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Figure S1: Removal of complex 2 from aqueous solution by slow bubbling of nitrogen.
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Figure S2: Absorption spectra of complexes 1 and 2 in air-equilibrated water.
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Figure S3: Absorption Spectra of 1 in water at 100 uM and 1000 uM before and after
filtration using a 0.2 um pore size cellulose acetate membrane filter.
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Figure S4: Emission spectra of 1 and 2 in methanol (solid line) and 5% methanol in
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Figure S5: Comparison of neat powder emission spectra of 1 to that of the

concentration-dependent solution spectra, Aex = 443 nm.
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Figure S6: Time-resolved photoluminescence intensity decays of 1 in air equilibrated and
air free methanol.
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Figure S7: Changes in excited-state lifetimes and quantum vyields of 1 and 2 with
addition of NaCl to aqueous solutions.
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Figure S8: Changes in excited-state lifetimes of 1 with additions of KCl and KNOs to
aqueous solution.
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Figure S9: DLS measurements for 1 and 2 in aqueous solution at the concentrations
specified in the legends. The graphs on the left side are the autocorrelation functions
(color) and their regularization fits (black). The graphs on the right are the histograms
calculated from the autocorrelation functions indicating particle radius and
polydispersity.
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Figure S10: Time-resolved excited state decays and modeling for 1 and 2 in air-
equilibrated water. The graphs on the left represent the excited state decays (black) and
the fits (colored) at the concentrations and with the fitting models specified in the
legends. The right graph is the residual for the chosen fitting model.
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Experimental

Spectroscopy: All samples were measured in 1 cm? quartz cuvettes, in air-equilibrated
HPLC-grade water unless otherwise indicated.

Absorption Spectra: UV-Vis spectra were recorded on a Shimadzu UV-1800 double
beam spectrophotometer.

Emission Spectra: Emission spectra were recorded on an Edinborough Instruments
FL/FS920 or 980 fluorometer using a 450 W Xe arc lamp as the excitation source.

Quantum Yield Measurements: Concentration-dependent quantum yields were
calculated using the relative method.! In order to correct for any inner-filter effects at
increasing concentrations, the absorbance of the reference and the sample were
matched at the excitation wavelength. At high concentration, these quantum yields
were checked using front-face illumination, which provided the same results. For each
guantum yield measurement, this was done at two different excitation wavelengths,
and those values were averaged. Air-equilibrated aqueous solutions of [Ru(bpy)s]Cl,,
which has a reported quantum yield of 0.04,” were used as the reference.

Excited-State Intensity decays: Excited-state decays were measured on an Edinburgh
Instruments Mini-Tau spectrometer, with a 405 nm picosecond laser diode as the
excitation source. A band-pass filter centered at 600 nm with a 45 nm width was used to
select the emission. The recorded decays were fit using Edinburgh Instruments FAST
software, and the best fit was determined after considering the reduced x* value of the
fit as well as inspecting the residuals.

Dynamic Light Scattering: Dynamic Light Scattering (DLS) measurements were
performed using a DynaPro Nanostar instrument from Wyatt Technology. All
measurements were recorded at 25°C using 663 nm incident laser light. Scatter was
collected at 90°. Prior to measurement, aqueous solutions were filtered using a 0.4 mm
pore size filter. Each experiment contained an average of 50 measurements, and each
measurement had a 5 second acquisition time. The hydrodynamic radii were calculated
by Wyatt’s Dynamics 7 software using the Stokes-Einstein equation.

CryoSEM: CrysoSEM was performed at the Analytical Instrument Facility (AIF) at North
Carolina State University.

Mass Spectrometry: Mass spectrometry was performed by the Michigan State
University Mass Spectrometry core.

Elemental Analysis: Elemental analysis was performed by Atlantic Microlab.
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Synthesis

Cyclometalated chloro-bridged Ir(lll) dimers were synthesized by literature
procedures.>* The F-mppy ligand was synthesized via the Krohnke method using
literature procedures.’ The BPS ligand was purchased from commercial sources as a
mixture of isomers with respect to the position of the sulfonates. Sulfonation can occur
in either the meta or the para position of each phenyl, giving three possible ligand
isomers (m-m, m-p, p-p). The ratio of these isomers will vary by batch, giving different
proton NMR signals, as well as different integrations. The use of these isomeric mixtures
has been well established in the literature.®’ As it has been determined that these
isomers cannot be distinguished through spectroscopic or electrochemical
measurements,”'® commercially available isomeric ligands were used without further
purification.

[Ir(ppy).BPS] (Complex 1): *H NMR (400 MHz, CD;0D, d): 8.39-8.41 (m, 2H), 8.21 (s, 2H),
8.12-8.14 (d, 2H), 8.0-8.04 (m, 4H), 7.8-7.87 (m, 6H), 7.61-7.72 (m, 6H), 7.02-7.06 (m,
2H), 6.91-6.97(m, 4H), 6.41-6.43 (d, 2H). HR-ESI-MS (M-) m/z calc. 991.1236, found
991.1211. Anal. Calcd for Cs6H30ClIrN4Na,0gS,24H,0 (as a solid, each sulfonate group
retains a sodium, and the complex has a chloride counterion. This has been observed in
all of the complexes described here, and has also been reported previously in the
literature.'®): C, 48.27; H, 3.35; N, 4.89. Found: C, 48.38; H, 3.45; N, 5.03.

[Ir(F-mppy),BPS] (Complex 2): *H NMR (400 MHz, CD;0D, d): 8.41-8.44 (m, 2H), 8.25 (s,
2H), 8.00-8.07 (m, 7H), 7.87-7.92 (m, 4H), 7.66-7.76 (m, 7H), 7.36 (s, 1H), 6.78-6.83 (m,
1H), 5.95-5.98 (m, 1H), 2.04 (s, 6H) HR-ESI-MS (M-) m/z calc. 1055.1361, found
1055.1331. Anal. Calcd for C48H32C|F2|FN4N320652'8H202 C, 45.02,’ H, 378, N, 4.37.
Found: C: 45.05% H: 3.68% N: 4.48%.
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Figure S11: *H NMR of the commercially available bathophenanthrolinedisulfonic acid
disodium salt hydrate (BPS) ancillary ligand starting material.
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Figure S12: *H NMR of Ir(ppy),BPS, Complex 1.
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Figure S13: 'H NMR of Ir(F-ppy),BPS, Complex 2.
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