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General experimental Procedures: 

Materials : 

All reagents were purchased from Aldrich and were used without further purification. THF was 

dried over sodium using benzophenone and kept over molecular sieves overnight before use. For 

column chromatography, silica gel (60–120 mesh) was used. 

Instruments : 

UV-vis spectra were recorded on a SHIMADZU UV-2450 spectrophotometer using a quartz 

cuvette (path length, 1 cm). The fluorescence spectra were obtained with a SHIMADZU 5301 PC 

spectrofluorimeter. TEM images were recorded from Transmission Electron Microscope (TEM)-

JEOL 2100F. Infrared spectra were obtained on Varian 660-IR spectrometer using KBr pellets. 

Thermogravimetric analysis (TGA) was carried out on a EXSTAR TG/DTA 3600 at a heating 

rate of 10
0
C/min under nitrogen atmosphere. The amount of Ag and Cu in catalyst was 

determined by atomic absorption spectrophotometer (GBC Avant Ver 1.31). Sample preparation 

was done by reflux assisted digestion of 2 mg of catalyst with concentrated HNO3. The resulting 

solution was cooled, centrifuged and filtered. The filtrate was diluted to 10 times with deionized 

water. Photocatalytic experiments were carried out by using the 60 W tungsten filament bulb as 

irradiation source. Elemental analysis (C, H, N) was performed on a Flash EA 1112 CHNS-O 

analyzer (Thermo Electron Corp.). 
1
H NMR was recorded on a JEOL-FT NMR-AL 300 MHz and 

Bruker (Avance II) FT-NMR 500 MHz spectrophotometer using CDCl3, CD3OD and DMSO-d6 

as solvents and tetramethylsilane (Si(CH3)4) for internal standards. Data was reported as follows: 

chemical shifts in ppm (δ) and coupling constants in Hz (J). Multiplicites of signals were 

expressed as follows: s = singlet, d = doublet and m = multiplet.  
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Synthesis of silver nanoparticles (AgNPs):  

The quasi-spherical AgNPs were prepared by reducing the AgNO3 with aggregates of derivative 1 

according to the previously reported method.
1
 Aggregates of derivative 1 were prepared by 

dissolving derivative 1 (10 μM) in H2O:THF (7:3). To prepare AgNPs, 3 mL of aggregates of 

derivative 1 (10 μM) were added to 0.1 M AgNO3 (60 µL). The reaction mixture so obtained was 

stirred at room temperature to yield greyish AgNPs. These AgNPs were washed with distilled 

water to remove unreacted AgNO3 and were utilized as such in the formation of supramolecular 

ensemble 1a:Ag@Cu2O NPs. As determined by AAS, the concentration of AgNPs solution was 

found to be 1.9 mM. 

Preparation of Benedict’s stock solution (1M):  

In a 100 mL volumetric flask, 10 g of Na2CO3 and 17.3 g of sodium citrate dihydrate was 

dissolved in 85 mL of distilled water. To this mixture, aqueous solution of copper sulfate 

pentahydrate (1.73g dissolved in 10 mL of water) was added slowly with stirring. Finally, 

distilled water was added to bring the final volume upto 100 mL. The resulting solution was 

diluted further to prepare 0.04 M Benedict’s solution which was used in the generation of 

supramolecular ensemble 1a:Ag@Cu2O NPs. 

Generation of supramolecular ensemble 1a:Ag@Cu2O NPs: 

(a) Ensemble consisting of 1a and Ag@Cu2O NPs (1:1) 

6 mL of AgNPs (1.9 mM) and 0.6 mL of Benedict’s solution (0.04 M) were mixed and stirred at 

room temperature for 5 min. To this reaction mixture, 0.6 mL of aggregates of derivative 1 (0.002 

M) in H2O:THF (7:3) solution were added slowly with vigorous stirring. Immediately, color of 

solution was changed from dark blue to green indicating the generation of supramolecular 

ensemble 1a:Ag@Cu2O NPs. Black coloured precipitates were observed after stirring the reaction 
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mixture continuously for 15 min. at room temperature. The resulting reaction mixture was 

sonicated to obtain homogeneous catalytic solution consisting of Ag@Cu2O NPs (1:1) and 3.5 

mL of this catalytic solution was used as such for carrying out C-H activation reactions. 

(b) Ensemble consisting of 1a and Ag@Cu2O NPs (1:2) 

For preparation of photocatalytic ensemble having Ag@Cu2O NPs (1:2), 5 mL of AgNPs solution 

(1.9 mM), 0.8 mL of Benedict’s solution (0.04 M) and 0.8 mL of aggregates of derivative 1 

(0.002 M) in H2O:THF (7:3) solution were mixed and 3.5 mL of this solution was used as such 

for carrying out C-H activation reactions. 

(c) Ensemble consisting of 1a and Ag@Cu2O NPs (2:1) 

To generate photocatalytic ensemble consisting of Ag@Cu2O NPs (2:1), 16 mL of AgNPs (1.9 

mM), 0.6 mL of Benedict’s solution (0.04 M) and 0.6 mL of aggregates of derivative 1 (0.002 M) 

in H2O:THF (7:3) solution were mixed and 5.0 mL of this solution was used as such for carrying 

out photocatalytic C-H functionalization reactions.  

General experimental procedure for photocatalytic C-H functionalization reactions utilizing 

in situ generated supramolecular ensemble 1a:Ag@Cu2O NPs: 

In a 25 ml round-bottom flask (RBF), 1-methyl-1H-imidazole, 2 (1.0 equiv, 0.1 g), iodobenzene, 

3a (1.5 equiv) and KO
t
Bu (1.5 equiv) were mixed in 10 mL of H2O:toluene (7:3) solvent mixture 

in presence of 3.5 mL of in situ generated supramolecular ensemble 1a:Ag@Cu2O NPs (0.02 

mmol). After degassing the reaction mixture under vaccum for 2 min, the RBF was put in a water 

bath (to avoid heating effect) on magnetic stirrer and was irradiated with a 100 W tungsten 

filament bulb (0.4 W/cm
2
) to provide visible light for 5.5 h. After completion of the reaction, 

solvent was evaporated under reduced pressure and the resulting residue was dissolved in DCM. 

The organic layer was washed with water, dried over anhydrous Na2SO4 and concentrated under 
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reduced pressure to yield the crude product which was recrystallized from DCM-hexane mixture 

to obtain pure product. The aqueous layer containing catalyst was reused as such for further 

photocatalytic reactions. 

For preparation of imidazole and benzimidazole derivatives, reactants 1-methyl-1H-imidazole (2) 

and 1-phenyl-1H-benzimidazole (5) were synthesized according to previously reported methods.
2
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Table S1 Comparison of catalytic activity of supramolecular ensemble 1a:Ag@Cu2O core shell NPs with 

other catalytic systems reported in literature for C-H functionalization of imidazole/benzimidazole. 

Journal Name Catalyst Catalyst 

loading 

Ligand/ base Temperature Solvent Time 

(in h) 

Yield 

Present 

Manuscript 

Ag@Cu2O core shell 

NPs 

0.02 mmol KO
t
Bu Visible light Toluene- 

H2O (3:7) 

5-7 45-82% 

ACS Catal., 2016, 

6, 709 

[Cp*RhCl2]2 0.003 mmol NaOAc, 

AgOTf 

110
o
C (under 

Ar atmosphere) 

DCE 24 47-96% 

Org. Biomol. 

Chem., 2016, 14, 

1814 

[Cp*RhCl2]2 5 mol% Cu(OAc)2·H2O 110
o
C (under 

Ar atmosphere) 

Toluene 12 5-97% 

Chem. Sci., 2015, 

6, 6792 

Ni(cod)2 10 mol% Dcype, K3PO4 110
o
C t-AmylOH 12-36 53-95% 

Org. Biomol. 

Chem., 2015, 13, 

7695 

[Cp*RhCl2]2 5 mol% Cu(OAc)2·H2O  80
o
C (under Ar 

atmosphere) 

t-AmylOH 4-12 53-99% 

Adv. Synth. 

Catal,. 2015, 357, 

3885 

[(p-cymene)RuCl2]2 10 mol% AgSbF6, 

Cu(OAc)2·H2O 

140
o
C MeOH 24 68-99% 

J. Org. Chem., 

2014, 79, 5806 

[NHC-Pd(II)-Im] 2-4 mol% KO
t
Bu 120

o
C Toluene- 

H2O  

6-12  42-99% 

Org. Biomol. 

Chem., 2013, 11, 

2249 

[Cp*RhCl2]2 3 mol% Cu(OAc)2, 

PivOH 

140
o
C Mesitylene 24 49-84% 

Tetrahedron 

2008, 64, 6060 

Pd(OAc)2 10 mol% P(2-furyl)3, 

K2CO3 

140
o
C DMF 27-87 43-73% 
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Procedure: A solution of derivative 1 (0.1 g, 0.05 mmol) and CuCl2.2H2O (28 mg, 0.06 mmol) were 

mixed in THF. To this mixture, aqueous 
t
BuOOH (12.15 µL, 0.05 mmol) was added. The resulting 

mixture was allowed to stir at room temperature for 24 h until the starting material disappeared (as 

indicated by TLC). After completion of the reaction, the residual solvent was evaporated. The crude 

product so obtained was treated with DCM and water. The organic layer was collected by adjusting the 

pH to 8.0-8.5. The organic layer was concentrated, dried over anhydrous Na2SO4 and purified by column 

chromatography to yield the derivative 1a (0.06 g in 57.5% yield); m.p.>280
0
C. 

1
H NMR (500 MHz, 

CDCl3, ppm) δ = 7.73 (d, 4H, J = 8.0 Hz), 7.32 (d, 4H, J = 8.0 Hz), 7.02 (d, 4H, J = 8.0 Hz), 6.80 (d, 4H, 

J = 8.0 Hz), 6.67-6.70 (m, 20H); m/z = 775.4733 [M + H]
+
; Elemental Analysis: Calcd for C56H38O4: C 

86.80; H 4.94; O 8.26. Found: C 86.78; H 4.93; O 8.23. 

Synthetic scheme of derivative 1a: 

CuCl2.2H2O 

t
BuOOH, RT 

1a 1 
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Fig. S2 Fluorescence spectra of derivative 1 (5 μM) showing the variation of emission 

intensity in TEG/THF mixture (0 to 90% volume fraction of TEG in THF); λex= 305nm. 
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Fig. S1 Fluorescence spectra showing the variation of emission intensity of derivative 1 

(5 μM) in H2O/THF mixture with different fractions of H2O; λex = 305 nm. 
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Fig. S4 UV-vis spectra with time for gradual addition of aggregates of derivative 1 (5 μM) to the 

 aqueous solution of Benedict’s reagent and AgNPs. 
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Fig. S3 Schematic diagram illustrating the generation of Cu2O NPs and in situ generated supramolecular 

ensemble 1a:Ag@Cu2O NPs from Benedict’s solution on addition of aggregates of derivative 1.  

Benedict’s solution 

Derivative 1 in H2O:THF (7:3) 
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The first order
3
 rate constant for the formation of Ag@Cu2O NPs was calculated from the change 

of intensity of absorbance of Benedict’s reagent and AgNPs in the presence of aggregates of  

derivative 1 at different time interval.
4
  

From the time vs. absorbance plot at fixed wavelength 452 nm by using first order rate equation, 

we get the rate constant = k = slope×2.303 = 4.80×10
-4

 s
-1

. 
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Fig. S5 Graphical representation of rate of formation of Ag@Cu2O core-shell NPs (A) Time (min.) vs. 

absorbance plot at 452 nm (B) regression plot of A. 

      Regression Statistics 

Multiple R 0.996139 

R Square 0.992294 

Intercept 0.603839 

Slope 0.012527 
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Fig. S6 X-Ray diffraction pattern of in situ generated Ag@Cu2O core shell NPs. 
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Fig. S7 TEM images of Ag@Cu2O core shell NPs by varying the ratio of AgNPs:Benedict’s solution. 
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Fig. S8 UV-vis spectra of Ag@Cu2O core-shell NPs by varying the ratio of AgNPs: Benedict’s solution. 
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Fig. S10 Fourier transforms infrared (FTIR) absorption spectrum of derivative 1 and Ag@Cu2O NPs.  

Fig. S9 Overlay NMR spectra of derivative 1 and residue obtained after filtration with THF/CHCl3 

mixture. 
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Figure S11 Pictorial presentation for the formation of derivative 1 stabilized in situ generated Ag@Cu2O core 

shell NPs 
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Fig. S11 Pictorial presentation illustrating the in situ generation of supramolecular ensemble 1a:Ag@Cu2O NPs.  
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S. No. Solvent Temperature Time Yield 

1. Toluene 150
0
C 8 h 73% 

2. DMF 150
0
C 15 h 48% 

3. H2O:EtOH  90
0
C 24 h - 

4. H2O:toluene (7:3) 150
0
C 15 h 45% 

5. H2O:toluene (7:3) Visible light 5.5 h 80% 

 

Table S2 Optimization of reaction conditions for C-H arylation of 1-methyl-1H-imidazole (2) with 

iodobenzene (3a) utilizing in situ generated supramolecular ensemble 1a:Ag@Cu2O NPs as 

catalyst. 

Table S3 Effect of thickness of shell on photocatalytic efficiency of in situ generated supramolecular 

ensemble 1a:Ag@Cu2O NPs in C-H functionalization of 1-methyl-1H-imidazole (2) with 3a. 

S. No. Ensemble 1a:Ag@Cu2O NPs 

(AgNPs: Benedict’s solution) 

Time Yield TOF (h
-1

) 

1. 1:1 5.5 h 80%     8.88 

2. 1:2 5.5 h 84%     9.32 

3. 2:1 5.5 h 75%     8.33 
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Fig. S12 Thermogravimetric analysis (TGA) of derivative 1 and supramolecular ensemble 

1a:Ag@Cu2O NPs. 
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Fig. S13 TEM image showing spherical shape of Cu2O NPs stabilized by aggregates of 

derivative 1; scale bar 50 nm. 

Fig. S14 X-Ray diffraction pattern of Cu2O NPs stabilized by aggregates of derivative 1. 
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5; Ag@Cu2O NPs stabilized by aggregates of pentacenequinone
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 Table S5 C-H activation of 1-methyl-1H-imidazole (2) with haloarenes (3a/3b/3c) catalyzed by in situ 

generated supramolecular ensemble 1a:Ag@Cu2O NPs in presence of visible light. 

Reaction conditions: 1 (1.0 equiv), 2 (1.5 equiv), catalyst; Supramolecular ensemble 1a:Ag@Cu2O NPs (0.02 

mmol), Base; KO
t
Bu (1.5 equiv), H2O:toluene (7:3) under visible light. 

 

S. No. Reactant 1 Reactant 2 Product Yield Time 

1.     
84% 

 
5.5 h 

2.     
68% 

 
6 h 

3.     
48% 

 
7 h 

 

4a 

 4a 

 4a 

3a 

 3b 

3c 

2 

2 

2 

S. No. Catalyst Yield  Time 

1. Cu2O NPs stabilized by aggregates of derivative 1 23% 24 h 

2. Supramolecular ensemble 1a:Ag@Cu2O NPs 80% 5.5 h 

3. Aggregates of derivative 1    - 20 h 

4. Aggregates of oxidized derivative 1a    - 20 h 

5. Bare Ag@Cu2O NPs  32% 20 h 

6. Bare Ag@Cu2O NPs + aggregates of derivative 1 34 % 14 h 

7. Bare Ag@Cu2O NPs + aggregates of oxidized  derivative 1a 78 %  8 h 

8. Ag@Cu2O NPs stabilized by aggregates of pentacenequinone  42% 16 h 

 

 Table S4 Influence of the stabilizing agent on the photocatalytic efficiency of Cu2O NPs and Ag@Cu2O 

NPs in C-H activation reaction.  
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S. No.  X Time (h) Yield 

1. -I  (3a)     4.5 h 82% 

2. -Br (3b)     6 h 74% 

3. -Cl (3c)     7 h 57% 

 

Table S6 Photocatalytic C-H activation of 1-phenyl-1H-benzo[d]imidazole (5) with haloarenes 

(3a/3b/3c) utilizing in situ generated supramolecular ensemble 1a:Ag@Cu2O NPs.  

   Ist           2nd               3rd 

Cycle        Cycle          Cycle 

 

%
 Y

ie
ld
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p
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ct
 

Fig. S15 Recyclability of in situ generated supramolecular ensemble 1a:Ag@Cu2O NPs as 

photocatalyst for synthesis of imidazole/benzimidazole derivatives. 
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Compound 4a.
7
 1-methyl-2-phenyl-1H imidazole: (0.131 g in 68% yield). 

1
H NMR (300 MHz, CDCl3, 

ppm): δ = 7.61 (d, 2H, J = 8.1 Hz), 7.37−7.44 (m, 3H), 7.12 (s, 1H), 6.97 (s, 1H), 3.72 (s, 3H). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S16 
1
H NMR of compound 4a in CDCl3. 

 

4a 
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Compound 4b.
8
 4-(1-methyl-1H-imidazol-2-yl)phenol: (0.172 g in 81% yield). 

1
H NMR (500 MHz, 

CD3OD, ppm): δ = 7.72 (d, 1H, J = 9.0 Hz), 7.44-7.47 (m, 4H), 7.00 (d, 1H, J = 9.0 Hz), 3.72 (s, 3H).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S17 
1
H NMR of compound 4b in CD3OD. 

 

4b 
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Compound 4c.
9
 1-Methyl-2-(p-tolyl)imidazole: (0.168 g in 80% yield). 

1
H NMR (300 MHz, CDCl3, ppm): 

δ = 7.46 (d, 2H, J = 8.1 Hz), 7.18-7.22 (m, 2H), 7.03 (d, 1H, J = 0.9 Hz), 6.85 (d, 1H, J = 0.9 Hz), 3.65(s, 

3H), 2.22 (s, 3H). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S18 
1
H NMR of compound 4c in CDCl3. 

 

4c 
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Compound 4d.
8
 2-(4-methoxyphenyl)-1-methyl-1H-imidazole: (0.188 g in 82% yield). 

1
H NMR (500 MHz, 

CDCl3, ppm): δ = 7.58 (d, 2H, J = 9.0 Hz), 7.09 (s, 1H), 6.98 (d, 2H, J = 9.0 Hz), 6.93 (s, 1H), 3.84 (s, 3H), 3.73 

(s, 3H).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S19 
1
H NMR of compound 4d in CDCl3. 
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Compound 4e.
10

 4-(1-Methylimidazol-2-yl)benzonitrile: (0.138 g in 62% yield). 
1
H NMR (300 MHz, CDCl3, 

ppm): δ = 7.63-7.94 (m, 4H), 7.14 (s, 1H), 7.00 (s, 1H), 3.79 (s, 3H).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S20 
1
H NMR of compound 4e in CDCl3. 
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Compound 6a.
11

 1,2-Diphenyl-1H-benzo[d]imidazole: (0.104  g in 74% yield). 
1
H NMR (300 MHz, CDCl3, 

ppm): δ = 7.90 (d, 1H, J = 7.2 Hz), 7.60 (d, 2H, J = 8.4 Hz), 7.45–7.54 (m, 3H), 7.23–7.40 (m, 8H). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S21 
1
H NMR of compound 6a in CDCl3. 
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Compound 6b.
12

 4-(1-Phenyl-1H-benzo[d]imidazol-2-yl)phenol: (0.112 g in 76% yield). 
1
H NMR (300 MHz, 

DMSO-d6, ppm) δ = 7.73 (d, 1H, J = 7.5 Hz), 7.50–7.57 (m, 3H), 7.40 (d, 2H, J = 7.5 Hz), 7.35 (d, 2H, J = 8.4 

Hz), 7.28 (t, 1H, J = 7.2 Hz), 7.19 (t, 1H, J = 7.2 Hz), 7.10 (d, 1H, J = 8.1 Hz), 6.68 (d, 2H, J = 8.4 Hz). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S22 
1
H NMR of compound 6b in DMSO-d6. 
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Compound 6c.
13 

2-(3,4-dimethoxyphenyl)-1-phenyl-1H-benzo[d]imidazole: (0.143 g in 84% yield).
 1

H 

NMR (300 MHz, CDCl3, ppm): δ = 7.86 (d, 1H, J = 8.1 Hz), 7.46–7.56 (m, 3H), 7.27–7.36 (m, 3H), 7.14–

7.19 (m, 3H), 7.10-7.11 (m, 1H), 6.73 (d, 1H, J = 8.4 Hz), 3.85 (s, 3H), 3.70 (s, 3H). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S23 
1
H NMR of compound 6c in CDCl3. 
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Compound 6d.
14

 2-(4-Methylphenyl)-1-phenyl-1H-benzo[d]imidazole: (0.114 g in 78% yield). 
1
H NMR 

(300 MHz, CDCl3, ppm): δ = 7.89 (s, 1H), 7.45–7.51 (m, 5H), 7.33–7.35 (m, 3H), 7.25–7.27 (m, 2H), 7.12 

(d, 2H, J = 8.7 Hz), 2.32 (s, 3H). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S24
 1

H NMR of compound 6d in CDCl3. 
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Compound 6e.
15 

4-(1-Phenyl-1H-benzo[d]imidazol-2-yl)benzaldehyde: (0.108  g in 70% yield). 
1
H NMR (500 

MHz, CDCl3, ppm): δ = 9.98 (s, 1 H), 7.91–7.94 (m, 1H), 7.83 (d, 2 H, J = 8.5 Hz), 7.75 (d, 2 H, J = 8.5 Hz), 

7.53–7.58 (m, 3 H), 7.28–7.36 (m, 5 H). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S25 
1
H NMR of compound 6e in CDCl3. 
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Compound 1a: (0.06 g in 57.5% yield). 
1
H NMR (500 MHz, CDCl3, ppm) δ = 7.73 (d, 4H, J = 8.0 Hz), 7.32 

(d, 4H, J = 8.0 Hz), 7.02 (d, 4H, J = 8.0 Hz), 6.80 (d, 4H, J = 8.0 Hz), 6.67-6.70 (m, 20H). 

Fig. S26 
1
H NMR of derivative 1a in CDCl3. 
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Fig. S27 Mass spectrum of derivative 1a.  

 

 [M + H]+ 
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