Supplementary Information

The importance of the Lewis base in lithium mediated metalation and bond cleavage reaction of allyl amines and allyl phosphines

Victoria L. Blair, Michael Stevens, Christopher D. Thompson

General Experimental:

All reactions were performed under a nitrogen atmosphere and dry conditions. All synthesis and manipulations were undertaken with the use of air-sensitive Schleck line techniques. Hexane, tetrahydrofuran and diethylether were water and oxygen were removed from hexane, diethyl ether (Et₂O) and tetrahydrofuran (THF) using MBRAUN SPS-800 solvent purification system and stored over 4 Å molecular sieves under N₂.

Proton NMR were recorded on a BRUKER AVANCE DRX 400 (400 MHz) spectrometer. Chemical shifts were recorded on the δ scale in parts per million (ppm). Spectra were measuring in d-chloroform (CDCl₃) using the residual CDCl₃ (7.26 ppm) signal, d₆-benzene (C₆D₆) using the residual C₆D₆ (7.16 ppm) signal and d₈-tetrahydrofuran (d₈-THF) using the residual d₈-THF (1.73 and 3.58 ppm) signals. The residual signal of each solvent was used as an internal reference. The resonance was reported according to the following convention: chemical shift (δ ppm) [number of hydrogens, multiplicity, coupling constant, and assignment]. Multiplicities are designated as (s) = singlet, (bs) = broad singlet, (d) = doublet, (dd) = doublet of doublets, (t) = triple, (m) = multiplet. Coupling constants were recorded on Hz scale and are designated as ²J_{HH} = germinal coupling constant, ³J_{HH} = vicinal coupling constant.

Carbon NMR were recorded at 100.6 MHz on a BRUKER AVANCE DRX 400 spectrometer. Chemical shifts were recorded on the δ scale in parts per million (ppm). Spectra were measuring in d-chloroform (CDCl₃) using the triplet carbon signal (77.16 ppm) signal, d₆benzene (C₆D₆) using the triple carbon (128.06 ppm) signal and d₈-tetrahydrofuran (d₈-THF) using the pentent carbon (25.37 and 67.57 ppm) signals. **X-ray Crystallography**: Crystallographic data for compounds **3**, **5** and **6** were obtained on a Bruker X8 APEXII CCD diffractometer¹ equipped with an OXFORD Cryosystems 700 and cooled to 123(1) K. Data was collected with monochromatic (graphite) Mo K α radiation (λ = 0.71073 Å) and processed using the Bruker Apex2 v2012.2.0 software; Lorentz, polarization and absorption corrections (multi-scan – SADABS)² were applied. Compounds **3**, **5** and **6** were solved and refined with SHELX-97.³ All non-hydrogen atoms were refined with anisotropic thermal parameters unless otherwise indicated and hydrogen atoms were placed in calculated positions using a riding model with C-H = 0.95-0.98 Å and $U_{iso}(H)=xU_{iso}(C)$, x = 1.2 or 1.5. Data for **3**, **5** and **6** has been deposited with the Cambridge Crystallographic Database with CCDC number 1452499, 1452498 and 1452869 respectively.

Compound Synthesis

Synthesis of Ph₂NCH₂CH=CH₂ 1: *n*BuLi (31.25 mL [1.6 M solution in hexane], 50 mmol) was added dropwise to a solution of diphenylamine (8.46g, 50 mmol) in THF (50 mL) at -78 °C. This solution was allowed to warm to room temperature overnight. Next, allyl bromide (4.3 mL, 50 mmol) was added at

-78 °C and the solution stirred for 2 hours, warming to room temperature. The resulting solution was quenched with H₂O (30 mL), extracted with ethyl acetate (3 × 30 mL), washed with brine (30 mL) and dried with MgSO₄. All solvent was removed under vacuum to afford a yellow oil which was distilled under vacuum (B.p. 124 °C) to give the title compound as a colourless oil 7.3 g, 85 %. ¹H NMR (400.2 MHz, CDCl₃, 20 °C) δ : 4.32 (2H, d, ²J_{HH} = 4.8 Hz,N-CH₂), 5.20 (2H, dd, ²J_{HH} = 8.8 Hz, CH=CH₂), 5.90 (1H, tt), 6.90 (2H, t, *para*-H), 7.0 (d, 4H *ortho*-H), 7.22 (4H, t, *meta*-H). ¹³C NMR (100.6 MHz, CDCl₃, 20 °C) δ : 53.75 (CH₂CH, s), 115.37 (CH=CH₂, s), 119.73 (*ortho*-C, s), 120.31 (*meta*-C, s), 128.17 (*para*-C, s), 133.28 (CH=CH₂, s), 146.84 (*quaternary*-C, s).

Synthesis of Ph₂PCH₂CH=CH₂ 2: *n*BuLi (31.25 mL [1.6 M solution in hexane], 50 mmol) was added dropwise to a solution of diphenylphosphine (8.75 mL, 50 mmol) in hexane (50 mL) at 0 °C to give the immediate formation of a bright yellow precipitate. The mother liquor was removed via cannular and

the yellow solid washed with hexane (2 x 30 mL). The yellow solid was re-suspended in hexane, cooled to 0 °C and allyl bromine (4.23 mL, 50 mM) added. The solution was allowed to warm to room temperature overnight. The resulting solution was filtered (via filter canular) and the solid washed with hexane (2 x 20 mL). Removal of the solvent under vacuum, from the combined mother liquors, resulted in a colourless oil that was purified via vacuum distillation (b.p. 140 C) to give the title compound as a clear thick oil 9.4 g, 83 %. ¹H NMR (400.2 MHz, C₆D₆, 20 °C) δ : 2.80 (2H, d, ²J_{HH} = 7.6 Hz, P-CH₂), 4.99 (m, 2H, CH=CH₂), 5.85 (m, 1H, CH=CH₂), 7.14-7.16 (m, 6H, meta-H and para-H), 7.48 (m, 4H, ortho-H).¹³C NMR (100.6 MHz, CDCl₃, 20 °C) δ : 32.61 (d, J_{P,C} = 14.1 Hz,), 115.95 (d, J_{P,C} = 10.1 Hz,), 127.2, 127.3 (d, J_{P,C} = 14.1 Hz,), 131.8 (d, J_{P,C} = 18.1 Hz,), 132.8 (d, J_{P,C} = 17.1 Hz), 137.6 (d, J_{P,C} = 16.1 Hz,). ³¹P NMR (121.5 MHz, C₆D₆, 20 °C) δ : -16.2

Attempted synthesis of [Ph₂NCHCH=CH₂Li(Et₂O)] and [Ph₂NCHCH=CH₂Li(THF)] resulted in the formation of bright red solutions that upon solvent removal under vacuum gave oily red residues. ¹H NMR spectroscopy of these oils showed multiple species that were difficult to characterize and rationally assign to chemically sensible products. All attempts to grow crystalline material failed using a variety and combination of solvent systems.

Synthesis of [Ph₂NCHCH=CH₂Li(TMEDA)] 5: ⁿBuLi (2.5 mL [1.6 M solution in hexane], 4 mmol) was added dropwise to a stirred solution of allyldiphenylamine (0.85g, 4 mmol) at -78 °C in 10 mL of hexane. The solution was allowed to warm slowly to room temperature. This resulted in a clear, yellow solution. After 2 hours of stirring at room temperature, TMEDA (0.4 mL, 4 mmol) was added dropwise at room temperature to give a red, oily solution. The volume was reduced by half and then placed in a freezer (-18°C). Crystals deposited of the title compound overnight 0.98 g, 62 %. Microanalysis data: Calculated for C₂₁H₃₀LiN₃: C, 75.64; H, 9.67; N, 12.07. Found: C, 75.69; H, 9.45; N, 12.07. ¹H NMR (400.2 MHz, C₆D₆, 20 °C) δ : 1.662 (12 H, TMEDA-CH₂), 1.754 (4 H, TMEDA-CH₃), 1.96 (2H, d, ²J_{HH} = 12.4 Hz, CH=CH₂), 4.58 (1H, d, ²J_{HH} = 5.6 Hz, CHCH), 6.27 (1H, m, CH=CH₂), 6.77 (2H, t, ³J_{HH} = 14 Hz, *para*-H), 7.14 (t, 4H, ³J_{HH}

= 7.8 Hz, ortho-H), 7.49 (4H, d, ${}^{3}J_{HH}$ = 8 Hz, meta-H). 13 C NMR (100.6 MHz, C₆D₆, 20 °C) δ: 43.92 (TMEDA-CH₂), 45.9 (TMEDA-CH₃), 56.59 (C-C=C, s), 86.48 (C-C=C, s), 120.04 (ortho-C, s), 120.94 (meta-C, s), 128.79 (para-C,s), 133.4 (N-C, s), 148.62 (quaternary-C, s). 7 Li NMR (155.5 MHz, C₆D₆, 20 °C): δ 0.47 (s, br).

Figure S1 1H NMR of [Ph2NCHCH=CH2Li(TMEDA)] 5 in C6D6

Figure S2 Molecular structure of **5** Hydrogen atoms (except allyl ones) omitted for clarity. Thermal ellipsoids show at 45%. Selected bond lengths (Å) and angles (°): N1-Li1, 2.599(3); N2-Li1, 2.0272(3); N3-Li1, 2.109(3); C1-Li1, 2.325(3); C2-Li1, 2.175(3); C3-Li1, 2.241(3); C4-N1C1, 117.26(14); N1-C1, 1.439(2); C1-C2, 1.384(2); C2-C3, 1.374(2); C10-N1-C1, 119.25(13); N2-Li1-N3, 87.50(13).

Crystallographic data for C₂₁H₃₀LiN₃ **5**: *M* = 331.42, orange/red crystals, 0.34 × 0.21 × 0.19 mm, monoclinic, space group P21, a = 10.1048(8) Å, b = 12.9834(8) Å, c = 15.3410(10) Å, $\alpha = 90^{\circ}$, $\beta = 102.567(4)^{\circ}$, $\gamma = 90^{\circ}$, V = 1964.4(2) Å³, Z = 4, D_c = 1.121 mg/m³, F₀₀₀ = 720, *T* = 123(2) K, 14246 reflections collected, 8649 unique (R_{int} = 0.0284), Final F² = 1.021, R1 = 0.0417, wR2 = 0.1051, 459 parameters, 1 restraint. Lp and absorption corrections applied, $\mu = 0.065$ mm⁻¹.

Synthesis of [Ph₂NCHCH=CH₂Li(PMDETA)] 6: ⁿBuLi (2.5 mL [1.6 M solution in hexane], 4 mmol) was added dropwise to a stirred solution of allyldiphenylamine (0.85g, 4 mmol) at -78 °C in 10 mL of hexane. The solution was allowed to warm slowly to room temperature overnight resulting in a pale yellow solution. Next, PMDETA (0.82 mL, 4 mmol) was added dropwise at room temperature resulting in a red, oily solution. Storage of the solution overnight at room temperature deposited a crop of red needle crystals from the oil 0.65 g, 42 % (crystalline yield). ¹H NMR (400.2 MHz, C₆D₆, 20 °C): δ 1.51 (2H, dd, CH=CH₂), 5.057 (1H, d, ²J_{HH} = 6.52 Hz, N-CH), 6.434 (1H, bs, CH-CH=CH₂), 6.813 (2H, t, ³J_{HH} = 7.2 Hz, para-H), 7.239 (t, 4H, ³J_{HH} = 7.8 Hz, ortho-H), 7.746 (4H, d, ²J_{HH} = 6.4 Hz, meta-H). ¹³C NMR (100.6 MHz, C₆D₆, 20 °C) δ : 44.5 (PMDETA-CH₃), 45.6 (PMDETA-CH₃), 53.5 (PMDETA-CH₂), 57.10 (C-C=C, s), 93.9 (N-C, s), 118.62 (ortho-C, s), 120.80 (meta-C, s), 128.57 (para-C,s), 139.41 (C-C=C, s), 148.62 (Quaternary-C, s).⁷Li NMR (155.5 MHz, C₆D₆, 20 °C) δ : 1.00 (s).

Figure S3 ¹H NMR of [Ph₂NCHCH=CH₂Li(PMDETA)] 6 in C₆D₆

Figure S4 Molecular structure of **6** Hydrogen atoms (except allyl ones) and one disordered PMDETA molecule omitted for clarity. Thermal ellipsoids show at 45%. Selected bond lengths (Å) and angles (°): N1-C1, 1.433(2); N2-Li1, 2.199(7); N3-Li1, 2.133(7); N2-Li1, 2.128(10); C1-C2, 1.360(2); C2-C3, 1.391(2); C2-Li1, 2.690(3); C3-Li1, 2.197(2); N3-Li1-N2, 83.5(3); N4-Li1-N3, 88.3(3).

Crystallographic data for C₂₄H₃₇LiN₄ **6**: *M* = 388.52, orange/red needle-like crystals, 0.41 × 0.32 × 0.23 mm, monoclinic, space group P21/c, a = 10.1275(4) Å, b = 8.6095(3) Å, c = 27.5008(12) Å, $\alpha = 90^{\circ}$, $\beta = 91.558(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 2396.98(16) Å³, Z = 4, D_c = 1.077 mg/m³, F₀₀₀ = 848, *T* = 123(2) K, 13075 reflections collected, 4754 unique (R_{int} = 0.0481), Final F² = 1.005, R1 = 0.0478, wR2 = 0.0979, 371 parameters, 18 restraints. Lp and absorption corrections applied, $\mu = 0.063 \text{ mm}^{-1}$.

Deuterium quench: Complex **5** or **6** was synthesised according to the above proceedures and quenched with an excess of D₂O. After stirring at room temperature for over 1 hr, ethyl acetate (10mL) was added and the organic layer separated from the aqueous layer. The organic layer was dried (MgSO4), concentrated in vacuo to afford a light brown/yellow oil. Inspection by 1H NMR spectroscopy was consistent with the formation of the known monodeutero-enamine [Ph₂NCH=CHCH₂D] (CDCl₃) δ 1.19 (m, 2H, CH₂D), 4.82 (q, 1H, CHCH₂D), 5.90 (d, 1H, NCH) 7.10-7.34 (10H, m, Ar).⁵

Synthesis $[Ph_2PCHCH=CH_2Li(Et_2O)]_{\infty}$ 3: ⁿBuLi (1.25 mL [1.6 M solution in hexane], 2 mmol) was added dropwise to a stirred solution of allyldiphenylphosphine (0.40 g, 2 mmol) at -50 °C in 10 mL of hexane. The yellow solution was allowed to warm slowly to room temperature overnight. Addition of diethylether (1 mL) at room temperature and storage of the solution in the freezer (-18°C) overnight deposited a crop of yellow plate crystals 0.46 g, 75 %. Storage of the solution at room temperature results in the title compound as a yellow precipitate 0.51 g, 84%. **Microanalysis data:** Calculated for $C_{19}H_{24}LiOP: C, 74.50; H, 7.90.$ Found: C, 74.37; H, 7.64. ¹H NMR (400.2 MHz, C₆D₆, 20 °C) δ : 1.09 (6H, t, CH₃-Et₂O), 3.25 (4H, q, CH₂-Et₂O), 3.63 (1H, d, br, J_{P,C} = 11.6 Hz, C=CH₂), 3.67 (1H, dd, J_{P,C} = 5.2 Hz, CHCH=CH₂), 3.83 (1H, d, br, J_{P,C} = 15.6 Hz, C=CH₂), 7.14 (2H, m, para-ArH), 7.26 (4H, m, meta-ArH), 7.34 (1H, m, CHCH=CH₂), 7.88 (4H, m, ortho-ArH). ¹³C NMR (100.6 MHz, C₆D₆, 20 °C) δ : 15.42 (s, CH₃-Et₂O), 56.1 (d, PCH, J_{P,C} = 10.12 Hz), 65.86 (s, CH₂-Et₂O), 67.0 (d, br, PCHCH=CH₂, J_{P,C} = 22.25 Hz), 126.34 (s, para-ArC), 127.87 (s, meta-ArC), 132.33 (s, ortho-ArC), 132.51 (s, ortho-ArC) 149.0 (d, CHCH=CH₂, J_{P,C} = 9 Hz), 150.58 (s, br, q-ArC), 151.05 (s, br, q-ArC). ⁷Li NMR (155.5 MHz, C₆D₆, 20 °C) δ : - 0.06 (s). ³¹P NMR (121.5 MHz, C₆D₆, 20 °C) δ : - 3.08 (s, br)

Figure S5 ¹H NMR of [Ph₂PCHCH=CH₂Li(Et₂O)]_∞ 3 in C₆D₆

Figure S6 Molecular structure of **3**. ASU of **3** on LHS polymeric section on RHS. Hydrogen atoms (except allyl ones) have been omitted for clarity. Selected bond lengths (Å) and angles (°); Li1-P1, 2.592(3); Li1-O1, 1.962(3); P1-C1, 1.7614(17); C1-C2, 1.417(2); C2-C3, 1.369(2); Li1-C1', 2.270(3); Li(1)-C2', 2.203(3); Li1-C3', 2.432(3).

Crystallographic data for $C_{38}H_{48}Li_2iO_2P_2$ **3**: M = 612.58, yellow crystals, $0.09 \times 0.02 \times 0.02 \text{ mm}$, monoclinic, space group Cc, a = 10.592(2) Å, b = 18.626(4) Å, c = 9.1190(18) Å, $\alpha = 90^{\circ}$, $\beta = 95.24(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 1791.5(6) Å³, Z = 2, $D_c = 1.136 \text{ mg/m}^3$, $F_{000} = 656$, T = 123(2) K, 14517 reflections collected, 4215 unique ($R_{int} = 0.0392$), Final $F^2 = 1.046$, R1 = 0.0343, wR2 = 0.0908, 4215 parameters, 2 restraint. Lp and absorption corrections applied, $\mu = 0.065 \text{ mm}^{-1}$.

Synthesis [Ph₂PCHCH=CH₂Li(TMEDA)] 4: ⁿBuLi (1.25 mL [1.6 M solution in hexane], 2 mmol) was added dropwise to a stirred solution of allyldiphenylphosphine (0.40 g, 2 mmol) at -50 °C in 10 mL of hexane. The yellow solution was allowed to warm slowly to room temperature overnight. Addition of TMEDA (0.31 mL, 2 mmol) at room temperature resulted in the formation of an orange oily solution. Storage of the solution in the refrigerator (-4°C) overnight deposited a crop of yellow plate crystals 0.52 g, 75 %. Microanalysis data: Calculated for $C_{21}H_{30}LiN_2P$: C, 72.40; H, 8.68; N, 8.04. Found: C, 72.27; H, 8.49; N, 7.83.¹H NMR (400.2 MHz, C₆D₆, 20 °C) δ : 1.65 (4H, s, CH₂-TMEDA), 1.78 (9H, s, br, CH₃-TMEDA), 3.52 (1H, d, br, P-CH), 3.55 (1H, dd, J_{P,C} = 6.4 Hz, CH=CH₂), 3.67 (1H, dd, br, J_{P,C} = 14.4 Hz, C=CH₂), 7.14 (2H, m, para-ArH), 7.25 (4H, m, meta-ArH), 7.31 (1H, m, CHCH=CH₂), 7.85 (4H, m, ortho-ArH).¹³C NMR (100.6 MHz, C₆D₆, 20 °C) δ : 45.64 (TMEDA-CH₃), 56.63 (TMEDA-CH₂), 56.40 d, br, CH=CH₂), 67.3 (d, J_{P,C} = 21.1 Hz, P-CH), 126.37 (s, para-ArC), 127.82 (s, meta-ArC), 132.65

(d, ortho-ArC), 149.21 (s, br, q-ArC), 150.47 (d, $J_{P,C} = 47.3 \text{ Hz}$, CHCH=CH₂)⁷Li NMR (155.5 MHz, C₆D₆, 20 °C) δ: 0.50 (s). ³¹P NMR (121.5 MHz, C₆D₆, 20 °C) δ: -2.16 (s, br)

Figure S7 ¹H NMR of [Ph₂PCHCH=CH₂Li(TMEDA)] 4 in C₆D₆

Deuterium quench: Complex **3** or **4** was synthesised according to the above procedures and quenched with an excess of degassed D₂O allowing to stir for 1 hr. Keeping under an inert atmosphere, dry ethyl acetate (10mL) was added and the organic layer separated from the aqueous layer. The organic layer was dried (MgSO₄), concentrated *in vacuo* to afford a light yellow oil. Inspection by ¹H NMR spectroscopy was consistent with the formation of the monodeutero-phosphine [Ph₂PCHDCH=CH₂] (CDCl₃) δ 2.78 (d, 2H, PCHD), 4.85 (m, 2H,CH=CH₂), 5.68 (m, 1H, CH=CH₂).

Synthesis of **[Ph₂PLi(PMDETA)] 7:** ⁿBuLi (1.25 mL [1.6 M solution in hexane], 2 mmol) was added dropwise to a stirred solution of allyldiphenylphosphine (0.40 g, 2 mmol) at -50 °C in 10 mL of hexane. The yellow solution was allowed to warm slowly to room temperature overnight. Addition of PMDETA (0.40 mL, 2 mmol) at room temperature resulted in the formation of an orange oily solution. Storage of the solution at room temperature overnight deposited a crop of orange needle crystals 0.53 g, 73%. ¹H, ¹³C, ⁷Li and ³¹P NMR was consistent

with reported literature values.⁶ X-ray diffraction studies confirmed the formation of the title compound by collecting multiple unit cells.

¹**H NMR Reaction monitor**: A sample of complex **3** (approx 80 mg, 0.26 mM) was put in a Youngs tap NMR tube and dissolved in the minimum amount of C_6D_6 . A ¹H NMR spectrum was conducted to ensure the complex was stable and pure in solution. The sample was cooled to -10°C and PMDETA (0.06 mL, 0.27mM) was added. As quickly as possible the sample was then monitored via ¹H NMR at room temperature. This revealed the following species;

Figure S8 ¹H NMR spectrum of complex 3 in C_6D_6 (bottom) at approx. 10 minutes after PMDETA addition. Top spectrum after 1hr.

Figure S9 Two isomeric allylic metal derivatives of compounds 5 and 6 in both the solid and solution state.

¹H and ⁷Li NMR temperature study of Compound 5 in d₈-toluene

Compound **5** was dissolved in d₈-toluene and monitored by both ¹H and ⁷Li NMR spectroscopy over the temperature range 30°C to -60°C. Below -60°C the compound began to crash out of solution so no lower temperature NMR could be collected. The spectra were observed to show broadening of the allylic and Lewis donor (TMEDA) signals as temperature decreased in the ¹H NMR, while the ⁷Li signal got gradually broader and shifted slightly upfield. Unfortunately the low temperature NMR spectra did not conclusively give a coalescence point or show any additional species forming in solution.

Figure S10 1 H NMR of Compound 5 in d₈-toluene solution 30°C to -60°C

Figure S11 ⁷Li NMR of Compound 5 in d₈-toluene solution 30°C to -60°C

DFT Calculations: Density functional calculations (DFT) using the Gaussian 09 suite of software.⁴ Geometry optimisations and frequency calculations were performed at the B3LYP/6-31G(d) level and basis set, in order to compare ΔG values for the competing pathways, for each of the mono-, bi- and tri- dentate donors.

Figure S12 Comparative calculated bond lengths for all DFT generated complexes

DFT calculations were performed on the experimentally observed and theoretical species in the study. The following Cartesian coordinates represent the 12 relevant structures. Format: Atomic Number, x, y, z

Compound 3 [(Ph₂NCHCH=CH₂)Li.Et₂O]

- 6 1.417165 2.241950 0.615615
- 6 0.725095 1.190086 -0.014937
- 6 -0.450815 1.504864 -0.722048
- 6 -0.919416 2.816483 -0.787393
- 6 -0.227768 3.852372 -0.153850

- 6 0.945718 3.551394 0.541558
- 7 1.172595 -0.147437 0.087834
- 6 0.220289 -1.186582 0.367656
- 6 -0.242540 -1.398970 1.677868
- 6 -1.218829 -2.307489 2.093880
- 6 2.535032 -0.477311 -0.071649
- 6 3.401555 0.312995 -0.856190
- 6 4.733074 -0.052642 -1.032401
- 6 5.241771 -1.217198 -0.451789
- 6 4.385869 -2.012791 0.311302
- 6 3.052315 -1.655380 0.501299
- 3 -1.959081 -1.071079 0.517810
- 8 -3.631541 -0.691619 -0.367533
- 6 -4.159824 -1.449529 -1.465068
- 6 -3.077145 -2.359531 -2.017334
- 6 -4.605486 0.160679 0.258050
- 6 -3.944050 0.939291 1.381728
- 1 -1.487618 -2.374118 3.142372
- 1 -1.426716 -3.199713 1.495406

- 1 0.040378 -0.624330 2.396703
- 1 0.223977 -2.018103 -0.343732
- 1 2.399684 -2.281930 1.098438
- 1 4.757601 -2.924948 0.772564
- 1 6.280674 -1.499984 -0.596490
- 1 5.375936 0.576366 -1.644055
- 1 3.024246 1.211431 -1.333126
- 1 -0.978462 0.707547 -1.237625
- 1 -1.820904 3.032557 -1.357004
- 1 -0.593231 4.874079 -0.205369
- 1 1.495412 4.341627 1.047315
- 1 2.323114 2.019983 1.170697
- 1 -5.427192 -0.463020 0.638256
- 1 -5.017268 0.838327 -0.503168
- 1 -3.544481 0.263007 2.147210
- 1 -4.681841 1.589757 1.863627
- 1 -3.131771 1.568988 1.002332
- 1 -4.518157 -0.751582 -2.235088
- 1 -5.021348 -2.034086 -1.111199

- 1 -2.212114 -1.782656 -2.361585
- 1 -3.467807 -2.925906 -2.869285
- 1 -2.742752 -3.081207 -1.262976

Compound 5 [(Ph₂NCHCH=CH₂)Li.TMEDA]

- 6 -0.425076 2.357855 0.929346
- 6 0.571430 1.720797 0.148458
- 6 1.129828 2.467152 -0.916493
- 6 0.670284 3.746175 -1.215278
- 6 -0.347377 4.347698 -0.468554
- 6 -0.876129 3.639885 0.610666
- 7 0.973704 0.405732 0.446647
- 6 0.571482 -0.224677 1.740538
- 6 1.140877 0.340855 2.957910
- 6 1.486775 -0.315726 4.086621
- 6 2.045219 -0.205144 -0.273131
- 6 1.936686 -0.469085 -1.651494
- 6 2.960804 -1.125249 -2.335246
- 6 4.105981 -1.546850 -1.657162

- 6 4.213296 -1.301253 -0.284875
- 6 3.198562 -0.639319 0.403599
- 3 -1.097489 -0.465851 0.579067
- 7 -1.553309 -2.495925 0.048831
- 6 -2.598647 -2.372872 -0.982669
- 6 -3.575672 -1.231382 -0.685966
- 7 -2.892755 0.063406 -0.490766
- 6 -3.780131 1.015648 0.197355
- 6 -0.418699 -3.291974 -0.444644
- 6 -2.073234 -3.092809 1.289663
- 6 -2.452841 0.642579 -1.772804
- 1 1.045552 -0.147575 -2.184970
- 1 2.856743 -1.314903 -3.401112
- 1 4.901129 -2.062657 -2.188384
- 1 5.099635 -1.623535 0.256244
- 1 3.279268 -0.457936 1.470613
- 1 1.937359 2.047728 -1.503702
- 1 1.128130 4.284719 -2.042010
- 1 -0.693158 5.350188 -0.703284

- 1 -1.636229 4.097530 1.240949
- 1 -0.816038 1.846733 1.800629
- 1 0.798361 -1.292721 1.641225
- 1 1.251921 1.428822 2.965534
- 1 1.803096 0.214325 4.980491
- 1 0.016755 -2.815435 -1.327191
- 1 0.354129 -3.336729 0.326872
- 1 -0.717379 -4.322328 -0.703968
- 1 -2.441084 -4.121070 1.127184
- 1 -1.277527 -3.112857 2.038433
- 1 -2.892436 -2.491871 1.694163
- 1 -2.097736 -2.193187 -1.939666
- 1 -3.169155 -3.311918 -1.098164
- 1 -4.320237 -1.172973 -1.499446
- 1 -4.133199 -1.451368 0.230364
- 1 -1.772310 -0.041269 -2.288051
- 1 -3.307469 0.848704 -2.440129
- 1 -1.916147 1.574974 -1.582830
- 1 -4.700070 1.214301 -0.378932

- 1 -3.247381 1.957585 0.345211
- 1 -4.060933 0.617112 1.177364
- 1 1.424886 -1.401133 4.161349

Compound 6 [(Ph₂NCHCH=CH₂)Li.PMDETA]

- 6 3.714945 1.897261 1.287121
- 6 3.443052 0.925831 0.306607
- 6 4.225436 0.923975 -0.863874
- 6 5.256261 1.847218 -1.032101
- 6 5.525014 2.803093 -0.050937
- 6 4.741364 2.819902 1.106700
- 7 2.374640 0.009562 0.477921
- 6 1.171811 0.446365 1.130266
- 6 0.429879 1.503234 0.673928
- 6 -0.774433 2.085626 1.188179
- 6 2.505924 -1.342047 0.122806
- 6 1.356208 -2.119724 -0.130834
- 6 1.456037 -3.473734 -0.445089
- 6 2.699332 -4.104373 -0.513635

- 6 3.844448 -3.346194 -0.251115
- 6 3.758330 -1.994528 0.067455
- 3 -2.032890 0.668804 0.225790
- 7 -2.805293 -1.008960 1.525968
- 6 -2.634546 -0.504732 2.898211
- 6 -2.169091 -2.330014 1.416570
- 6 -4.228266 -1.100007 1.156320
- 6 -4.883091 0.265126 0.923731
- 7 -4.174402 1.073594 -0.082444
- 6 -4.430381 0.626765 -1.464025
- 6 -3.254637 0.944281 -2.392789
- 7 -2.005271 0.280391 -1.976709
- 6 -2.005810 -1.142662 -2.343371
- 6 -4.476616 2.501500 0.081297
- 6 -0.842333 0.938075 -2.595892
- 1 4.662274 -1.436978 0.285829
- 1 4.824615 -3.817019 -0.280278
- 1 2.775889 -5.160422 -0.756503
- 1 0.547856 -4.041533 -0.640027

- 1 0.388915 -1.633896 -0.072511
- 1 3.099178 1.923040 2.179555
- 1 4.934134 3.556848 1.882981
- 1 6.324676 3.525884 -0.187935
- 1 5.843409 1.825474 -1.947469
- 1 4.016494 0.196777 -1.642441
- 1 -1.106867 -2.247323 1.658789
- 1 -2.258690 -2.702648 0.391602
- 1 -2.627206 -3.070136 2.096285
- 1 -3.134039 -1.156612 3.637278
- 1 -3.032997 0.507588 2.989754
- 1 -1.568550 -0.457553 3.131505
- 1 -4.810480 -1.642100 1.924761
- 1 -4.291498 -1.701801 0.242670
- 1 -5.943851 0.109562 0.656253
- 1 -4.883355 0.834775 1.857852
- 1 -5.553923 2.716187 -0.034931
- 1 -3.925973 3.087799 -0.658157
- 1 -4.147502 2.833735 1.069057

- 1 -5.347230 1.089353 -1.870089
- 1 -4.610000 -0.451951 -1.457409
- 1 -3.526910 0.675274 -3.429876
- 1 -3.071294 2.023562 -2.386208
- 1 0.073679 0.455322 -2.247774
- 1 -0.809168 1.987130 -2.290986
- 1 -0.876943 0.884870 -3.698147
- 1 -2.096959 -1.286261 -3.434912
- 1 -2.835327 -1.667285 -1.860705
- 1 -1.071035 -1.603001 -2.012056
- 1 0.942178 -0.062802 2.067964
- 1 0.800378 1.940776 -0.258588
- 1 -0.940069 3.125486 0.895176
- 1 -0.965874 1.929934 2.255990

[Ph₂NLi.Et₂O]

- 6 2.048404 1.787812 -0.363949
- 6 1.918107 0.472744 0.141864
- 6 3.117757 -0.249079 0.353475

- 6 4.358738 0.310027 0.056546
- 6 4.463574 1.606618 -0.452998
- 6 3.291257 2.341084 -0.654643
- 7 0.656009 0.008763 0.478143
- 6 0.307437 -1.324030 0.422504
- 6 -0.815763 -1.737963 1.201049
- 6 -1.377146 -3.012745 1.074409
- 6 -0.834412 -3.941742 0.190184
- 6 0.292491 -3.569505 -0.560809
- 6 0.854558 -2.305189 -0.456789
- 3 -1.140544 0.447714 0.259697
- 8 -2.709398 1.425598 -0.171135
- 6 -3.109666 2.634734 0.494988
- 6 -2.118493 2.949481 1.601599
- 6 -3.610290 1.010599 -1.212797
- 6 -3.049897 -0.224853 -1.895742
- 1 -1.105082 3.080313 1.206219
- 1 -2.099900 2.155070 2.356310
- 1 -2.406916 3.879651 2.102284

- 1 -4.122004 2.494714 0.899281
- 1 -3.148297 3.446593 -0.244596
- 1 -4.593239 0.806595 -0.765709
- 1 -3.726052 1.838319 -1.926213
- 1 -2.083335 -0.013441 -2.367562
- 1 -3.737460 -0.556447 -2.680847
- 1 -2.923826 -1.053337 -1.189287
- 1 -1.178331 -1.065172 1.981667
- 1 -2.225071 -3.284274 1.700316
- 1 -1.258182 -4.937396 0.097647
- 1 0.734781 -4.284895 -1.251722
- 1 1.711219 -2.042304 -1.068821
- 1 3.066281 -1.248147 0.776374
- 1 5.258504 -0.274834 0.237488
- 1 5.434653 2.036500 -0.682473
- 1 3.345402 3.355340 -1.045476
- 1 1.141675 2.369930 -0.525245

[Ph₂NLi.TMEDA]

- 6 3.426301 0.025642 -0.450405
- 6 2.144418 -0.570181 -0.336820
- 6 2.114469 -1.921684 0.089464
- 6 3.275654 -2.620827 0.402709
- 6 4.527667 -2.006941 0.302711
- 6 4.584093 -0.680126 -0.132358
- 7 0.955513 0.040518 -0.692775
- 6 0.755875 1.399345 -0.601963
- 6 -0.289709 1.960935 -1.394947
- 6 -0.701769 3.287063 -1.248519
- 6 -0.087122 4.126007 -0.319219
- 6 0.962155 3.606218 0.454347
- 6 1.380584 2.287707 0.325088
- 3 -0.898797 -0.240952 -0.362060
- 7 -2.452176 -1.542143 -0.981605
- 6 -3.447542 -1.400792 0.102383
- 6 -2.788763 -1.237291 1.477643
- 7 -1.855553 -0.096164 1.509892
- 6 -0.875294 -0.223717 2.600565

- 6 -3.038397 -1.213362 -2.289448
- 6 -1.876873 -2.897255 -1.022573
- 6 -2.560346 1.191450 1.621839
- 1 2.185328 1.914452 0.950232
- 1 1.460955 4.246649 1.179833
- 1 -0.396128 5.161742 -0.211824
- 1 -1.493639 3.671499 -1.888986
- 1 -0.718673 1.342508 -2.184757
- 1 3.504721 1.044877 -0.816813
- 1 5.548397 -0.186471 -0.237965
- 1 5.435268 -2.550802 0.549563
- 1 3.202967 -3.657032 0.728245
- 1 1.146790 -2.417351 0.157262
- 1 -3.419920 -0.187770 -2.277719
- 1 -2.265219 -1.284272 -3.060139
- 1 -3.864466 -1.892602 -2.560819
- 1 -2.641578 -3.659483 -1.251079
- 1 -1.097139 -2.936896 -1.787927
- 1 -1.415351 -3.147389 -0.063720

- 1 -4.054097 -0.517151 -0.120956
- 1 -4.139251 -2.260688 0.127709
- 1 -3.575917 -1.143900 2.246464
- 1 -2.218824 -2.139458 1.723737
- 1 -3.273636 1.311502 0.801979
- 1 -3.109056 1.273772 2.576200
- 1 -1.836457 2.007414 1.553894
- 1 -1.356487 -0.229971 3.593521
- 1 -0.178690 0.617167 2.550614
- 1 -0.300400 -1.146110 2.478070

[Ph₂NLi.PMDETA]

- 6 -0.693364 -2.355070 -1.211650
- 6 -1.453891 -1.512997 -0.360849
- 6 -2.427677 -2.158811 0.448067
- 6 -2.607190 -3.538634 0.408781
- 6 -1.833685 -4.348216 -0.430675
- 6 -0.874687 -3.736999 -1.241686
- 7 -1.139860 -0.163808 -0.294638

- 6 -2.123242 0.785218 -0.110592
- 6 -1.763599 2.069102 0.386803
- 6 -2.687879 3.102315 0.522712
- 6 -4.027436 2.914627 0.174930
- 6 -4.408709 1.663314 -0.322357
- 6 -3.492389 0.626871 -0.466448
- 3 0.757094 0.266884 -0.033935
- 7 2.774658 -0.740142 -0.282959
- 6 3.203898 -1.071451 1.089257
- 6 2.767800 -0.037660 2.131008
- 7 1.325048 0.246104 2.099691
- 6 1.023397 1.430383 2.915437
- 6 3.556426 0.369592 -0.867008
- 6 2.766093 1.118884 -1.943102
- 7 1.571274 1.784814 -1.392692
- 6 0.564212 2.023087 -2.442604
- 6 1.919089 3.057749 -0.747693
- 6 2.862972 -1.937431 -1.132789
- 6 0.529697 -0.896432 2.583789

- 1 -3.035183 -1.557351 1.118306
- 1 -3.359759 -3.991827 1.051725
- 1 -1.983010 -5.424081 -0.458074
- 1 -0.275044 -4.339416 -1.922364
- 1 0.024760 -1.884993 -1.880201
- 1 -3.821881 -0.321422 -0.879262
- 1 -5.443276 1.493031 -0.615743
- 1 -4.751568 3.716857 0.285318
- 1 -2.356815 4.064132 0.911895
- 1 -0.727426 2.239639 0.673508
- 1 -0.045336 1.649785 2.854134
- 1 1.576954 2.295369 2.535131
- 1 1.292872 1.285351 3.976499
- 1 0.799013 -1.168200 3.619856
- 1 0.669475 -1.768183 1.940883
- 1 -0.529157 -0.636331 2.540679
- 1 3.089168 -0.395728 3.127068
- 1 3.292495 0.909880 1.962612
- 1 4.300100 -1.195868 1.153125

- 1 2.769198 -2.044542 1.336157
- 1 3.887965 -2.347043 -1.160896
- 1 2.564390 -1.695758 -2.155940
- 1 2.177588 -2.703527 -0.762823
- 1 4.505112 0.001357 -1.295379
- 1 3.828073 1.066436 -0.069298
- 1 3.431219 1.838854 -2.452914
- 1 2.429880 0.410186 -2.706671
- 1 -0.321703 2.477245 -1.992735
- 1 0.260480 1.069360 -2.880614
- 1 0.948693 2.684653 -3.238103
- 1 2.355952 3.777310 -1.462739
- 1 2.640476 2.898431 0.059587
- 1 1.018156 3.502320 -0.316730

Compound 3 [(Ph₂PCHCH=CH₂)Li.Et₂O]

- 6 0.263285 1.699264 0.679027
- 6 -0.721367 1.411003 -0.277106
- 6 -1.469753 2.485339 -0.791644

- 6 -1.245693 3.792889 -0.364219
- 6 -0.256981 4.062408 0.586637
- 6 0.496407 3.010338 1.106848
- 15 -1.035124 -0.285202 -0.972080
- 6 -2.705210 -0.633029 -0.213069
- 6 -3.552449 -1.515500 -0.902021
- 6 -4.800066 -1.868922 -0.385479
- 6 -5.229574 -1.334880 0.830535
- 6 -4.401974 -0.449460 1.524518
- 6 -3.152528 -0.102943 1.007832
- 6 0.103182 -1.370165 -0.102209
- 6 0.674511 -2.471958 -0.786261
- 6 1.559984 -3.409310 -0.273391
- 3 2.267846 -1.329507 -0.079910
- 8 3.911676 -0.342902 0.068782
- 6 4.963062 -0.732701 0.966014
- 6 4.388457 -1.605533 2.067396
- 6 4.358274 0.548376 -0.969887
- 6 3.201587 0.872220 -1.897490

- 1 1.955058 -4.199216 -0.903950
- 1 1.621741 -3.579930 0.803984
- 1 0.548277 -2.471518 -1.873565
- 1 0.048994 -1.439978 0.992180
- 1 -3.229324 -1.927159 -1.855778
- 1 -5.439741 -2.554307 -0.936521
- 1 -6.203441 -1.602758 1.232773
- 1 -4.730375 -0.026726 2.471393
- 1 -2.522939 0.592128 1.556902
- 1 0.848601 0.884938 1.098644
- 1 1.261403 3.206370 1.855294
- 1 -0.077479 5.082327 0.917064
- 1 -1.838522 4.605243 -0.777789
- 1 -2.237308 2.291608 -1.537997
- 1 5.181742 0.064774 -1.514888
- 1 4.751745 1.459728 -0.498663
- 1 2.821208 -0.028002 -2.394691
- 1 3.541774 1.560803 -2.678366
- 1 2.378840 1.350044 -1.356614

- 1 5.421386 0.175100 1.382689
- 1 5.734166 -1.271607 0.396878
- 1 3.637644 -1.060223 2.650462
- 1 5.186443 -1.914321 2.750825
- 1 3.931104 -2.512178 1.654202

Compound 4 [(Ph₂PCHCH=CH₂)Li.TMEDA]

6	-2.623031	-0.895543	0.421675
6	-3.224337	-1.031518	1.683155
1	-2.653965	-0.781548	2.575982
6	-4.537374	-1.491287	1.810646
1	-4.987058	-1.582986	2.796857
6	-5.264554	-1.845086	0.673437
1	-6.284232	-2.210507	0.768009
6	-4.669670	-1.739704	-0.586660
1	-5.227910	-2.024572	-1.475635
6	-3.361383	-1.270288	-0.712818
1	-2.902290	-1.209910	-1.695230
15	-0.838937	-0.335247	0.324602

- 6 -1.078463 1.487128 0.019516
- 6 -2.012695 2.216073 0.778039
- 1 -2.669744 1.692175 1.466744
- 6 -2.125125 3.600476 0.656662
- 1 -2.861190 4.132558 1.254976
- 6 -1.305080 4.303299 -0.229455
- 1 -1.396576 5.381928 -0.327558
- 6 -0.376332 3.598892 -0.995269
- 1 0.253366 4.126712 -1.708835
- 6 -0.264555 2.210473 -0.871069
- 1 0.446424 1.675442 -1.493961
- 6 -0.015871 -0.959831 -1.145285
- 1 0.272448 -2.006235 -0.954962
- 6 -0.469534 -0.743519 -2.517049
- 1 -0.921612 0.231732 -2.716724
- 6 -0.363155 -1.581844 -3.571567
- 1 -0.679365 -1.285803 -4.567940
- 6 2.427331 -2.984613 1.193572
- 1 1.850862 -2.511865 1.993547

- 1 1.727276 -3.512854 0.540830
- 1 3.120779 -3.720227 1.635298
- 7 3.134496 -1.954515 0.415009
- 6 3.830341 -2.577000 -0.722738
- 1 4.587674 -3.308286 -0.391739
- 1 3.100763 -3.089775 -1.355558
- 1 4.328049 -1.818238 -1.333305
- 6 4.057380 -1.181785 1.269518
- 1 3.556409 -1.012796 2.227945
- 1 4.977620 -1.750638 1.490135
- 6 4.436479 0.162958 0.641592
- 1 5.121171 0.699360 1.321318
- 1 4.989341 -0.005798 -0.288678
- 7 3.252683 0.985195 0.314445
- 6 2.667690 1.602292 1.520998
- 1 2.351427 0.833976 2.231161
- 1 3.386786 2.272837 2.021544
- 1 1.781876 2.175296 1.237255
- 6 3.602194 2.035999 -0.655489

- 1 4.375999 2.719371 -0.266430
- 1 2.708850 2.620515 -0.888409
- 1 3.971533 1.580923 -1.579996
- 3 1.841801 -0.467385 -0.330809
- 1 0.042163 -2.588118 -3.467883

[(Ph₂PCHCH=CH₂)Li.PMDETA]

6	2.264909	2.338224	-1.454593
6	2.245614	1.342364	-0.464677
6	3.051576	1.527190	0.671737
6	3.840774	2.670710	0.815898
6	3.845809	3.653954	-0.175519
6	3.056970	3.479244	-1.314341
15	1.059117	-0.088940	-0.676286
6	2.056429	-1.457280	0.146674
6	1.986817	-1.671411	1.533106
6	2.663354	-2.733926	2.139497
6	3.417285	-3.613650	1.361075

6 3.482578 -3.424830 -0.022227

- 6 2.803536 -2.362659 -0.620616
- 3 -1.320180 0.074885 0.232010
- 7 -1.524279 1.562040 1.796963
- 6 -1.088018 1.156299 3.140391
- 6 -2.965658 1.870483 1.796679
- 6 -3.539712 2.026368 0.385951
- 7 -3.264423 0.860537 -0.477037
- 6 -3.370649 1.243194 -1.897211
- 6 -4.160409 -0.278150 -0.170922
- 6 -3.505393 -1.630036 -0.465416
- 7 -2.297974 -1.863962 0.353907
- 6 -1.479020 -2.945766 -0.233026
- 6 -2.645105 -2.223445 1.736207
- 6 -0.723844 2.717496 1.348961
- 1 3.084244 0.762922 1.443424
- 1 4.461867 2.787501 1.701455
- 1 4.464349 4.541273 -0.065103
- 1 3.063060 4.230764 -2.100953
- 1 1.659883 2.190019 -2.346053

- 1 2.831186 -2.235511 -1.700317
- 1 4.061560 -4.111031 -0.636356
- 1 3.941243 -4.444832 1.826423
- 1 2.598296 -2.876968 3.216204
- 1 1.394111 -0.997317 2.151760
- 1 -0.025598 0.898642 3.113095
- 1 -1.650942 0.275644 3.465176
- 1 -1.232010 1.957049 3.886198
- 1 -0.908800 3.605002 1.978836
- 1 -0.955830 2.968278 0.311266
- 1 0.337138 2.464603 1.390260
- 1 -3.179815 2.792417 2.367807
- 1 -3.476259 1.054923 2.321666
- 1 -4.621912 2.231329 0.462164
- 1 -3.095704 2.902639 -0.094893
- 1 -4.374385 1.631229 -2.140893
- 1 -3.157969 0.388181 -2.540990
- 1 -2.626280 2.010192 -2.126819
- 1 -5.100855 -0.198509 -0.741500

- 1 -4.439007 -0.229463 0.885703
- 1 -4.249406 -2.433607 -0.319031
- 1 -3.200735 -1.667324 -1.515433
- 1 -0.568329 -3.068960 0.358072
- 1 -1.188427 -2.682831 -1.252416
- 1 -2.028793 -3.902290 -0.246300
- 1 -3.224947 -3.161703 1.784989
- 1 -3.235477 -1.433982 2.210675
- 1 -1.726779 -2.358231 2.315400
- 6 0.872247 -0.363445 -2.381591
- 6 -0.412050 -0.702299 -2.909816
- 1 1.741642 -0.433590 -3.036351
- 6 -0.790041 -1.131376 -4.145032
- 1 -1.230784 -0.584905 -2.189368
- 1 -1.835507 -1.305805 -4.387665
- 1 -0.071508 -1.290120 -4.945861

[Ph₂PLi.Et₂O]

6 0.608884 -3.316647 0.102643

- 6 -0.835100 -3.381117 0.564267
- 8 -1.582001 -2.299222 -0.023686
- 6 -2.990733 -2.362063 0.266871
- 6 -3.708194 -1.235147 -0.453523
- 1 -3.551674 -1.300123 -1.536436
- 1 -3.381392 -0.251048 -0.099710
- 1 -4.784894 -1.309450 -0.266621
- 1 -3.131412 -2.291494 1.354577
- 1 -3.365316 -3.340893 -0.062585
- 1 -0.909670 -3.306407 1.658544
- 1 -1.301446 -4.327070 0.256807
- 1 0.676455 -3.406814 -0.986683
- 1 1.171032 -4.144513 0.548156
- 1 1.101095 -2.385359 0.404274
- 6 -1.736257 2.269245 -1.021662
- 1 -1.716771 2.514652 -2.081529
- 6 -2.823443 2.663020 -0.250431
- 1 -3.640977 3.206483 -0.719508
- 6 -2.867642 2.387785 1.124725

- $1 \quad -3.711352 \quad 2.711237 \quad 1.727826$
- 6 -1.797957 1.704901 1.702118
- 1 -1.801774 1.488217 2.768629
- 6 -0.704293 1.298926 0.927243
- 1 0.127654 0.800174 1.420814
- 6 -0.625040 1.576430 -0.465319
- 15 0.655736 0.963433 -1.646758
- 6 2.106420 0.579590 -0.559659
- 6 2.540728 1.388957 0.512607
- 1 1.960745 2.265464 0.788902
- 6 3.709859 1.101812 1.216567
- 1 4.010387 1.746615 2.039881
- 6 4.506422 0.010703 0.858881
- 1 5.421432 -0.206761 1.403659
- 6 4.113737 -0.788260 -0.217053
- 1 4.726321 -1.635469 -0.518580
- 6 2.932352 -0.511946 -0.906445
- 1 2.642550 -1.146865 -1.742077
- 3 -0.766495 -0.685147 -0.626153

[Ph₂PLi.TMEDA]

- 6 -3.647163 0.129405 -0.368433
- 7 -2.722198 -0.994484 -0.593012
- 6 -2.917470 -1.532682 -1.949839
- 6 -2.901940 -2.031350 0.442285
- 6 -1.712352 -2.992495 0.513370
- 7 -0.434011 -2.287026 0.746294
- 6 -0.272069 -1.925674 2.165237
- 6 0.706550 -3.116447 0.317758
- 6 -0.163110 1.891786 -0.392725
- 6 -1.139516 2.802503 -0.879221
- 6 -2.019603 3.466864 -0.032057
- 6 -1.974780 3.261504 1.353857
- 6 -1.026328 2.375689 1.865773
- 6 -0.144532 1.700497 1.014193
- 15 0.824739 0.964842 -1.647184
- 6 2.354418 0.465707 -0.738058
- 6 3.025230 -0.702723 -1.165812

- 6 4.251337 -1.089744 -0.624989
- 6 4.852280 -0.329045 0.381483
- 6 4.213540 0.835237 0.815801
- 6 2.997288 1.231910 0.259416
- 3 -0.680910 -0.492451 -0.388528
- 1 0.605579 1.046694 1.453668
- 1 -0.957937 2.212897 2.940052
- 1 -2.650671 3.795597 2.016111
- 1 -2.736777 4.169819 -0.451432
- 1 -1.174783 3.002650 -1.948264
- 1 2.546503 2.163147 0.591089
- 1 4.675167 1.452804 1.583869
- 1 5.803704 -0.631667 0.811028
- 1 4.737759 -1.992763 -0.988913
- 1 2.574285 -1.309714 -1.949597
- 1 -3.449410 0.583278 0.606174
- 1 -3.477668 0.893441 -1.129923
- 1 -4.702066 -0.191451 -0.411671
- 1 -3.941562 -1.918575 -2.093800

- 1 -2.731782 -0.740678 -2.679965
- 1 -2.209935 -2.341303 -2.151426
- 1 -3.021320 -1.518343 1.402508
- 1 -3.827242 -2.610904 0.275993
- 1 -1.901472 -3.748788 1.294786
- 1 -1.622089 -3.537874 -0.431309
- 1 -1.080862 -1.265140 2.489384
- 1 -0.265031 -2.818285 2.814269
- 1 0.673587 -1.393053 2.296320
- 1 0.777243 -4.050321 0.900808
- 1 1.634259 -2.550993 0.432877
- 1 0.596949 -3.370824 -0.740499

Compound 7 [Ph₂PLi.PMDETA]

- $6 \quad -2.169239 \quad 1.777489 \quad 0.853720 \\$
- 6 -1.646822 1.728291 -0.459975
- 6 -1.456691 2.974534 -1.100915
- 6 -1.730801 4.185721 -0.464018
- 6 -2.240846 4.203558 0.836017

- 6 -2.467481 2.985831 1.484345
- 15 -1.087522 0.209708 -1.355951
- 3 1.072921 -0.052322 -0.107293
- 7 2.621767 1.344756 -0.806112
- 6 3.264420 2.132156 0.254691
- 6 -2.232817 -1.126949 -0.828567
- 6 -3.542535 -0.944402 -0.331354
- 6 -4.372277 -2.026859 -0.037291
- 6 -3.941572 -3.339400 -0.242938
- 6 -2.659509 -3.547401 -0.760693
- 6 -1.827316 -2.466117 -1.040973
- 6 3.571860 0.410292 -1.439301
- 6 3.835928 -0.826871 -0.578327
- 7 2.605549 -1.612559 -0.350125
- 6 2.359084 -2.534702 -1.468187
- 6 2.626871 -2.331908 0.937959
- 6 2.346000 -1.409119 2.128916
- 7 1.087244 -0.658681 1.982410
- 6 -0.085748 -1.534884 2.154898

- 6 1.018686 0.444290 2.952557
- 6 2.053020 2.258866 -1.812558
- 1 -3.924432 0.061971 -0.188970
- 1 -5.373884 -1.839016 0.345278
- 1 -4.592006 -4.180025 -0.016039
- 1 -2.305601 -4.560022 -0.946988
- 1 -0.839702 -2.654706 -1.461094
- 1 -1.108013 2.982866 -2.131400
- 1 -1.570869 5.120569 -0.997977
- 1 -2.472571 5.144487 1.328312
- 1 -2.877638 2.976023 2.492702
- 1 -2.358149 0.849476 1.386848
- 1 0.107495 1.022334 2.775885
- 1 1.878676 1.108697 2.823635
- 1 1.011980 0.082924 3.995703
- 1 -0.091598 -2.007756 3.152822
- 1 -0.109162 -2.314238 1.391253
- 1 -0.996569 -0.947675 2.031339
- 1 2.352434 -2.014655 3.053794

- 1 3.155996 -0.677955 2.232944
- 1 3.588005 -2.849824 1.103353
- 1 1.860554 -3.110931 0.891018
- 1 3.158355 -3.289615 -1.569680
- 1 2.287168 -1.976776 -2.405231
- 1 1.405969 -3.047209 -1.317683
- 1 4.615127 -1.444527 -1.057004
- 1 4.241281 -0.519766 0.389732
- 1 4.531056 0.907650 -1.671180
- 1 3.138122 0.100209 -2.395469
- 1 1.333326 2.923900 -1.329802
- 1 1.516694 1.682089 -2.570022
- 1 2.834133 2.868204 -2.299841
- 1 4.082826 2.761993 -0.136838
- 1 3.678947 1.479556 1.028242
- 1 2.520913 2.783976 0.722254

References:

- 1 Bruker Apex2 v2012.2.0, Bruker AXS Madison US, 2006.
- 2 Sheldrick, G. M. SADABS v2.30, University of Gottingen, 2002.

3 Sheldrick, G. M. Acta. Cryst. Sect. A 2008, 64, 112.

Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,
M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz,
J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

5 A. G. M. Barrett and M. A. Seefeld, *Tetrahedron*, 1993, **49**, 7857–7870.

6 R. E. Mulvey, K. Wade, D. R. Armstrong, G. T. Walker, R. Snaith, W. Clegg and D. Reed, *Polyhedron*, 1987, **6**, 987–993.