1, 10 mol% undecylenate acid, 5 mol% A1, 5 mol% B1, 1.5 equiv Me₂PhSiBPin 2 were added into an over-dried thick-wall pressure vessel (10 mL). Next, 0.2 M toluene/water (v/v = 4/1) mixed solvent was added to vessel. The reaction was heated at 50°C for 4 to 12 h, monitored by TLC. After the reaction was over, the resulted mixture was extracted 3 times with DCM. The organic phases were collected, dried with MgSO₄, filtered and the solvent was evaporated in vacuo. The resulting oil was purified with silica gel chromatography. A mobile phase consisting of petroleum ether/ethyl acetate (v/v) from 100/1 to 4/1 can be used as eluent.

4.2 General Procedure II: Reduction of β-Silyl Nitroalkane.

10 equiv zinc powder was added to a solution of 1 equiv **4** in 0.17M EtOH to an over-dried round-bottomed flask. Next, 15 equiv of 0.48M hydrochloric acid was added by drop at 0°C. The reaction was tracked by TLC. After the reaction was over, the resulted mixture was extracted with DCM 3 times. The organic phases were collected, dried with MgSO₄, filtered and the solvent was evaporated in vacuo. The sample was purified using silica gel chromatography with a mobile phase consisting of DCM/MeOH (v/v) from 30/1 to 10/1.

5. References.

- 1. (a) C. Xu, J. Du, L. Ma, G. Li, M. Tao and W. Zhang, *Tetrahedron*, 2013, **69**, 4749-4757. (b)D. M. Mampreian and A. H. Hoveyda, *Org. Lett.* 2004, **6**, 2829-2832.
- 2. M. Suginome, T. Matsuda and Y. Ito, Organometallics, 2000, 19, 4647-4649.
- 3. (a) C. K. Hazra and M. Oestreich, *Org. Lett.* 2012, **14**, 4010-4013. (b) E. S. Schmidtmann and M. Oestreich, *Chem. Commun.*2006, 3643-3645.
- 4. J. Rae, Y. C. Hu and D. J. Procter, Chem. Eur. J. 2014, 20, 13143-13145.

6. Spectroscopic Data of Key Compounds.

Dimethyl(2-nitro-1-phenylethyl)(phenyl)silane (**4a**): Following General Procedure **I**, 44.8 mg **1a** was converted into 76.1 mg of **4a** as a light yellow oil (89.3% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.55$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.44-7.37 (m,5H), 7.26-7.13 (m, 3H), 7.00-6.97 (m, 2H), 4.86-4.80 (t, *J* = 13.51 Hz, 1H), 4.53-4.48 (dd, *J* = 3.76, 13.51 Hz, 1H), 3.29-3.25 (dd, *J* = 3.76, 13.51 Hz, 1H), 0.31 (s, 3H), 0.29 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ137.68, 135.00, 134.05, 130.15, 128.72, 128.33, 127.45, 126.23, 77.04, 36.25, -3.81, -5.32 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-2.02. HRMS [ESI, (M+Na)⁺]: for C₁₆H₁₉NO₂Si found 308.1074, calcd. 308.1077.

SiMe₂Ph NO_2

Dimethyl(2-nitro-1-(p-tolyl)ethyl)(phenyl)silane (**4b**): Following General Procedure I, 49.0 mg **1b** was converted into 83.2 mg **4b** as a light yellow oil (92.6% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.55$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.46-7.37 (m, 5H), 7.06-7.04 (d, *J* = 7.92 Hz, 2H), 6.89-6.87 (d, *J* = 7.92 Hz, 2H), 4.83-4.78 (t, *J* = 13.45 Hz, 1H), 4.51-4.46 (dd, *J* = 3.8, 13.45 Hz, 1H), 3.25-3.20 (dd, *J* = 3.8, 13.45 Hz, 1H), 2.30 (s, 3H), 0.30 (s, 3H), 0.29 (s, 3H); ¹³C-NMR (CDCl₃, 101M, ppm): δ135.71, 135.21, 134.45, 134.06, 130.09, 129.44, 128.32, 127.34, 77.21, 35.79, 21.10, -3.74, -5.32 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-2.24. HRMS [ESI, (M+Na)⁺]: for C₁₇H₂₁NO₂Si found 322.1237, calcd. 322.1234.

Dimethyl(2-nitro-1-(m-tolyl)ethyl)(phenyl)silane (**4c**): Following General Procedure I, 81.5 mg **1c** was converted into 116.3 mg **4c** as a light yellow oil (77.0% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.55$. ¹H-NMR (CDCl₃, 400M, ppm): δ 7.46-7.39 (m, 5H), 7.17-7.13 (t, J = 7.54 Hz, 1H), 7.00-6.98 (d, J = 7.54 Hz, 1H), 6.83-6.81 (d, J = 7.54 Hz, 1H), 6.81-6.78 (s, 1H), 4.87-4.80 (t, J = 13.44 Hz, 1H), 4.54-4.49 (dd, J = 3.76, 13.44 Hz, 1H), 3.27-3.23 (dd, J = 3.76, 13.44 Hz, 1H), 2.29 (s, 3H), 0.32 (s, 3H), 0.31 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ 138.15, 137.51, 135.11, 134.05, 130.07, 128.50, 128.32, 128.24, 126.97, 124.39, 77.02, 36.01, 21.53, -3.85, -5.33 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ -2.14. HRMS [ESI, (M+Na)⁺]: for C₁₇H₂₁NO₂Si found 322.1234, calcd. 322.1234.

SiMe₂Ph NO_2

Dimethyl(2-nitro-1-(o-tolyl)ethyl)(phenyl)silane (**4d**): Following General Procedure I, 81.5 mg **1d** was converted into 116.0 mg **4d** as a light yellow oil (76.8% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.55$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.45-7.36 (m, 5H), 7.12-7.03 (m, 3H), 6.90-6.90 (m, 1H), 4.85-4.79 (t, *J* = 13.52 Hz, 1H), 4.56-4.52 (dd, *J* = 3.68, 13.52 Hz, 1H), 3.60-3.55 (dd, *J* = 3.68, 13.52 Hz, 1H), 2.25 (s, 3H), 0.35 (s, 3H), 0.27 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ136.36, 136.27, 135.30, 134.04, 131.03, 130.16, 128.33, 126.23, 125.96, 125.54, 77.70, 30.66, 20.30, -3.75, -5.21 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-1.90. HRMS [ESI, (M+Na)⁺]: for C₁₇H₂₁NO₂Si found 322.1230, calcd. 322.1234.

(1-(4-ethylphenyl)-2-nitroethyl)dimethyl(phenyl)silane (**4e**): Following General Procedure I, 88.5 mg **1e** was converted into 87.0 mg **4e** as a light yellow oil (55.1% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.55$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.44-7.37 (m, 5H), 7.08-7.06 (d, J = 8.04 Hz, 2H), 6.91-6.89 (d, J = 8.04 Hz, 2H), 4.84-4.77 (t, J = 13.4 Hz, 1H), 4.50-4.46 (dd, J = 3.8, 13.4 Hz, 1H), 3.26-3.21 (dd, J = 3.8, 13.4 Hz, 1H), 263-2.57 (q, J = 7.6 Hz, 2H), 1.23-1.19 (t, J = 7.6 Hz, 3H), 0.30 (s, 3H), 0.28 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ142.04, 135.27, 134.65, 134.06, 130.09, 128.31, 128.19, 127.37, 77.21, 35.78, 28.45, 15.48, -3.71, -5.32 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-2.21. HRMS [ESI, (M+Na)⁺]: for C₁₈H₂₃NO₂Si found 336.1392, calcd. 336.1390.

SiMe₂Ph NO_2

(1-(4-methoxyphenyl)-2-nitroethyl)dimethyl(phenyl)silane (**4f**): Following General Procedure **I**, 89.5 mg **1f** was converted into 130.1 mg **4f** as a yellow oil (81.8% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.30$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.43-7.36 (m, 5H), 6.90-6.87 (dd, J =2.04, 6.6 Hz, 2H), 6.80-6.77 (dd, J = 2.04, 6.6 Hz, 2H), 4.78-4.72 (t, J = 13.38 Hz, 1H), 4.51-4.47 (dd, J = 3.84, 13.38 Hz, 1H), 3.77 (s, 3H), 3.21-3.17 (dd, J = 3.84, 13.38 Hz, 1H), 0.30 (s, 3H), 0.28 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ158.07, 135.19, 134.07, 130.11, 129.46, 128.46, 128.32, 114.22, 77.42, 55.34, 35.35, -3.77, 5.24 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-2.28. HRMS [ESI, (M+Na)⁺]: for C₁₇H₂₁NO₃Si found 338.1185, calcd. 338.1183.

(1-(4-fluorophenyl)-2-nitroethyl)dimethyl(phenyl)silane (**4g**): Following General Procedure I, 50.3 mg **1g** was converted into 55.2 mg **4g** as a light yellow solid (60.9% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.50$. MP: 55-59 °C.¹H-NMR (CDCl₃, 400M, ppm): δ7.46-7.37 (m, 5H), 6.95-6.93 (m, 4H), 4.80-4.73 (t, J = 13.48 Hz, 1H), 4.55-4.50 (dd, J = 3.8, 13.48 Hz, 1H), 3.27-3.23 (dd, J = 3.8, 13.48 Hz, 1H), 0.31 (s, 3H), 0.30 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ161.41 (d, J = 245 Hz), 134.65, 134.03, 133.38 (d, J = 3.0 Hz), 130.25, 128.81 (d, J = 7.0 Hz), 128.36, 115.63 (d, J = 21.0 Hz), 77.16, 35.61, -3.98, -5.28 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-2.00. HRMS [ESI, (M+Na)⁺]: for C₁₆H₁₈FNO₂Si found 326.0983, calcd. 326.0983.

(1-(4-chlorophenyl)-2-nitroethyl)dimethyl(phenyl)silane (**4h**): Following General Procedure I, 41.7 mg **1h** was converted into 56.0 mg **4h** as a light yellow solid (67.9% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.50$. MP: 78-81 °C. ¹H-NMR (CDCl₃, 400M, ppm): δ7.45-7.37 (m, 5H), 7.22-7.20 (d, *J* = 8.4 Hz, 2H), 6.90-6.88 (d, *J* = 8.4 Hz, 2H), 4.79-4.72 (t, *J* = 13.52 Hz, 1H), 4.53-4.49 (dd, *J* = 3.76, 13.52 Hz, 1H), 3.26-3.21 (dd, *J* = 3.76, 13.52 Hz, 1H), 0.31 (s,3H), 0.30 (s,3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ136.35, 134.48, 134.05, 132.01, 130.34, 128.91, 128.70, 128.43, 77.37, 35.91, -3.94, -5.27 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-1.95. HRMS [ESI, (M+Na)⁺]: for $C_{16}H_{18}CINO_2Si$ found 342.0684, calcd. 342.0688.

(1-(4-bromophenyl)-2-nitroethyl)dimethyl(phenyl)silane (**4i**): Following General Procedure **I**, 115.3 mg **1i** was converted into 117.1 mg **4i** as a yellow solid (63.5% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.50$. MP: 73-76 °C.¹H-NMR (CDCl₃, 400M, ppm): δ7.47-7.35 (m, 7H), 6.84-6.82 (m, 2H), 4.79-4.72 (t, *J* = 13.58 Hz, 1H), 4.52-4.48 (dd, *J* = 3.68, 13.58 Hz, 1H), 3.24-3.20 (dd, *J* = 3.68, 13.58 Hz, 1H), 0.30 (s, 3H), 0.29 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ136.89, 134.42, 134.05, 131.84, 130.36, 129.07, 128.44, 119.99, 76.77, 35.97, -3.94, -5.28 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-2.03. HRMS [ESI, (M+Na)⁺]: for C₁₆H₁₈BrNO₂Si found 388.0165, calcd. 388.0163.

(1-(3-bromophenyl)-2-nitroethyl)dimethyl(phenyl)silane (**4j**): Following General Procedure I, 68.1 mg **1j** was converted into 66.8 mg **4j** as a yellow oil (61.5% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.50$. ¹**H-NMR** (CDCl₃, 400M, ppm): δ7.45-7.39 (m, 5H), 7.30-7.26 (d, *J* = 7.72 Hz, 1H), 7.13-7.08 (t, *J* = 7.72 Hz, 1H), 7.08 (s, 1H), 6.90-6.89 (d, *J* = 7.72 Hz, 1H), 4.79-4.72 (t, *J* = 13.54 Hz, 1H), 4.52-4.47 (dd, *J* = 3.72, 13.54 Hz, 1H), 3.24-3.19 (dd, *J* = 3.72, 13.54 Hz, 1H), 0.32 (s, 6H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ140.32, 134.32, 134.04, 130.49, 130.39, 130.21, 129.39, 128.43, 125.94, 122.85, 76.66, 36.12, -3.97, -5.29 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-1.70. HRMS [ESI, (M+Na)⁺]: for C₁₆H₁₈BrNO₂Si found 388.0159, calcd. 388.0163.

(1-(2-bromophenyl)-2-nitroethyl)dimethyl(phenyl)silane (**4k**): Following General Procedure I, 68.8 mg **1k** was converted into 100.6 mg **4k** as a yellow oil (91.7% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.50$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.58-7.57 (dd, J = 1.36, 7.8 Hz, 1H), 7.56-7.38 (m, 5H), 7.23-7.18 (ddd, J = 1.36, 7.8, 15.4 Hz, 1H), 7.05-7.00 (ddd, J = 1.36, 7.8, 15.4 Hz, 1H), 6.94-6.91 (dd, J = 1.36, 7.8 Hz, 1H), 4.79-4.71 (t, J = 13.83 Hz, 1H), 4.52-4.47 (dd, J = 3.82, 13.83 Hz, 1H), 3.24-3.19 (dd, J = 3.82, 13.83 Hz, 1H), 0.34 (s, 3H), 0.33 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ137.83, 134.74, 134.12, 133.71, 130.32, 128.42, 127.69, 127.52, 126.74, 125.31, 77.36, 34.21, -3.55, -5.49 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-0.97. HRMS [ESI, (M+Na)⁺]: for C₁₆H₁₈BrNO₂Si found 388.0159, calcd. 388.0163.

Dimethyl(2-nitro-1-(4-(trifluoromethyl)phenyl)ethyl)(phenyl)silane (**4l**): Following General Procedure I, 64.5 mg **1l** was converted into 55.4 mg **4l** as a colorless oil (53.0% yield). TLC: 9/1 Petroleum ether/Ethyl acetate, $R_f = 0.40$. ¹H-NMR (CDCl₃, 400M, ppm): δ 7.51-7.39 (m, 7H), 7.08-7.06 (m, 2H), 4.86-4.79 (t, *J* = 13.6 Hz, 1H), 4.56-4.52 (dd, *J* = 3.76, 13.6 Hz, 1H), 3.36-3.31 (dd, *J* = 3.76, 13.6 Hz, 1H), 0.32 (s, 3H), 0.31 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ 142.27, 134.14, 134.02, 130.47, 128.54 (q, *J* = 32.6 Hz), 128.49, 127.60, 125.70 (q, *J* = 3.8 Hz), 124.98 (q, *J* = 274 Hz), 76.56, 36.59, -3.98, -5.30 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ -1.61. HRMS [ESI, (M+Na)⁺]: for C₁₇H₁₈F₃NO₂Si found 376.0949, calcd. 376.0951.

(1-(3,4-dimethoxyphenyl)-2-nitroethyl)dimethyl(phenyl)silane (**4m**): Following General Procedure **I**, 104.5 mg **1m** was converted into 129.8 mg **4m** as an orange solid (74.6% yield). TLC: 9/1 Petroleum ether/Ethyl acetate, $R_f = 0.50$. MP: 68-70 °C. ¹H-NMR (CDCl₃, 400M, ppm): δ7.44-7.36 (m, 5H), 6.76-6.74 (d, *J* = 8.26 Hz, 1H), 6.55-6.53 (dd, *J* = 2.0, 8.26 Hz, 1H), 6.33-6.34 (d, *J* = 2.0 Hz, 1H), 4.80-4.73 (t, *J* = 13.36 Hz, 1H), 4.56-4.51 (dd, *J* = 3.84, 13.36 Hz, 1H), 3.83 (s, 3H), 3.69 (s, 3H), 3.20-3.16 (dd, *J* = 3.84, 13.36 Hz, 1H), 0.31 (s, 3H), 0.30 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ148.90, 147.45, 135.15, 134.13, 130.09, 129.98, 128.27, 119.29, 111.46, 111.04, 77.30, 55.94, 55.74, 35.80, -3.94, -5.03 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-2.23. HRMS [ESI, (M+Na)⁺]: for $C_{18}H_{23}NO_4Si$ found 368.1287, calcd. 368.1289.

OMe SiMe₂Ph NO₂ MeO OMe

Dimethyl(2-nitro-1-(2,4,6-trimethoxyphenyl)ethyl)(phenyl)silane (4n): Following General Procedure I, 119.5 mg 1n was converted into 162.3 mg 4n as a brown oil (86.5% yield). TLC: 9/1 Petroleum ether/Ethyl acetate, $R_f = 0.35$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.47-7.46 (m, 2H), 7.36-7.35 (m, 3H), 6.07 (s, 2H), 5.21-5.15 (t, *J* = 12.5 Hz, 1H), 4.44-4.40 (dd, *J* = 4.52, 12.5 Hz, 1H), 3.93-3.89 (dd, *J* = 4.52, 12.5 Hz, 1H), 3.78 (s, 3H), 3.69 (s, 6H), 0.30 (s, 3H), 0.19 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ148.90, 147.45, 135.15, 134.13, 130.09, 129.98, 128.27, 119.29, 111.46, 111.04, 77.30, 55.94, 55.74, 35.80, -3.94, -5.03 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-2.23. HRMS [ESI, (M+Na)⁺]: for C₁₉H₂₅NO₅Si found 398.1391, calcd. 398.1394.

(1-(furan-2-yl)-2-nitroethyl)dimethyl(phenyl)silane (**4o**): Following General Procedure I, 41.7 mg **1o** was converted into 56.0 mg **4o** as a brown oil (67.9% yield). TLC: 9/1 Petroleum ether/Ethyl acetate, $R_f = 0.50$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.48-7.38 (m, 5H), 7.31-7.30 (d, *J* = 2.08 Hz, 1H), 6.29-6.28 (dd, *J* = 2.08, 2.9 Hz, 1H), 5.96-5.94 (d, *J* = 2.9 Hz, 1H), 4.74-4.68 (t, *J* = 13.4 Hz, 1H), 4.39-4.35 (dd, *J* = 3.52, 13.4 Hz, 1H), 3.42-3.38 (dd, *J* = 3.52, 13.4 Hz, 1H), 0.39 (s, 3H), 0.36 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ151.98, 141.54, 134.89, 133.87, 130.21, 128.37, 110.72, 105.94, 75.57, 29.67, -3.69, -4.91 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-1.32. HRMS [ESI, (M+Na)⁺]: for C₁₄H₁₇NO₃Si found 298.0869, calcd. 298.0870.

Dimethyl(1-(naphthalen-2-yl)-2-nitroethyl)(phenyl)silane (**4p**): Following General Procedure **I**, 60.3 mg **1p** was converted into 48.5 mg **4p** as a colorless oil (47.9% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.30$. ¹H-NMR (CDCl₃, 400M, ppm): δ8.14-8.12 (m, 1H), 7.86-7.84 (m, 1H), 7.71-7.69 (m, 1H), 7.54-7.36 (m, 8H), 7.12-7.10 (m, 1H), 5.04-4.97 (t, *J* = 13.5 Hz, 1H), 4.72-4.67 (dd, *J* = 3.94, 13.5 Hz, 1H), 4.32-4.28 (dd, *J* = 3.94, 13.5 Hz, 1H), 0.26 (s, 3H), 0.22 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ135.11, 134.51, 134.25, 134.05, 131.99, 130.18, 129.07, 128.35, 126.72, 126.08, 125.79, 125.19, 123.31, 122.84, 77.48, 29.41, -3.43, -5.29 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-1.18. HRMS [ESI, (M+Na)⁺]: for C₂₀H₂₁NO₂Si found 358.1233, calcd. 358.1234.

(1-(2-ethynylphenyl)-2-nitroethyl)dimethyl(phenyl)silane (**4q**): Following General Procedure **I**, 51.6 mg **1q** was converted into 48.1 mg **4q** as a yellow oil (52.4% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.40$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.51-7.38 (m, 6H), 7.27-7.23 (m, 1H), 7.14-7.10 (m, 1H), 6.94-6.92 (m, 1H), 4.86-4.79 (t, *J* = 13.5 Hz, 1H), 4.54-4.50 (dd, *J* = 3.84, 13.5 Hz, 1H), 4.13-4.09 (dd, *J* = 3.84, 13.5 Hz, 1H), 3.38 (s, 1H), 0.32 (s, 6H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ140.75, 135.02, 134.09, 133.74, 130.21, 129.10, 128.37, 125.82, 125.28, 122.12, 82.56, 82.19, 76.69, 33.27, -3.53, -5.56 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-0.68. HRMS [ESI, (M+Na)⁺]: for C₁₈H₁₉NO₂Si found 332.1074, calcd. 332.1077.

SiMe₂Ph

(E)-dimethyl(1-nitro-4-phenylbut-3-en-2-yl)(phenyl)silane (**4r**): Following General Procedure I, 52.5 mg **1r** was converted into 40.9 mg **4r** as a brown oil (44.0% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.40$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.50-7.40 (m, 5H), 7.33-7.21 (m, 5H), 6.36-6.32 (d, *J* = 15.84 Hz, 1H), 6.07-6.05 (dd, *J* = 13.48, 15.84 Hz, 1H), 4.49-4.43 (t, *J* = 12.54 Hz, 1H), 4.40-4.36 (dd, *J* = 3.8, 12.54 Hz, 1H), 2.92-2.86 (ddd, *J* = 3.8, 12.54, 13.48 Hz, 1H), 0.43 (s, 3H), 0.42 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ159.45, 158.69, 137.71, 133.84, 129.38, 127.93, 106.80, 90.94, 76.15, 55.52, 55.39, 24.71, -3.10, -3.89 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-1.65. HRMS [ESI, (M+Na)⁺]: for C₁₈H₂₁NO₂Si found 334.1232, calcd. 334.1234.

ŞiMe₂Ph NO_2 Ph

Dimethyl(1-nitro-4-phenylbutan-2-yl)(phenyl)silane (4s): Following General Procedure I, 88.5 mg

1s was converted into 85.0 mg **4s** as a yellow oil (54.3% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, R_f = 0.50. ¹H-NMR (CDCl₃, 400M, ppm): δ7.52-7.49 (m, 2H), 7.44-7.37 (m, 3H), 7.28-7.18 (m, 3H), 7.07-7.05 (m, 2H), 4.44-4.32 (m, 2H), 2.64-2.48 (m, 2H), 1.94-1.80 (m, 2H), 1.77-1.67 (m, 1H), 0.40 (s, 6H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ141.53, 135.99, 133.88, 129.93, 128.55, 128.41, 128.36, 126.16, 78.25, 34.89, 30.61, 25.93, -3.94, -4.29 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-0.66. HRMS [ESI, (M+Na)⁺]: for C₁₈H₂₃NO₂Si found 336.1396, calcd. 336.1390.

(1-cyclohexyl-2-nitroethyl)dimethyl(phenyl)silane (**4t**): Following General Procedure I, 77.5 mg **1t** was converted into 61.6 mg **4t** as a light yellow oil (42.3% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.65$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.52-7.49 (m, 2H), 7.39-7.37 (m, 3H), 4.48-4.42 (dd, *J* = 11.0, 13.32 Hz, 1H), 4.27-4.22 (dd, *J* = 3.36, 13.32 Hz, 1H), 1.95-1.90 (dt, *J* = 3.36, 11.0 Hz, 1H), 1.70-1.50 (m, 6H), 1.19-1.03 (m, 5H), 0.41 (s, 3H), 0.39 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ137.15, 133.84, 129.71, 128.29, 75.96, 38.46, 32.89, 32.76, 31.48, 27.00, 26.93, 26.23, -1.94, -3.01 ; ²⁹Si-NMR (CDCl₃, 80M, ppm): δ-1.28. HRMS [ESI, (M+Na)⁺]: for C₁₆H₂₅NO₂Si found 314.1542, calcd. 314.1547.

(4-(1-(dimethyl(phenyl)silyl)-2-nitroethyl)phenyl)methanol (**4u**): Following General Procedure I, 17.9 mg **1u** was converted into 6.0 mg **4u** as a colorless oil (19.0% yield). TLC: 1/1 Petroleum ether/Ethyl acetate, $R_f = 0.65$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.44-7.37 (m, 5H), 7.26-7.24 (d, *J* = 7.92 Hz, 2H), 6.99-6.97 (d, *J* = 7.92 Hz, 2H), 4.84-4.77 (t, *J* = 13.52 Hz, 1H), 4.65-4.63 (d, *J* = 4.32 Hz, 2H), 4.52-4.47 (dd, *J* = 3.76, 13.52 Hz, 1H), 3.29-3.24 (dd, *J* = 3.76, 13.52 Hz, 1H), 0.30 (s, 3H), 0.29 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ138.76, 137.20, 134.89, 134.05, 130.21, 128.37, 127.63, 127.51, 77.06, 65.21, 36.08, -3.78, -5.32. HRMS [ESI, (M+Na)⁺]: for C₁₇H₂₁NO₃Si found 338.1183, calcd. 338.1183.

Methyl 4-(1-(dimethyl(phenyl)silyl)-2-nitroethyl)benzoate (**4v**): Following General Procedure **I**, 20.7 mg **1v** was converted into 17.9 mg **4v** as a colorless oil (52.1% yield). TLC: 10/1 Petroleum ether/Ethyl acetate, $R_f = 0.50$. ¹H-NMR (CDCl₃, 400M, ppm): δ7.93-7.90 (d, J = 8.20 Hz, 2H), 7.46-7.37 (m, 5H), 7.04-7.01 (d, J = 8.20 Hz, 2H), 4.88-4.802 (t, J = 13.64 Hz, 1H), 4.55-51 (dd, J =3.60, 13.64 Hz, 1H), 3.89 (s, 3H), 3.37-3.32 (dd, J = 3.60, 13.64 Hz, 1H), 0.31 (s, 3H), 0.30 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ166.97, 143.53, 134.22, 134.02, 130.40, 130.04, 128.43, 128.15, 127.30, 76.49, 52.19, 36.81, -3.98, -5.29. HRMS [ESI, (M+H)⁺]: for C₁₈H₂₁NO₄Si found 344.1313, calcd. 344.1313.

Ethyl 3-(dimethyl(phenyl)silyl)-2-nitro-3-(p-tolyl)propanoate (**4w1**): Following General Procedure I, 23.5 mg **1w** was converted into 4.2 mg **4w1** as a colorless oil (11.3% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, R_f = 0.60. ¹H-NMR (CDCl₃, 400M, ppm): δ7.45-7.34 (m, 5H), 7.01-6.99 (d, *J* = 7.80 Hz, 2H), 6.79-6.77 (d, *J* = 7.80 Hz, 2H), 5.43-5.41 (d, *J* = 9.48 Hz, 1H), 4.00-3.94 (q, *J* = 7.88 Hz, 2H), 3.38-3.35 (d, *J* = 9.48 Hz, 1H), 2.28 (s, 3H), 1.04-1.00 (t, 7.88 Hz, 3H), 0.30 (s, 3H), 0.29 (s, 3H); ¹³C-NMR (CDCl₃, 101M, ppm): δ164.27, 136.12, 135.42, 134.50, 133.51, 129.99, 129.80, 129.23,
128.90, 90.43, 62.81, 38.10, 21.09, 13.67, -3.13, -3.69. HRMS [ESI, (M+Na)⁺]: for C₁₆H₂₅NO₂Si found 394.1444, calcd. 394.1445.

Ethyl 3-(dimethyl(phenyl)silyl)-2-nitro-3-(p-tolyl)propanoate (**4w2**): Following General Procedure I, 23.5 mg **1w** was converted into 16.8 mg **4w2** as a colorless oil (45.2% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.60$. ¹H-NMR (CDCl₃, 400M, ppm): δ 7.45-7.34 (m, 5H), 7.05-7.03 (d, J =7.76 Hz, 2H), 6.91-6.89 (d, J = 7.76 Hz, 2H), 5.59-5.55 (d, J = 12.88 Hz, 1H), 3.75-3.70 (q, J = 7.15 Hz, 2H), 3.50-3.47 (d, J = 12.88 Hz, 1H), 2.28 (s, 3H), 1.15-1.11 (t, 7.14 Hz, 3H), 0.33 (s, 3H), 0.16 (s, 3H) ; ¹³C-NMR (CDCl₃, 101M, ppm): δ 163.99, 136.04, 135.34, 134.40, 134.07, 129.85, 129.48, 127.94, 127.85, 91.82, 62.94, 37.66, 21.09, 13.67, -2.15, -4.76. HRMS [ESI, (M+Na)⁺]: for C₁₆H₂₅NO₂Si found 394.1444, calcd. 394.1445.

d-Dimethyl(2-nitro-1-(p-tolyl)ethyl)(phenyl)silane (D-**4b**): Following General Procedure I, 16.3 mg **1b** was converted into 21.0 mg D-**4b** as a light yellow oil (70% yield). TLC: 20/1 Petroleum ether/Ethyl acetate, $R_f = 0.55$. ¹H-NMR (d₆-acetone, 400M, ppm): δ 7.53-7.51 (m, 2H), 7.45-7.37 (m, 3H), 7.06-7.04 (d, J = 7.84 Hz , 2H), 6.98-6.96 (d, J = 7.84 Hz , 2H), 5.03-4.99 (m, 0.45 H), 4.74-4.70 (m, 0.67 H), 3.35-3.30 (m, 1 H), 2.25 (s, 3H), 0.35 (s, 3H), 0.30 (s, 3H) ; ¹³C-NMR (d₆-acetone, 101M, ppm): δ 136.41, 136.13, 135.92, 134.91, 130.56, 129.82, 128.83, 128.27, 77.45 (t, *J* = 24.0 Hz), 36.36, 20.91, -3.92, -5.18. HRMS [ESI, (M+H)⁺]: for C₁₇H₂₀DNO₂Si found 301.1493, calcd. 301.1493.

2-(dimethyl(phenyl)silyl)-2-(p-tolyl)ethanamine (**13b**): Following General Procedure **II**, 100 mg **4b** was converted into 256 mg **13b** as a white plate (95% yield). TLC: 1/15 MeOH/DCM, $R_f = 0.30$. MP: 135-142 °C. ¹H-NMR (CD₃OD, 400M, ppm): δ7.46-7.34 (m, 5H), 7.14-7.13 (d, J = 8.0 Hz, 2H), 6.97-6.95 (d, J = 8.0 Hz, 2H), 4.86 (s, 2H), 3.47-3.41 (t, J = 13.4 Hz, 1H), 3.29-3.25 (dd, J = 3.4, 13.4 Hz, 1H), 2.66-2.62 (dd, J = 3.4, 13.4 Hz, 1H), 2.31 (s, 3H), 0.29 (s, 3H), 0.25 (s, 3h); ¹³C-NMR (CD₃OD, 101M, ppm): δ137.07, 136.65, 135.38, 135.15, 130.77, 130.59, 129.05, 129.05, 41.93, 36.73, 21.00, -4.05, -5.40 ; ²⁹Si-NMR (CD₃OD, 80M, ppm): δ-2.45. HRMS [ESI, (M+H)⁺]: for C₁₇H₂₃NSi found 270.1670, calcd. 270.1673.

2-(4-bromophenyl)-2-(dimethyl(phenyl)silyl)ethanamine (**13i**): Following General Procedure **II**, 120 mg **4i** was converted into 87 mg **13i** as a gray plate (79% yield). TLC: 1/15 MeOH/DCM, R_f = 0.30. MP: 125-130 °C. ¹H-NMR (CD₃OD, 400M, ppm): δ 7.44-7.34 (m, 7H), 6.99-6.96 (m, 2H), 4.87 (s, 2H), 3.47-3.40 (t, *J* = 13.1 Hz, 1H), 3.31-3.27 (dd, *J* = 2.7, 13.1 Hz, 1H), 2.73-2.69 (dd, *J* = 2.7, 13.1 Hz, 1H), 0.31 (s, 3H), 0.28 (s, 3H) ; ¹³C-NMR (CD₃OD, 101M, ppm): δ 140.65, 137.33, 135.12, 132.54, 131.14, 130.52, 128.90, 119.89, 42.28, 40.85, -4.03, -5.07 ; ²⁹Si-NMR (CD₃OD, 80M, ppm): δ-3.18. HRMS [ESI, (M+H)⁺]: for C₁₆H₂₀BrNSi found 334.0623, calcd. 334.0621.

7. Copy of NMR spectra

4a ¹**H-NMR** (CDCl₃, 400M, ppm); ¹³**C-NMR** (CDCl₃, 101M, ppm)

4c ¹**H-NMR** (CDCl₃, 400M, ppm); ¹³**C-NMR** (CDCl₃, 101M, ppm)

4j ¹**H-NMR** (CDCl₃, 400M, ppm); ¹³**C-NMR** (CDCl₃, 101M, ppm)

S35

4t ¹H-NMR (CDCl₃, 400M, ppm); ¹³C-NMR (CDCl₃, 101M, ppm)

4u ¹**H-NMR** (CDCl₃, 400M, ppm); ¹³**C-NMR** (CDCl₃, 101M, ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

210 200 100 100 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

D-4b ¹H-NMR (d₆-acetone, 400M, ppm); ¹³C-NMR (d₆-acetone, 101M, ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

13b ¹**H-NMR** (CD₃OD, 400M, ppm); ¹³**C-NMR** (CD₃OD, 101M, ppm)

