Unusual Hydridicity of a Cobalt Bound Si-H Moiety

Jin Kim,^a Yujeong Kim,^{c,d} Indranil Sinha,^{a,b} Sun Hee Kim^{*,c,d} and Yunho Lee^{*,a,b}

^a Department of Chemistry, Korea Advanced Institute of Science and Technology,

Daejeon 34141, Republic of Korea

^b Centre for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science,

Daejeon, 34141, Republic of Korea

° Western Seoul Centre, Korea Basic Science Institute, Seoul 03759, Republic of Korea

^d Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea

Contents

Experimental Section

Figure S1. ¹H NMR spectrum of **a**.

Figure S2. ¹³C NMR spectrum of **a**.

Figure S3. ²⁹Si NMR spectrum of **a**.

Figure S4. ³¹P NMR spectrum of **a**.

Figure S5. ¹H NMR spectrum of MeSiP₂Cl.

Figure S6. ¹³C NMR spectrum of MeSiP₂Cl.

Figure S7. ²⁹Si NMR spectrum of MeSiP₂Cl.

Figure S8. ³¹P NMR spectrum of MeSiP₂Cl.

Figure S9. ¹H NMR spectrum of **b-D**.

Figure S10. ²H NMR spectrum of b-D.

Figure S11. ³¹P NMR spectrum of b-D.

Figure S12. ¹H NMR spectrum of 1a. Figure S13. ¹H NMR spectrum of 1b.

rigure S15. 'I NWIK spectrum of 10.

Figure S14. X-band EPR spectrum of 1a at 20 K.

Figure S15. X-band EPR spectrum of 1b at 20 K.

Figure S16. X-band EPR spectrum of 2a at 20 K.

Figure S17. X-band EPR spectrum of 2b at 20 K.

Figure S18. X-band EPR spectrum of *in situ* sample of 3a at 20 K.

Figure S19. X-band EPR spectrum of *in situ* sample of 3b at 20 K.

Figure S20. X-band CW and Q-band Electron Spin Echo detected EPR spectra of 3b.

Figure S21. Q-band ²H Mims ENDOR spectra of **3b** and **3b-D**.

Figure S22. Q-band ¹H Davies ENDOR spectra of **3b** and **3b-D**.

Figure S23. Q-band three-pulse ESEEM and Mims ENDOR spectra of 3b-D.

Figure S24. Q-band three-pulse ESEEM spectra of 3b and 3b-D.

Figure S25. Q-band three-pulse ESEEM spectra of 3b-D at various fields.

Figure S26. Solid state molecular structure of **a**.

 Table S1. Selected bond distances and angles for a.

Figure S27. Solid state molecular structure of 1a.

 Table S2. Selected bond distances and angles for 1a.

Figure S28. Solid state molecular structure of 1b.

 Table S3. Selected bond distances and angles for 1b.

Figure S29. Solid state molecular structure of 2b.

 Table S4. Selected bond distances and angles for 2b.

Figure S30. Solid state molecular structure of **3a**.

Table S5. Selected bond distances and angles for 3a.Figure S31. Solid state molecular structure of 3b.

Table S6. Selected bond distances and angles for **3b**.

Figure S32. Solid state molecular structure of [Et₃NH]₂[CoBr₄].

Table S7. Selected bond distances and angles for $[Et_3NH]_2[CoBr_4]$.

 Table S8. Selected bond distances and angles of 1a-b and 3a-b.

Figure S33. UV-Vis spectra of 1a and 1b.
Figure S34. UV-Vis spectra of 2a and 2b.
Figure S35. UV-Vis spectra of 3a and its decomposition products.
Figure S36. UV-Vis spectra of 3b and its decomposition products.
Figure S37. UV-Vis spectral changes observed in the reaction of 3b and triethylamine.
Figure S38. Plots of absorbance vs. time for the reaction of 3b to {(MeSiP₂)CoBr₂}⁻ and {(MeSiP₂)CoBr₂}⁻ to 1b.

pK_a measurement for 3b

Table S9. pK_a value of **3b**. **Figure S39.** UV-Vis spectra of **3b** with a deprotonated intermediate species at equilibrium state.

Figure S40. IR spectrum of a. Figure S41. IR spectra of b-D and b. Figure S42. IR spectra of 1a and 1b. Figure S43. IR spectra of 2a and 2b. Figure S44. IR spectra of 3b-D and 3b. Figure S45. ESI mass data of a. Figure S46. ESI mass data of MeSiP₂Cl. Figure S47. ESI mass data of b-D.

Computational details

Figure S48. Plausible reaction pathways of 1b formation from intermediate 3b.
Figure S49. A relative free energy profile for pathway 2.
Table S10. Selected bond indices for 1b and 3b from NBO analysis.
Table S11. Cartesian coordinates (Å) for the optimized structure of INT1.
Table S12. Cartesian coordinates (Å) for the optimized structure of INT2 (INT2*).
Table S13. Cartesian coordinates (Å) for the optimized structure of INT2-LS.
Table S14. Cartesian coordinates (Å) for the optimized structure of INT2-HS.
Table S15. Cartesian coordinates (Å) for the optimized structure of INT3.
Table S16. Cartesian coordinates (Å) for the optimized structure of INT3.

Experimental Section

General Considerations. All manipulations were carried out using standard Schlenk or glovebox techniques under a N_2 atmosphere. Unless otherwise noted, solvents were deoxygenated and dried by thoroughly sparging with Ar gas followed by passage through an activated alumina column. Non-halogenated solvents were tested with a standard purple solution of sodium benzophenone ketyl in tetrahydrofuran in order to confirm effective oxygen and moisture removal. All reagents were purchased from commercial vendors and used without further purification unless otherwise stated. (2-bromophenyl)diisopropylphosphine¹ and bis(2-diisopropylphosphinophenyl)methylsilane (**b**)² was prepared according to literature procedures. Elemental analyses were carried out at the KAIST Central Research Instrument Facility on a Thermo Scientific FLASH 2000 series instrument. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. or Euriso-top, degassed, and dried over activated 4 Å molecular sieves prior to use.

X-ray crystallography. The diffraction data of **a** was collected on a Bruker SMART 1000. The diffraction data of **1a**, **1b**, **2b**, **3a**, **3b** and $[Et_3NH]_2[CoBr_4]$ were collected on a Bruker D8 QUEST. A suitable size and quality of crystal was coated with Paratone-*N* oil and mounted on a MiTeGen MicroLoop. The data were collected with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 100 K or 120 K. Cell parameters were determined and refined by SMART program.³ Data reduction was performed using SAINT software.⁴ An empirical absorption correction was applied using the SADABS program.⁵ The structures were solved by direct methods, and all non-hydrogen atoms were subjected to anisotropic refinement by full-matrix least squares on F² by using the SHELXTL/PC package.⁶ Unless otherwise noted, hydrogen atoms were placed at their geometrically calculated positions and refined riding on the corresponding carbon atoms with isotropic thermal parameters.

Spectroscopic Measurements. Bruker 400 spectrometer was used to measure ¹H NMR. The chemical shifts for ¹H NMR spectra were quoted in part per million (ppm) referenced to residual solvent peaks. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublet, br s = broad singlet. Coupling constants, *J*, were reported in hertz unit (Hz). ²H NMR spectrum was recorded on Bruker 400 spectrometer. ²H NMR chemical shift was quoted in part per million (ppm) referenced to C₆H₅D impurities in internal benzene solvent. ¹³C NMR spectra were recorded on Bruker 400 spectrometer. ¹³C NMR spectra were recorded on Bruker 400 spectrometer and were decoupled by broad band proton decoupling. The chemical shifts for ²⁹Si NMR spectra were recorded on Bruker 400 spectrometer and were decoupled by broad band proton decoupling. The chemical shifts for ³¹P NMR spectra

¹ M. Tamm, B. Dreßel, K. Baum, T. Lügger and T. Pape, J. Organomet. Chem., 2003, 677, 1.

² H. Fang, Y.-K. Choe, Y. Li and S. Shimada, Chem. Asian J., 2011, 6, 2512.

³ SMART (version 5.0), *data collection software*; Bruker AXS, Inc., Madison, WI, 1998.

⁴ SAINT (version 5.0), data integration software; Bruker AXS, Inc., Madison, WI, 1998.

⁵ G. M. Sheldrick, SADABS: *program for absorption correction with the Bruker SMART system*; Universität Göttingen, Germany, 1996.

⁶ G. M. Sheldrick, SHELXTL (version 6.1), Bruker AXS, Inc., Madison, WI, 2000.

were quoted in part per million (ppm) referenced to external phosphoric acid as 0.0 ppm. Solution magnetic moments were determined by the Evans' method.⁷ Electrospray ionization mass spectra (ESI-MS) were collected on a Thermo Finnigan (San Jose, CA, USA) LCQTM Advantage MAX quadrupole ion trap instrument, by infusing samples directly into the source using a manual method. UV-Vis spectra were measured by Agilent Cary 60 UV-Vis spectrophotometer using a 1 cm two-window quartz spectrophotometer cell sealed with a screw-cap purchased from Hellma Analytics (117.100-QS). Low temperature UV-Vis spectra were measured by Agilent Cary 60 UV-Vis spectrophotometer with a fibre optic coupler (Agilent) and a fibre optic dip probe purchased from Hellma Analytics (661.202-UV, 10 mm). For the low temperature measurement with a Cary 60 UV-Vis spectrophotometer, a heptane/N₂(I) bath (-90 °C) or a acetonitrile/dry ice bath (-40 °C) was used, and the steady temperature was monitored with the type K thermocouple (Model SDT142S, SUMMIT Co. Ltd.). Air sensitive solutions were prepared in a glovebox (N₂ filled, Korea Kiyon) and carried out in custom-made Schlenk tubes designed for the dip probe. Infrared spectra were recorded in KBr pellet by Agilent 660-IR. Frequencies are given in reciprocal centimetres (cm⁻¹) and only selected absorbances were reported.

CW and Pulsed-EPR Spectroscopy. All EPR measurements were carried out at Korea Basic Science Institute (KBSI) in Seoul, Korea. CW X-band EPR spectra of 1a, 1b, 2a, 2b, 3a and 3b were collected on a Bruker EMX plus 6/1 spectrometer equipped with an Oxford Instrument ESR900 liquid He cryostat using an Oxford ITC 503 temperature controller. Spectra were collected with the following experimental parameters: microwave frequency, 9.6 GHz; microwave power, 0.96 mW; modulation amplitude, 10 G; modulation frequency, 100 kHz; temperature, 20 K. The CW-EPR simulations were performed using EasySpin.⁸ Pulsed EPR data were obtained on a Bruker Elexsys E580 spectrometer and Cryogenic temperatures were achieved with an Oxford CF-935 cryostat and Oxford ITC temperature controller. All pulsed EPR measurements were conducted at 8 K. Q-band pulsed ENDOR data were collected using an EN5107D2 resonator. Mims ENDOR were carried out using the pulse sequence, $\pi/2-\tau-\pi/2-T-\pi/2$ -echo, with microwave pulse lengths of 32 ns and an inter-pulse time of $\tau = 200$ ns. In this sequence, RF power is applied during the time T (20 μ s) to drive nuclear spin transitions. The repetition time was 5 ms. Pulsed ENDOR spectra were obtained using stochastic sampling for better baseline of the spectra. The ENDOR simulations were performed using the simulation code kindly provided by Professor Brian M. Hoffman at Northwestern University. Q-band three-pulse ESEEM experiments were carried out using a pulse sequence, $\pi/2-\tau-\pi/2-\tau-echo$, with pulse length $t_{\pi/2} = 32$ ns. The τ value of 300 ns was fixed but T was varied with a step size of 16 ns. A four-step phase cycle was employed to eliminate unwanted echoes. The time domain spectra were baseline corrected, apodized with a Hamming window and zero-filled to 1024 points before Fourier Transformation.

Synthesis of bis(2-diisopropylphosphinophenyl)phenylsilane (a). To a cold solution of (2-bromophenyl) diisopropylphosphine (3.475 g, 12.72 mmol) in 40 mL of diethyl ether was added *n*-butyllithium (7.8 mL, 1.6 M in hexane, 12 mmol) dropwise at -78 °C, resulting in an immediate colour change from colourless to orange. The resulting solution was warmed and stirred for 1 hour at room temperature. After the solution was frozen, dichlorophenylsilane (1.150 g, 6.363 mmol) was added dropwise at liquid nitrogen temperature. The resulting

⁷ (a) D. F. Evans, J. Chem. Soc., 1959, 2003; (b) S. K. Sur, J. Magn. Reson., 1989, 82, 169.

⁸ S. Stoll and R. D. Britt, Phys. Chem. Chem. Phys., 2009, 11, 6614.

reaction mixture was slowly warmed to room temperature and stirred for 12 hours, resulting in a pale purple solution. The reaction mixture was filtered through Celite, and all volatiles were removed under vacuum. The product bis(2-diisopropylphosphinophenyl) phenylsilane (**a**, 2.731 g, 5.543 mmol, 87%) was isolated as a pale purple crystalline solid after recrystallization of a saturated pentane solution of **a** (~130 mL) at -35 °C. ¹H NMR (400 MHz, C₆D₆) δ 7.64 - 7.62 (m, 2H, Ar-*H*), 7.43 - 7.39 (m, 4H, Ar-*H*), 7.18 - 7.15 (m, 5H, Ar-*H*), 7.03 - 6.99 (m, 2H, Ar-*H*), 6.98 (t, ⁴J_{HP} = 8.8 Hz, 1H, Si*H*) 2.05 - 1.97 (m, 2H, C*H*(CH₃)₂), 1.94 - 1.86 (m, 2H, C*H*(CH₃)₂), 1.10 (dd, ³J_{HP} = 14.1 Hz, ³J_{HH} = 6.9 Hz, 6H, CH(CH₃)₂), 1.04 (dd, ³J_{HP} = 14.2 Hz, ³J_{HH} = 7.0 Hz, 6H, CH(CH₃)₂), 0.92 (dd, ³J_{HP} = 12.1 Hz, ³J_{HH} = 7.0 Hz, 6H, CH(CH₃)₂), 0.81 (dd, ³J_{HP} = 11.5 Hz, ³J_{HH} = 7.0 Hz, 6H, CH(CH₃)₂). ¹³C NMR (101 MHz, C₆D₆) δ 145.6 (dd, ¹J_{CP} = 45.1 Hz, ⁵J_{CP} = 4.9 Hz, Ar-*C*), 144.6 (d, ²J_{CP} = 17.0 Hz, Ar-*C*), 138.0 (d, ²J_{CP} = 14.5 Hz, Ar-*C*), 136.9 (s, Ar-*C*), 132.3 (s, Ar-*C*), 132.3 (s, Ar-*C*), 129.2 (s, Ar-*C*), 129.1 (s, Ar-*C*), 128.2 (s, Ar-*C*), 128.0 (s, Ar-*C*), 25.6 (d, ¹J_{CP} = 14.8 Hz, CH(CH₃)₂), 25.3 (d, ¹J_{CP} = 14.6 Hz, CH(CH₃)₂), 20.7 - 20.4 (m, CH(CH₃)₂), 20.0 (d, ²J_{CP} = 10.9 Hz, CH(CH₃)₂). ²⁹Si NMR (79 MHz, C₆D₆) δ -26.7 (t, ³J_{SiP} = 23.7 Hz). ³¹P NMR (162 MHz, C₆D₆) δ 1.24 (s). IR (KBr pellet, cm⁻¹): 2165 (v_{SiH}). ESI-MS {M+H}⁺: calcd, 493.26; found, 493.26.

Synthesis of bis(2-diisopropylphosphinophenyl)methylchlorosilane (MeSiP₂Cl). To a solution of (2bromophenyl)diisopropylphosphine (481 mg, 1.76 mmol) in 15 mL of diethyl ether was added n-butyllithium (1.6 M in hexane, 1.1 mL, 1.8 mmol) at -78 °C with vigorous stirring, causing an immediate colour change to orange. The solution was warmed and stirred for 1 hour at room temperature. After the solution was frozen, a solution of methyltrichlorosilane (133 mg, 0.881 mmol) in 5 mL of diethyl ether was added slowly at liquid nitrogen temperature. The mixture was slowly warmed to room temperature overnight with vigorous stirring. The resulting orange suspension was filtered through Celite and volatiles were removed under vacuum to obtain sticky orange solid. The solid was dissolved in pentane (~ 10 mL) and cooled to -35 °C for 12 hours. The product bis(2-diisopropylphosphinophenyl)methylchlorosilane (MeSiP₂Cl, 334 mg, 0.718 mmol, 82%) was isolated as a yellowish white solid after washing with cold pentane (-35 °C) and drying under vacuum. ¹H NMR $(400 \text{ MHz}, C_6D_6) \delta 8.15 - 8.12 \text{ (m, 2H, Ar-H)}, 7.34 - 7.31 \text{ (m, 2H, Ar-H)}, 7.16 - 7.10 \text{ (m, 4H, Ar-H)}, 1.90 - 7.10 \text{ (m, 4H, Ar-H)}, 7.90 - 7.90 \text{ (m, 4H, Ar-H)}, 7.90 \text{$ 1.76 (m, 4H, CH(CH₃)₂), 1.67 (t, ${}^{5}J_{HP} = 4.2$ Hz, 3H, SiCH₃), 1.06 (dd, ${}^{3}J_{HP} = 14.1$ Hz, ${}^{3}J_{HH} = 7.0$ Hz, 6H, CH(CH₃)₂), 1.00 (dd, ${}^{3}J_{HP} = 13.1$ Hz, ${}^{3}J_{HH} = 7.0$ Hz, 6H, CH(CH₃)₂), 0.83 – 0.76 (m, 12H, CH(CH₃)₂). ${}^{13}C$ NMR $(101 \text{ MHz}, C_6D_6) \delta 146.7 \text{ (dd, } {}^{1}J_{CP} = 44.0, {}^{5}J_{CP} = 2.4 \text{ Hz}, \text{ Ar-}C), 144.3 \text{ (d, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{2}J_{CP} = 16.8 \text{ Hz}, \text{ Ar-}C), 137.6 \text{ (dd, } {}^{J$ = 15.3, ${}^{4}J_{CP}$ = 3.1 Hz, Ar-C), 132.2 (s, Ar-C), 129.5 (s, Ar-C), 128.5 (s, Ar-C), 26.1 (d, ${}^{1}J_{CP}$ = 14.1 Hz, $CH(CH_3)_2$), 25.8 (d, ${}^{1}J_{CP} = 14.1$ Hz, $CH(CH_3)_2$), 21.3 (d, ${}^{2}J_{CP} = 14.5$ Hz, $CH(CH_3)_2$), 20.8 (d, ${}^{2}J_{CP} = 12.7$ Hz, CH(CH₃)₂), 20.6 (d, ${}^{2}J_{CP} = 18.4$ Hz, CH(CH₃)₂), 20.0 (d, ${}^{2}J_{CP} = 16.0$ Hz, CH(CH₃)₂), 12.7 (t, ${}^{4}J_{CP} = 19.4$ Hz, SiCH₃). ²⁹Si NMR (79 MHz, C₆D₆) δ 8.98 (t, ³J_{SiP} = 12.2 Hz). ³¹P NMR (162 MHz, C₆D₆) δ 1.28 (s). ESI-MS {M-Cl}⁺: calcd, 429.23; found, 429.23.

Synthesis of bis(2-diisopropylphosphinophenyl)methylsilane-D (b-D). To a solution of **MeSiP₂Cl** (0.216 g, 0.464 mmol) in 30 mL of MeCN/THF (5/1) was added sodium borodeuteride (0.194 g, 4.63 mmol). The suspension was heated at 90 °C for 24 hours with stirring. The mixture was filtered through Celite and volatiles were removed under vacuum. After the resulting pale yellow oil was dissolved in diethyl ether (10 mL), the solution was filtered through Celite and silica. The product bis(2-diisopropylphosphino phenyl)methylsilane-D (**b-D**, 0.168 g, 0.389 mmol, 83.8%) was isolated as a pale yellow oil after all volatiles were removed under

vacuum. ¹H NMR (400 MHz, C₆D₆) δ 7.74 – 7.71 (m, 2H, Ar-*H*), 7.38 – 7.35 (m, 2H, Ar-*H*), 7.20 – 7.12 (m, 4H, Ar-*H*), 2.02 – 1.86 (m, 4H, C*H*(CH₃)₂), 1.10 (dd, *J* = 14.1, 7.0 Hz, 6H, CH(CH₃)₂), 1.09 (dd, *J* = 14.1, 6.9 Hz, 6H, CH(CH₃)₂), 0.93 (s, 3H, SiCH₃), 0.90 – 0.84 (m, 12H, CH(CH₃)₂). ²H NMR (61 MHz, C₆H₆) δ 6.29 (br s). ³¹P NMR (162 MHz, C₆D₆) δ 1.12 (s). IR (KBr pellet, cm⁻¹) 1575 (*v*_{SiD}). ESI-MS {M+H}⁺: calcd, 432.25; found, 432.25.

Synthesis of (PhSiP₂)CoBr (1a). To a solution of **a** (100 mg, 0.203 mmol) in 5 mL of THF was added triethylamine (75 μ L, 0.54 mmol) and cooled to -35 °C. To the mixture was added a solution of cobalt(II) bromide (44 mg, 0.20 mmol) in 5 mL of THF at -35 °C, resulting in immediate colour change to green. The reaction mixture was warmed and stirred for 24 hours at room temperature, resulting in a brown solution. The mixture was filtered through Celite and all volatiles were removed under vacuum. The resulting brown solid was dissolved in benzene (5 mL) and filtered through Celite. Volatiles were removed under vacuum. The product (PhSiP₂)CoBr (1a, 113 mg, 0.179 mmol, 90%) was isolated as a brown powder after washing with pentane and drying under vacuum. ¹H NMR (400 MHz, C₆D₆) δ 12.4, 9.93, 7.49, 6.66, 5.20, 3.03, 1.60, 0.92, 0.81, -6.83, - 24.1. μ_{eff} : 2.11 μ B (C₆D₆, 25 °C, Evans' method). UV-Vis [THF, nm (L mol⁻¹ cm⁻¹)]: 370 (2500), 483 (830), 680 (290). Anal. Calcd. For C₃₀H₄₁BrCoP₂Si: C, 57.15; H, 6.55. Found: C, 57.36; H, 6.65. X-ray quality crystals were grown by slow diffusion of pentane into a saturated THF solution of **1a** at room temperature.

Synthesis of (MeSiP₂)CoBr (1b). To a solution of **b** (114 mg, 0.265 mmol) in 5 mL of THF was added triethylamine (110 μ L, 0.789 mmol) and cooled to -35 °C. To the mixture was added a solution of cobalt(II) bromide (58 mg, 0.26 mmol) in 5 mL of THF at -35 °C, resulting in immediate colour change to green. The reaction mixture was warmed and stirred for 24 hours at room temperature, resulting in a brown solution. The mixture was filtered through Celite and all volatiles were removed under vacuum. The resulting brown solid was dissolved in benzene (5 mL) and filtered through Celite. Volatiles were removed under vacuum. The product (MeSiP₂)CoBr (**1b**, 120 mg, 0.211 mmol, 81%) was isolated as a brownish red powder after washing with pentane and drying under vacuum. ¹H NMR (400 MHz, C₆D₆) δ 14.6, 7.71, 5.71, 5.60, 3.30, 2.99, -0.68, -6.12, -25.1, -36.3. μ_{eff} : 2.19 μ B (C₆D₆, 25 °C, Evans' method). UV-Vis [THF, nm (L mol⁻¹ cm⁻¹)]: 370 (1800), 470 (660), 665 (120). Anal. Calcd. for C₂₅H₃₉BrCoP₂Si: C, 52.82; H, 6.92. Found: C, 53.03; H, 6.79. X-ray quality crystals were grown by slow diffusion of pentane into a saturated THF solution of **1b** at room temperature.

Synthesis of [PhSi^HP^H₂][CoBr₄] (2a). To a solution of **a** (96 mg, 0.20 mmol) in 5 mL of THF was added cobalt(II) bromide (43 mg, 0.19 mmol), resulting in a green solution. The mixture was stirred at room temperature for 1 hour. All volatiles were removed under vacuum. The resulting green solid was dissolved in benzene (10 mL) and filtered. The precipitates were collected and washed with benzene and diethyl ether. The product [PhSi^HP^H₂][CoBr₄] (2a, 39 mg, 0.045 mmol, 24%) was isolated as a pale blue powder after drying under vacuum. μ_{eff} : 4.92 μ B (CD₃CN, 25 °C, Evans' method). UV-Vis [MeCN, nm (L mol⁻¹ cm⁻¹)]: 304 (3900), 619 (590), 633 (510), 699 (930). IR (KBr pellet, cm⁻¹): 2386 (v_{PH}), 2165 (v_{SiH}). Anal. Calcd. for C₃₀H₄₄Br₄CoP₂Si: C, 41.26; H, 5.08. Found: C, 41.62; H, 5.08.

Synthesis of [MeSi^HP^H₂][CoBr₄] (2b). To a solution of **b** (117 mg, 0.272 mmol) in 10 mL of THF was added cobalt(II) bromide (59 mg, 0.27 mmol), resulting in a green suspension. After the mixture was stirred at room temperature for 1 hour, the precipitates were filtered and collected. The product [MeSi^HP^H₂][CoBr₄] (2b, 40 mg,

0.049 mmol, 18%) was isolated as a pale blue powder after washing with THF and pentane and drying under vacuum. μ_{eff} : 4.58 μ B (CD₃CN, 25 °C, Evans' method). UV-Vis [MeCN, nm (L mol⁻¹ cm⁻¹)]: 304 (3200), 619 (510), 633 (450), 700 (860). IR (KBr pellet, cm⁻¹): 2387 (ν_{PH}), 2180 (ν_{SiH}). Anal. Calcd. for C₂₅H₄₂Br₄CoP₂Si: C, 37.02; H, 5.22. Found: C, 37.23; H, 5.29. X-ray quality crystals were grown by slow diffusion of diethyl ether into a saturated acetonitrile solution of **2b** at room temperature.

Low temperature generation of (PhSi^HP₂)CoBr₂ (3a). To a solution of cobalt(II) bromide (44 mg, 0.20 mmol) in 3 mL of THF was added a solution of a (95 mg, 0.19 mmol) in 1 mL of THF at -120 °C, resulting in a green solution. At low temperature, the green solution was vigorously stirred for 30 minutes and filtered through Celite. UV-Vis [THF, nm (L mol⁻¹ cm⁻¹), -90 °C]: 456 (180), 630 (450), 667 (460), 740 (420). X-ray quality crystals were grown by slow diffusion of pentane into a saturated THF solution of **3a** at -35 °C.

Low temperature generation of (MeSi^HP₂)CoBr₂ (3b). To a solution of cobalt(II) bromide (65 mg, 0.29 mmol) in 3 mL of THF was added a solution of b (106 mg, 0.246 mmol) in 1 mL of THF at -120 °C, resulting in a green solution. At low temperature, the green solution was vigorously stirred for 30 minutes and filtered through Celite. After cold pentane (~45 mL, -120 °C) was layered, the resulting solution was stored at -35 °C for 1 day. A blue green powder (128 mg) was isolated after decanting the supernatant, washing with pentane and drying under vacuum. UV-Vis [THF, nm (L mol⁻¹ cm⁻¹), -40 °C]: 450 (800), 630 (380), 670 (360), 740 (300). IR (KBr pellet, cm⁻¹): 2102 (v_{SiH}). X-ray quality crystals were grown by slow diffusion of pentane into a saturated THF solution of **3b** at -35 °C.

Low temperature generation of (MeSi^DP₂)CoBr₂ (3b-D). The same procedure used for 3b was conducted using b-D. IR (KBr pellet, cm⁻¹): 1527 (v_{SiD}).

EPR spectroscopic detection of (PhSi^HP₂)CoBr₂ (3a). To a solution of cobalt(II) bromide (10 mg, 0.047 mmol) in 2 mL of THF/2-MeTHF (9/1) was added a solution of **a** (23 mg, 0.047 mmol) in 3 mL of THF/2-MeTHF (9/1) at -120 °C, resulting in a green solution. After 30 minutes of stirring at low temperature, the solution was filtered through Celite. Aliquots were collected to prepare samples for EPR measurements.

EPR spectroscopic detection of (MeSi^HP₂)CoBr₂ (3b). To a solution of cobalt(II) bromide (12 mg, 0.055 mmol) in 2 mL of THF/2-MeTHF (9/1) was added a solution of **b** (24 mg, 0.056 mmol) in 3 mL of THF/2-MeTHF (9/1) at -120 °C, resulting in a green solution. After 30 minutes of stirring at low temperature, the solution was filtered through Celite. Aliquots were collected to prepare samples for EPR measurements.

Low temperature UV-Vis spectroscopic detection of $(RSi^{H}P_{2})CoBr_{2}$ (3). To a solution of cobalt(II) bromide (2.4 mg, 0.011 mmol) in 9 mL of THF was added a solution of **a** (5.3 mg, 0.010 mmol) or **b** (4.3 mg, 0.010 mmol) in 1 mL of THF at -90 °C, resulting in a pale green solution of $(PhSi^{H}P_{2})CoBr_{2}$ (3a) or $(MeSi^{H}P_{2})CoBr_{2}$ (3b). The reaction was monitored by UV-Vis spectroscopy with a variable temperature range from -90 °C to room temperature.

Reaction of (MeSi^HP₂)CoBr₂ (3b) with base. To a solution of cobalt(II) bromide (11 μ mol) in 9 mL of THF was added a solution of **b** (10 μ mol) in 1 mL of THF at -40 °C, resulting in a pale green solution. After 5

minutes, triethylamine (130 μ L, 0.933 mmol) was added to the resulting solution of **3b**. The reaction was monitored by UV-Vis spectroscopy with a variable temperature range from -40 °C to 20 °C.

Kinetic experiment. To a solution of cobalt(II) bromide (11 µmol) in 9 mL of THF was added a solution of **b** (10 µmol) in 1 mL of THF at -40 °C, resulting in a pale green solution. After 5 minutes, an initial UV-Vis spectrum (300 nm < λ < 900 nm) was measured. Triethylamine (130 µL, 0.933 mmol) was added to the resulting solution of **3b** and spectra were collected with 20 second intervals over the course of 10 minutes at -40 °C. The time-stacked UV-Vis spectra show the consumption of **3b** ($\lambda_{max} = 450$, 630, 670, 740 nm) and an increase in new absorbance ($\lambda_{max} = 619$, 654, 688 nm) indicating the formation of the deprotonated intermediate ({(MeSiP₂)CoBr₂}⁻). Isosbestic points were shown at $\lambda = 650$ and 715 nm. After the solution was warmed to 20 °C for 2 minutes, spectra were collected with 20 second intervals over the course of 30 minutes. The time-stacked UV-Vis spectra show the consumption of {(MeSiP₂)CoBr₂}⁻ and an increase in absorbance of **1b** ($\lambda_{max} = 370$, 470, 665 nm) indicating the formation of **1b**. Isosbestic points were shown at $\lambda = 610$ and 715 nm. Absorbance at $\lambda_{max} = 450$ nm for reaction of **3b** and $\lambda_{max} = 688$ nm for {(MeSiP₂)CoBr₂}⁻ was used for plotting the absorbance vs. time and ln[**3b** or {(MeSiP₂)CoBr₂]⁻ lys. time graph.

Figure S1. ¹H NMR spectrum of bis(2-diisopropylphosphinophenyl)phenylsilane (**a**) in C₆D₆, 400 MHz at room temperature.

Figure S2. ¹³C NMR spectrum of bis(2-diisopropylphosphinophenyl)phenylsilane (**a**) in C_6D_6 , 101 MHz at room temperature.

Figure S3. ²⁹Si NMR spectrum of bis(2-diisopropylphosphinophenyl)phenylsilane (**a**) in C_6D_6 , 79 MHz at room temperature.

Figure S4. ³¹P NMR spectrum of bis(2-diisopropylphosphinophenyl)phenylsilane (a) in C_6D_6 , 162 MHz at room temperature.

Figure S5. ¹H NMR spectrum of bis(2-diisopropylphosphinophenyl)methylchlorosilane ($MeSiP_2Cl$) in C₆D₆, 400 MHz at room temperature.

Figure S6. ¹³C NMR spectrum of bis(2-diisopropylphosphinophenyl)methylchlorosilane (**MeSiP₂Cl**) in C_6D_6 , 101 MHz at room temperature.

Figure S7. ²⁹Si NMR spectrum of bis(2-diisopropylphosphinophenyl)methylchlorosilane ($MeSiP_2Cl$) in C₆D₆, 79 MHz at room temperature.

Figure S8. ³¹P NMR spectrum of bis(2-diisopropylphosphinophenyl)methylchlorosilane ($MeSiP_2Cl$) in C₆D₆, 162 MHz at room temperature.

Figure S9. ¹H NMR spectrum of bis(2-diisopropylphosphinophenyl)methylsilane-D (**b-D**) in C_6D_6 , 400 MHz at room temperature.

Figure S10. ²H NMR spectrum of bis(2-diisopropylphosphinophenyl)methylsilane-D (**b-D**) in C_6H_6 , 61 MHz at room temperature.

Figure S11. ³¹P NMR spectrum of bis(2-diisopropylphosphinophenyl)methylsilane-D (**b-D**) in C_6D_6 , 162 MHz at room temperature.

Figure S12. ¹H NMR spectrum of (PhSiP₂)CoBr (1a) in C₆D₆, 400 MHz at room temperature.

Figure S13. ¹H NMR spectrum of (MeSiP₂)CoBr (1b) in C₆D₆, 400 MHz at room temperature.

Figure S14. Experimental (black line) and simulated (dashed red line) X-band EPR spectra of (PhSiP₂)CoBr (1a) in THF/2-MeTHF (9/1) at 20 K.

Figure S15. Experimental (black line) and simulated (dashed red line) X-band EPR spectra of (MeSiP₂)CoBr (**1b**) in THF/2-MeTHF (9/1) at 20 K.

Figure S17. X-band EPR spectrum of [MeSi^HP^H₂][CoBr₄] (2b) in MeCN/DMF (1/1) at 20 K.

Figure S18. X-band EPR spectrum of *in situ* sample of (PhSi^HP₂)CoBr₂ (**3a**) generated from the reaction of **a** and CoBr₂ in THF/2-MeTHF (9/1) at -120 °C, collected at 20 K.

Figure S19. X-band EPR spectrum of *in situ* sample of (MeSi^HP₂)CoBr₂ (**3b**) generated from the reaction of **b** and CoBr₂ in THF/2-MeTHF (9/1) at -120 °C, collected at 20 K.

Figure S20. Experimental (black line) and simulated (dashed red line) (a) X-band CW-EPR and (b) Q-band Electron Spin Echo detected EPR spectra of $(MeSi^{H}P_{2})CoBr_{2}$ (**3b**) in THF/2-MeTHF (9/1) at -120 °C. Experimental Conditions: (a) T = 20 K, microwave frequency = 9.64 GHz, microwave power = 0.94 mW, modulation amplitude = 10 G, modulation frequency = 100 kHz. (b) T = 8 K, microwave frequency = 33.9 GHz, $\pi/2$ pulse width = 32 ns, $\tau = 400$ ns. Simulation parameters: g = [2.310, 2.145, 2.045], A = [90, 10, 13] G.

Figure S21. Q-band ²H Mims ENDOR spectra of (a) (MeSi^HP₂)CoBr₂ (**3b**) and (b) (MeSi^DP₂)CoBr₂ (**3b-D**). Experimental conditions: microwave frequency = 33.9 GHz, $\pi/2$ = 32 ns, τ = 200 ns, RF = 20 µs, T = 8 K, magnetic field = 10490 G. Experimental conditions: microwave frequency = 33.9 GHz, $\pi/2$ = 32 ns, τ = 200 ns, RF = 20 µs, magnetic field = 10820 G, T = 8 K.

Figure S22. Q-band ¹H Davies ENDOR spectra of (a) (MeSi^HP₂)CoBr₂ (**3b**) and (b) (MeSi^DP₂)CoBr₂ (**3b-D**). (c) Subtracted spectrum (a) – (b). (d) ²H Mims ENDOR of **3b-D**. Experimental conditions: microwave frequency = 33.9 GHz, $\pi = 64$ ns, $\pi/2 = 32$ ns, $\tau = 200$ ns, RF = 20 µs, magnetic field = 10490 G, T = 8 K.

Figure S23. Q-band three-pulse ESEEM (black line) and Mims ENDOR (red line) spectra of **3b-D**. Experimental conditions: microwave frequency = 33.9 GHz, $\pi/2$ = 32 ns, τ = 300 ns, initial T = 70 ns, T increment = 16 ns, S.R.T. = 2 ms *T* = 8 K (three-pulse ESEEM) microwave frequency = 33.9 GHz, $\pi/2$ = 32 ns, τ = 200 ns, R.F. = 20 µs, S.R.T. = 5 ms, *T* = 8 K (Mims ENDOR).

Figure S24. Time domain (upper) and frequency domain (bottom) Q-band three-pulse ESEEM spectra of **3b** (black line) and **3b-D** (red line). Experimental conditions: microwave frequency = 33.9 GHz, $\pi/2$ = 32 ns, τ = 300 ns, initial T= 70 ns, T increment = 16 ns, magnetic field = 11844 G, T = 8 K.

Figure S25. Experimental (black line) time domain (left) and frequency domain (right) Q-band three-pulse ESEEM spectra of **3b-D** at various fields and their simulated data (red dashed line). Experimental conditions: microwave frequency = 33.9 GHz, $\pi/2$ = 32 ns, τ = 300 ns, initial T = 70 ns, T increment 16 ns, *T* = 8 K.

Figure S26. Solid state molecular structure of **a**. Hydrogen atoms except the one at Si are omitted for clarity. Si–H hydrogen atom was located on the Fourier difference map and its position was freely refined.

Table S1. Selected bond distances and angles for a (Å and °).

Distance	PhSi ^H P ₂	Angle	PhSi ^H P ₂
d _{Si1-H1}	1.39(2)	∠C1–Si1–H1	108.6(9)
d _{Si1-C1}	1.874(2)	∠C1–Si1–C7 ∠C1–Si1–C13	108.67(8) 106.31(8)
d _{Si1-C7}	1.883(2)	∠C7–Si1–H1	114.3(9)
d _{Si1-C13}	1.898(2)	∠C7–Si1–C13	109.88(8)
d _{P1-C8} d _{P2-C14}	1.842(2) 1.842(2)	∠C13–Si1–H1	109(1)

Figure S27. Solid state molecular structure of 1a. All hydrogen atoms are omitted for clarity.

Table S2. Selected bond distances and angles for 1a (Å and $^\circ).$

Distance	(PhSiP ₂)CoBr	Angle	(PhSiP ₂)CoBr
d _{Co1-P1}	2.2194(6)	∠P1-Co1-P2	144.08(3)
d	2.2113(6)	∠P1–Co1–Br1	102.56(2)
a _{Co1-P2}		∠P2–Co1–Br1	101.62(2)
d _{Co1-Br1}	2.3483(4)	∠Si1–Co1–Br1	154.24(2)
d	22427(7)	∠Si1–Co1–P1	84.54(2)
d _{Co1-Si1}	2.2437(7)	∠Si1–Co1–P2	85.11(2)

Figure S28. Solid state molecular structure of 1b. All hydrogen atoms are omitted for clarity.

Table S3. Selected bond distances and angles for 1b (Å and °).

Distance	(MeSiP ₂)CoBr	Angle	(MeSiP ₂)CoBr
d _{Co1-P1}	2.2247(6)	∠P1–Co1–P2	159.25(3)
d	2.2378(6)	∠P1–Co1–Br1	96.99(2)
d _{Co1-P2}		∠P2–Co1–Br1	99.04(2)
d _{Co1-Br1}	2.4045(4)	∠Si1–Co1–Br1	162.05(2)
d	2 2500(6)	∠Si1–Co1–P1	84.27(2)
d _{Co1-Si1}	2.2509(6)	∠Si1–Co1–P2	84.54(2)

Figure S29. Solid state molecular structure of **2b**. All hydrogen atoms except P–Hs and Si–H are omitted for clarity. P–H and Si–H hydrogen atoms were located on the Fourier difference map and their positions were freely refined.

Table S4. Selected bond distances and angles for 2b (Å and °).

Distance	[MeSi ^H P ^H ₂][CoBr ₄]	Angle	[MeSi ^H P ^H ₂][CoBr ₄]
d _{Co1-Br1}	2.4031(6)	∠Br1–Co1–Br2	109.94(2)
4	2 4206(6)	∠Br1–Co1–Br3	108.07(2)
$a_{Co1-Br2}$	2.4390(0)	∠Br1–Co1–Br4	109.71(2)
$d_{Co1-Br3}$	2.4214(6)	∠Br2–Co1–Br3	109.71(2)
		∠Br2–Co1–Br4	108.19(2)
d _{Co1-Br4}	2.4166(6)	∠Br3–Co1–Br4	111.22(2)

Figure S30. Solid state molecular structure of (PhSi^HP₂)CoBr₂ (3a). All hydrogen atoms are omitted for clarity.

Table S5. Selected bond distances and angles for (PhSi^HP₂)CoBr₂ (3a) (Å and °).

Distance	(PhSi ^H P ₂)CoBr ₂	Angle	(PhSi ^H P ₂)CoBr ₂
d_{Co1-P1}	2.319(3)	∠P1–Co1–P2	130.3(1)
d	2242(2)	∠P1–Co1–Br1	93.7(1)
u_{Co1-P2}	2.342(3)	∠P2–Co1–Br1	96.20(9)
da i pi	2 386(2)	∠P1–Co1–Si1	80.1(1)
u _{Co1} –Br1	2.388(2)	∠P2–Co1–Si1	78.7(1)
da i pa	2 386(2)	∠P1–Co1–Br2	112.37(9)
uCo1-Br2	2.380(2)	∠P2–Co1–Br2	112.03(9)
dau su	2 368(3)	∠Si1–Co1–Br1	165.9(1)
u _{C01} –S11	2.300(3)	∠Si1–Co1–Br2	89.98(9)

Figure S31. Solid state molecular structure of 3b. All hydrogen atoms are omitted for clarity.

Table S6. Selected bond distances and angles for 3b (Å and °).

Distance	(MeSi ^H P ₂)CoBr ₂	Angle	(MeSi ^H P ₂)CoBr ₂
d_{Co1-P1}	2.3379(6)	∠P1–Co1–P2	123.26(2)
d	22611(7)	∠P1–Co1–Br1	100.74(2)
u _{Co1} –P2	2.3011(7)	∠P2–Co1–Br1	95.66(2)
d	22718(4)	∠P1–Co1–Si1	79.62(2)
u _{Co1-Br1}	2.3/18(4)	∠P2–Co1–Si1	80.54(2)
d	2.4164(4)	∠P1–Co1–Br2	116.66(2)
u _{Co1-Br2}	2.4104(4)	∠P2–Co1–Br2	110.95(2)
d	2 3652(7)	∠Si1–Co1–Br1	175.55(2)
u _{Co1–Si1}	2.3032(7)	∠Si1–Co1–Br2	79.48(2)

Figure S32. Solid state molecular structure of $[Et_3NH]_2[CoBr_4]$. All hydrogen atoms except N–Hs are omitted for clarity. N–H hydrogen atoms were located on the Fourier difference map and their positions were freely refined.

Table S7. Selected bond distances and angles for [Et₃NH]₂[CoBr₄] (Å and °).

Distance	[Et ₃ NH] ₂ [CoBr ₄]	Angle	[Et ₃ NH] ₂ [CoBr ₄]
d _{Co1-Br1}	2.3979(7)	∠Br1–Co1–Br2	107.16(3)
d	0.4004(7)	∠Br1–Co1–Br3	112.77(3)
u _{Co1} –Br2	2.4324(7)	∠Br1–Co1–Br4	108.34(3)
d _{Co1-Br3}	2,2069(7)	∠Br2–Co1–Br3	108.59(3)
	2.3908(7)	∠Br2–Co1–Br4	111.72(3)
d _{Co1-Br4}	2.4241(7)	∠Br3–Co1–Br4	108.31(3)

	Co–Si (Å)	Co–Br (Å)	Co-P (Å)	Si-Co-Br (deg)	P–Co–P (deg)
(PhSiP ₂)CoBr (1a)	2.2437(7)	2.3483(4)	2.2194(6) 2.2113(6)	154.24(2)	144.08(3)
(MeSiP ₂)CoBr (1b)	2.2509(6)	2.4045(4)	2.2247(6) 2.2378(6)	162.05(2)	159.25(3)
$(PhSi^{H}P_{2})CoBr_{2}(\mathbf{3a})$	2.368(3)	$2.386(2)^a$ $2.386(2)^b$	2.319(3) 2.342(3)	165.9(1) ^c 89.98(9) ^d	130.3(1)
$(MeSi^{H}P_{2})CoBr_{2}(\mathbf{3b})$	2.3652(7)	2.3718(4) ^{<i>a</i>} 2.4164(4) ^{<i>b</i>}	2.3379(6) 2.3611(7)	175.55(2) ^c 79.48(2) ^d	123.26(2)

Table S8. Selected bond distances and angles of 1a-b and 3a-b.

^{*a*}Distance for Co1–Br1. ^{*b*}Distance for Co1–Br2. ^{*c*}Angle for Si1–Co1–Br1. ^{*d*}Angle for Si1–Co1–Br2.

Figure S33. UV-Vis spectra of 1a (red line) and 1b (blue line) in THF at room temperature.

Figure S34. UV-Vis spectra of 2a (red line) and 2b (blue line) in acetonitrile at room temperature.

Figure S35. UV-Vis spectra of (a) *in situ* generated **3a** (1.0 mM in THF) from the reaction of **a** and CoBr₂ at - 90 °C (green line, the spectrum was measured at 25 minutes after mixing) and (b) decomposed **3a** at room temperature (red line). UV-Vis spectra of (c) **1a** (dotted brown line, THF) and (d) **2a** (dotted blue line, MeCN).

Figure S36. UV-Vis spectra of (a) *in situ* generated **3b** from the reaction of **b** and $CoBr_2$ at -90 °C (yellow line, the spectrum was measured at 25 minutes after mixing), (b) fully generated **3b** (1.0 mM in THF) at -40 °C (green line, the spectrum was measured after 5 minutes) and (c) decomposed **3b** at room temperature (red line). UV-Vis spectra of (d) pure **1b** (dotted brown line, THF) and (e) pure **2b** (dotted blue line, MeCN).

Figure S37. UV-Vis spectral changes observed in the reaction of **3b** and triethylamine in THF revealing (a) the formation of an intermediate species (red line) measured at -40 °C and (b) its thermal decomposition to **1b** (blue line, with **2b** as a minor side product) measured at 20 °C.

Figure S38. Plots of absorbance vs. time monitored (a) at $\lambda_{max} = 450$ nm for the reaction of **3b** with 100 equiv. of triethylamine at -40 °C, (Inset) a plot of ln[**3b**] vs. time with a linear least-square fit and (b) at $\lambda_{max} = 688$ nm after the temperature increased to 20 °C, (Inset) a plot of ln[(MeSiP₂)CoBr₂⁻] vs. time with a linear least-square fit.

Determination of thermal expansion coefficient of tetrahydrofuran. We determined the average volumetric thermal expansion coefficient of THF (α_V^{THF}) at 20 °C - -35 °C. A 20 mL volumetric flask was filled with 20 mL of THF at room temperature and cooled down to -35 °C. The contracted volume of THF was measured as 18.8 mL, by comparing the same volume of the water at 20 °C. To compensate the thermal contraction of the volumetric flask, we measured the change of the height of the volumetric flask at 20 °C and -35 °C. The 20 mL volumetric flask is assumed to be a 5.00-cm height cone. At -35 °C, it was contracted to a 4.89-cm height cone. From this result, we estimated the 7% volumetric contraction of the 20 mL volumetric flask.

Thus, the modified volume of THF at -35 °C is

 $18.8 \text{ mL} \times 0.93 = 17.5 \text{ mL}$

 $\alpha_V{}^{THF}$ has been calculated as follows:

$$\alpha_{V}^{THF} = \frac{\Delta V}{V\Delta T}$$

V is the initial volume of THF at 25 °C (20 mL), ΔV is the change of the volume of THF (–2.5 mL), and ΔT is the change in temperature (–55 °C). From this calculation, the α_V^{THF} is estimated to be 0.0023.

 pK_a measurement for (MeSi^HP₂)CoBr₂ (3b).

Solution A was prepared by dissolving cobalt(II) bromide (48.1 mg, 220 μ mol) in 20 mL THF at 20 °C (11.0 mM). Solution B was prepared by dissolving MeSi^HP₂ (43.0 mg, 99.9 μ mol) in 10 mL THF at 20 °C (9.99 mM). Solution C was prepared by dissolving base (500 μ mol) in 5.0 mL of THF at 20 °C. Solution A (1.0 mL) was added to a certain amount of THF (V_{THF}) and cooled to -40 °C. To the solution was added Solution B (1.0 mL) in 1 mL of THF at -40 °C, resulting in a pale green solution. After 5 minutes, Solution C was added to the resulting solution of **3b**. The solution was monitored by UV-Vis spectroscopy at -40 °C. The absorbance at 450 nm was measured to determine the concentration of **3b** at equilibrium state.

The pK_a value of **3b** was estimated as follows:

$$V_{i} = V_{RT} \left(1 - \alpha_{V}^{THF} \Delta T \right), V_{f} = V_{RT} \left(1 - \alpha_{V}^{THF} \Delta T \right), C^{Complex} = \frac{n^{Complex}}{V_{i}}, C^{Base} = \frac{n^{Base}}{V_{f}}$$

(where V_i = volume of the solution of **3b** at -40 °C, V_f = volume of the solution after the addition of the base at -40 °C, V_{RT} = total volume of the solution of **3b** at 20 °C, V'_{RT} = total volume of the solution of **3b** and *Solution C* at 20 °C, $C^{Complex}$ = initial molar concentration of **3b** at -40 °C before the addition of the base, C^{Base} = initial molar concentration of the base at -40 °C after addition, $n^{Complex}$ = mole of **3b**, and n^{Base} = mole of the base)

$$\left[\left(MeSi^{H}P_{2}\right)CoBr_{2}\right] = \frac{A_{f}V_{i}}{A_{i}V_{f}}C^{Complex}, \ [B] = C^{Base} - \left[BH^{+}\right]$$

(where A_i = initial absorbance of **3b** in the solution, and A_f = final absorbance of **3b** in the solution at equilibrium state)

$$[BH^{+}] = [(MeSiP_{2})CoBr_{2}^{-}] = C^{Complex} - [(MeSi^{H}P_{2})CoBr_{2}]$$
$$K = \frac{[BH^{+}][(MeSiP_{2})CoBr_{2}^{-}]}{[B][(MeSi^{H}P_{2})CoBr_{2}]} = \frac{K^{Complex}_{a}}{K^{Base}_{a}}$$
$$pK^{Complex}_{a} = -log^{[m]}(KK^{Base}_{a})$$

Table S9. pK_a value of **3b** ($pK_a^{Complex}$).

Base	Pyrrolidine	Triethylamine	Proton sponge
V _{THF} (mL)	8.0	8.0	11
<i>Solution C</i> (mL)	0.10	1.0	1.0
pK_{α}^{Base}	13.5	12.5	11.1
K	3.92	$6.49 imes 10^{-1}$	3.92×10^{-2}
$pK_a^{Complex}$	12.9	12.7	12.5

Figure S39. UV-Vis spectra of **3b** (blue line in each spectrum) and the mixture of **3b** and a deprotonated intermediate in equilibrium after addition of base (~10 equiv., top: pyrrolidine, middle: triethylamine, bottom: proton sponge) (red line) in THF, measured at -40 °C.

Figure S40. IR spectrum of a at room temperature. (KBr pellet)

Figure S41. IR spectra of b-D (red line) and b (blue line) at room temperature. (KBr pellet)

Figure S42. IR spectra of 1a (red line) and 1b (blue line) at room temperature. (KBr pellet)

Figure S44. IR spectra of 3b-D (red line) and 3b (blue line) at room temperature. (KBr pellet)

Figure S45. ESI mass data of a; blue bars represent calculated values and red bars represent experiment values.

Figure S46. ESI mass data of MeSiP₂Cl; blue bars represent calculated values and red bars represent experiment values.

Figure S47. ESI mass data of b-D; blue bars represent calculated values and red bars represent experiment values.

Computational Details. All geometry optimizations and frequency calculations were carried out using DFT as implemented in the Jaguar 8.9 suite of ab initio quantum chemistry programs.⁹ Geometry optimizations were performed with M06 functional¹⁰ and the 6-31G** basis set.¹¹ Cobalt was represented using the Los Alamos LACVP basis¹¹ that includes effective core potentials. The energies of the optimized structures were reevaluated by additional single-point calculations on each optimized geometry using Dunning's correlation consistent triple- ζ basis set ccpVTZ(-f) that includes a double set of polarization functions. For Co, a modified version of LACVP, designated LACV3P, in which the exponents were decontracted to match the effective core potential with triple-ζ quality. Analytical vibrational frequencies within the harmonic approximation were computed with the 6-31G**/LACVP basis to confirm proper convergence to well-defined minima on the potential energy surface. Solvation energies were evaluated by a self-consistent reaction field (SCRF) approach based on accurate numerical solutions of the Poisson-Boltzmann equation.¹² In the results reported, solvation calculations were carried out with the 6-31G**/ LACVP basis at the optimized gas-phase geometry employing the dielectric constant of $\varepsilon = 7.52$ for THF. As is the case for all continuum models, the solvation energies are subject to empirical parametrization of the atomic radii that are used to generate the solute surface. We employed the standard set of optimized radii in Jaguar for H (1.150 Å), C (1.900 Å), N (1.600 Å), and Co (1.436 Å).¹³ To compute pK_a , the free energy in solution-phase G(sol) has been calculated as follows:

- $G(sol) = G(gas) + \Delta G^{solv}$
- G(gas) = H(gas) TS(gas)
- H(gas) = E(SCF) + ZPE

 $\Delta E(SCF) = \Sigma E(SCF)$ for products – $\Sigma E(SCF)$ for reactants

 $\Delta G(sol) = \Sigma G(sol)$ for products $-\Sigma G(sol)$ for reactants

G(gas) is the free energy in the gas phase; G(sol) is the free energy of solvation as computed using the continuum solvation model; H(gas) is the enthalpy in gas phase; T is the temperature (298.15K); S(gas) is the entropy in the gas phase; E(SCF) is the self-consistent field energy, i.e., raw electronic energy as computed from the SCF procedure; and ZPE is the zero-point energy. Note that by entropy here we refer specifically to the vibrational/rotational/translational entropy of the solute(s); the entropy of the solvent is incorporated implicitly in the continuum solvation model. An NBO analysis (version 6.0) as implemented in Jaguar¹⁴ was used to elucidate the bond order for the key atoms.

⁹ Jaguar 7.0; Schrödinger, LLC: New York, 2007.

¹⁰ Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.

¹¹ (a) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 270; (b) W. R. Wadt and P. J. Hay, *J. Chem. Phys.*, 1985, **82**, 284; (c) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 299.

¹² (a) B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff and B. Honig, J. *Phys. Chem.*, 1996, **100**, 11775; (b) S. R. Edinger, C. Cortis, P. S. Shenkin and R. A. Friesner, *J. Phys. Chem. B*, 1997, **101**, 1190; (c) M. Friedrichs, R. Zhou, S. R. Edinger and R. A. Friesner, *J. Phys. Chem. B*, 1999, **103**, 3057.

¹³ A. A. Rashin and B. Honig, J. Phys. Chem., 1985, 89, 5588.

¹⁴ (a) A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.*, 1988, **88**, 899; b) A. E. Reed, R. B. Weinstock and F. Weinhold, *J. Chem. Phys.*, 1985, **83**, 735.

DFT calculation of pK_a value of 3b. Gibbs free energy of the intermediates (**INT1, INT3**) along with the solvation energy of H⁺ in THF was determined. We first calculated the solvation energy of protonated THF and then only THF. The difference in the solvation energies of protonated-THF and THF provided a value of – 250.42 kcal/mol. It was used as the solvation energy [G(solv)_{proton}] of proton in THF. G(sol) is the Gibbs free energy of a species in solution, obtained by summing the gas phase free energy [G(gas)] and the solvation energy [G(solv)] as computed using the continuum solvation model.

Thus, G(sol) = G(gas) + G(solv) (Eqn 1)

Now,

 $\Delta G(sol) = [G(sol)_{INT3} + G(sol)_{proton} - G(sol)_{INT1}] \times 23.0605423 \text{ kcal/mol}] \text{ (Eqn 2)}$

 $(\Delta G(sol)$ is the change in free energy in solution during deprotonation)

Again, $pK_a = \Delta G(sol)/(2.303RT)$ (Eqn 3) (where R= universal gas constant, T= temperature)

The Gibbs free energies in solution of **INT1** (-57676.268 eV), **INT3** (-57664.292 eV) and proton (-11.196 eV) were set into Eqn 2 to determine change in the free energy [$\Delta G(sol)$] during deprotonation of **INT1**. Now the value $\Delta G(sol)$ obtained from Eqn 2 substituted to Eqn 3 to obtain the p K_a . Calculation showed the value to be 13.23.

Details of computations for reaction pathway 1. Hydrosilylation normally proceeds via oxidative addition followed by reductive elimination (Scheme 4, pathway 1). According to the pathway 1, the Co(II) ion in **3b** (INT1) oxidizes to Co(IV) in INT2 by oxidative addition. This must lead to a change of geometry from distorted trigonal bipyramidal (TBP) to octahedral coordination at the cobalt centre. Following reductive elimination of HBr from INT2 forms a distorted square planar product 1b (INT4). We tried to compute this mechanistic pathway assuming both high spin and low spin Co(IV). We were unable to locate a Co(IV)-hydrido complex corresponding to INT2. At first we generated an ideal input structure (INT2*) locating the coordinates of Si, Co and H assuming the oxidative addition product. Here the Si-Co distance was kept at 2.25 Å (in accordance with the optimized structure of INT4) and Si-Co-H angle was kept at 90° in the input file (keeping in mind that, oxidative addition will generate an octahedral structure). We computed the structure using the above-mentioned conditions and took out the optimized coordinates as an input structure for the oxidative addition product assuming low spin Co(IV). Enforcing no geometrical constraints in the input file we surprisingly found that the hydrogen flips back to the Si centre forming previously mentioned η^1 -type (2-center-2-electron) [Si-H]-Co bond and we could only locate this result (INT2-LS) lower in energy by 29.66 kcal/mol than the input structure. This energy minimized structure is slightly different from INT1. The aromatic rings of **INT2-LS** are slightly flanked outwards and the energy of **INT2-LS** is 4.62 kcal/mol lower than that of **INT1**. This is expected since the solid state structure will only prefer a more closely packed geometry of the compound. Similar calculations were performed assuming the high spin Co(IV)-hydrido complex. But we could not locate a reasonable structure. The optimized geometry (INT2-HS) was distorted and 73.43 kcal/mol higher in energy relative to that of INT1.

Figure S48. Plausible mechanisms of 1b (INT4) formation from intermediate 3b (INT1).

Figure S49. A relative free energy (kcal/mol) profile for pathway 2 involving deprotonation and dehalogenation from **INT1**. Calculation was conducted in a THF solution. Hydrogen atoms except Si–H are omitted for clarity.

Table S10. Selected bond indices for 1b and 3b from NBO analysis.

	1b		3b	
	Mayer-Mülliken	Wiberg	Mayer-Mülliken	Wiberg
Si–H	-	-	0.501	0.618
Со–Н	-	-	0.443	0.193
Co–Si	0.830	0.551	0.313	0.122

Fable S11. Cartesian coordinates (Å) for the optimized structure of INT1.	

Col	2.7759133558	4.8933617867	3.8535425152	
P2	2,6058553158	5.1558770926	6.1494931201	
 53	1 6007037503	2 0770115101	2 01171/5961	
E J	1.009/95/505	2.9//0115101	2.911/140001	
Si4	4.5018026478	2.9494555849	4.5670738455	
Br5	0.9050558194	6.3274456334	3.3649997182	
Brb	4 2385147666	5 9647617426	2 1244844658	
07	1.230311/000	2 5005405055	2.1211011000	
C7	2.9029516456	3.5225495955	6.9449321217	
C8	4.1530295274	6.0861123303	6.6646147112	
C9	1,2116570965	5,9055649225	7.1366435145	
C1 0	2 7020202042	1 4072210120	2 7904620044	
CIU	2.7829392042	1.49/2210130	2.7894630044	
C11	1.3042605486	3.3844665650	1.1148901000	
C12	0.1374671516	2.1980621519	3.6109984026	
C13	6 3650581795	3 0966970608	4 7070234722	
C15 C14	0.5050501755	9.0900970000		
C14	3./240323111	2.615138408/	6.248118/501	
C15	4.0518264415	1.5690707585	3.3851226890	
H16	4,2562729015	4.3906996790	4.0853124104	
u17	0 0633605392	7 6476064570	5 9/0752532/	
п1 /	0.9033093382	7.0470004570	5.0497525524	
H18	4.3338263302	7.1759026195	4.7739579609	
H19	3.4125790171	3.8139097077	0.6991426875	
C20	2 3484819576	3 1439433539	8 1702967755	
220	2.3404019370	5.1455455555	0.1650246205	
C21	4.25/5/53615	6.31588/1692	8.1659346395	
H22	4.9465614935	5.3773012180	6.3740510837	
C2.3	4.3559939059	7.3632280615	5.8551057101	
C24	1 0639000330	7 4096031625	6 01/051500/	
024	1.0030333330	1.4000031023	0.9140313994	
H25	1.4883016336	5.7431135056	8.1903319871	
C26	-0.1047663880	5.1954365914	6.8450118922	
C27	2 4150791940	0 3422134629	2 0923818631	
027	2.4100791940	2.000260200	2.0525010051	
C28	2.36328/333/	3.2803623399	0.2388/36392	
H29	1.0166721610	4.4447532448	1.1802749004	
C30	0.1664100477	2.6014206508	0.4700974550	
C31	-1 0118252437	3 1891674261	3 7267496429	
1122	0 1420272240	1 4057602001	0 0002605112	
п <u>э</u> г	-0.1430272240	1.4057025221	2.0903003113	
C33	0.4351837403	1.5505523063	4.9595851365	
Н34	6.8081040286	2.2143045350	5.1851423150	
Н35	6.6415772423	3.9725022867	5.3046706844	
Н36	6.8064452468	3,2176519500	3,7109339366	
007	2 0744517074	1 200700014	6 010000000	
037	3.9/4451/8/4	1.3600/99614	6.8128283597	
C38	4.9395608191	0.4965100123	3.2255725655	
Н39	1.7045295572	3.8274997127	8.7203315658	
C40	2.5940467019	1.8834119881	8.7049047374	
11/1	E 2452704604	6 7260001540	0 4107171144	
N41	5.2455794094	0.7200991349	0.410/1/1144	
H42	4.1307627309	5.3888534142	8.7386371806	
H43	3.5138303335	7.0413522155	8.5183992458	
H44	3.5916261912	8.1160218791	6.0769998250	
U/5	5 331/0/1902	7 0010550340	6 1005346230	
1145	5.5514541052	7.0010333340	0.1003340230	
H46	1.9050624801	/.9/84418003	7.3226320185	
H47	0.1560889208	7.7567450442	7.4241889456	
H48	-0.8733964223	5.5319377948	7.5522885933	
цло	-0 0344239118	1 1027807855	6 9217873053	
11-1-5	0.0344239110		5.921/0/5055 5.9224205216	
HOU	-0.441/169518	5.4511191814	5.8334395316	
H51	1.4270372390	0.2673758288	1.6414111454	
C52	3.3022549776	-0.7189545638	1.9525535563	
H53	2,8483040402	2,2326449038	0.0968978155	
115/	2 2700220060	2 7207005067	0 7020777960	
1104	2.3/00330000	2 01007	0.1230111002	
H55	-0.0187408298	3.0108765982	-0.5312139761	
H56	-0.7772194607	2.6570130695	1.0222113870	
H57	0.4224393349	1.5429046724	0.3319229540	
H58	-1 9136923453	2 6719411968	4 0799452366	
1150	1.0500020400	2.0719411900		
нру	-1.2320360851	3.0000326440	2.1001309889	
H60	-0.7701829712	3.9812338172	4.4422978036	
Н61	0.8065349872	2.2887950547	5.6842588794	
H62	1,1860680161	0.7546101819	4.8863888615	
ц63 1102	_0 /015163/20	1 11121/6160	5 37/2020204	
103	-0.4010103420	1.1113143132		
С64	3.4108204543	0.9873672894	8.02/6955480	
Н65	4.5999245219	0.6416027864	6.2787889084	
C66	4.5736893749	-0.6370591394	2.5100558613	
н67	5.9359200267	0.5434976224	3.6664198578	
1100	0 1/0000001	1 6020/12000	0 65/01050070	
нох	2.14233/3321	1.0032413922	9.004U120833	
H69	3.0029358749	-1.6064665993	1.3995424527	
Н70	3.6015604064	-0.0011785534	8.4392496864	
H71	5.2779470619	-1.4574820501	2.3910823057	
H71	5.2779470619	-1.4574820501	2.3910823057	

Table S12. Cartesian coordinates ((Å)) for the initial	structure	of INT2	(INT2*)).

Со	2.9228244120	4.4801281570	4.0510651470	
Þ	3 5253831990	5 6280259630	5 9702185600	
- D	2 9906759100	2 0221780160	2 2210722040	
r • '	2.0000/30190	2.9321/89100	2.5219/25040	
Sı	4.8704671160	3.44/48903/0	4.5014415040	
Br	1.7417012230	2.8046365160	5.5693325760	
Br	1.1230485320	5.7770427470	2.9896150110	
C	4 5848656120	4 5592392990	7 0209798240	
~	4.0040000120	7.1610021000	F F101220010	
C	4.4944814590	7.1610231920	5.5181332610	
С	2.0746436080	6.0542672320	7.0963218430	
С	4.0900793360	1.5770558630	2.5654465680	
С	3,2938047250	3,6838091800	0.6619176970	
Ċ	1 1302488790	2 2370767710	2 1918242970	
c	6 4247420470	4 2500177120	2 01/1720200	
C	0.434/4394/0	4.3309177120	3.9141/30300	
С	5.0995874100	3.4273749700	6.3697339590	
С	4.9674863000	1.7707492780	3.6414939330	
Н	3.5715287710	5.3639532270	3.2722190900	
н	2 3427381950	8 1719160390	7 5498060930	
11	2 0755210120	7 7064267700	4 07205000930	
п	2.9755510120	1.1004301100	4.0729390980	
Н	4.5744237560	5.2542694450	1.4717811310	
С	4.7974982460	4.7378202920	8.3892197040	
С	5.3810560140	7.7357211090	6.6144498360	
н	5 1456474530	6 7677666330	4 7233129480	
C	2 5004057620	0.,0,,0000000	4 9797262490	
C	3.3004037030	0.2009930000	4.0/0/202400	
C	2.3404065870	/.20496/3/90	8.0660552190	
Н	1.9869697570	5.1122438650	7.6573750970	
С	0.7536171200	6.2904503290	6.3791169460	
С	4.2164477790	0.4459314170	1.7492892810	
Ĉ	4 6011857720	1 1602053320	0 7178289940	
	- 4710702070	4.2002033320	0.71702000400	
н	2.4/10/929/0	4.3962241950	0.5060884260	
С	3.3409119610	2.6847405000	-0.4895864930	
С	1.0635782700	0.7157612380	2.1308447390	
Н	0.7148287330	2.5433601590	3.1602324920	
С	0.2888222250	2.8606769470	1.0848104030	
н	7 2990725480	3 6962032480	4 0958759820	
11	6 6001217410	5.0502052400	4 4759275220	
п	0.0091317410	5.2771021820	4.4/362/3330	
Н	6.4119660740	4.5923741340	2.8465108200	
С	5.8123847430	2.4850645370	7.1098820820	
С	5.9699798020	0.8217536010	3.8738049890	
н	4.3944217220	5,6006636590	8.9130947020	
C	5 51/3/39160	3 7899172930	9 1115897140	
	0100001100	0 5250242170	C 1025700010	
н	6.0160861190	8.5250242170	6.1925/00810	
Н	6.0387360340	6.9749811420	7.0509956730	
Н	4.7971194610	8.1885872570	7.4235644410	
Н	2.9146347290	8.6676547550	5.6122458240	
Н	4,2014610430	9.0133317870	4.4537389390	
н	3 2738725340	7 1255096380	8 6300365980	
11	1 5015417020	7.1200000000	0.0000000000	
п	1.3213417230	7.2304310300	0./951/19400	
Н	-0.0299961150	6.4288618280	7.1347423010	
Н	0.4762038540	5.4439498270	5.7475800280	
Н	0.7786500350	7.1907147730	5.7541150840	
Н	3.5418760200	0.2865742810	0.9122705320	
C	5 2055077070	-0 4944093670	2 0095003340	
	5.2055977970	-0.4944093070	2.0003333340	
Н	5.4441/533/0	3./915642490	0.9413/43080	
Н	4.8003727770	4.9244141690	-0.2555780580	
Н	3.4002466410	3.2291865280	-1.4405062680	
н	2,4662827980	2.0283846260	-0.5418222240	
ц	4 2352934050	2 05/2/178/0	-0 /198576620	
11	0.01((2)(1240)	0 4122525220	0.4190370020	
п	0.0100301340	0.41333332220	2.2342490000	
Н	1.6408386420	0.2360165940	2.9273903420	
Н	1.3976076870	0.3205215310	1.1627546160	
Н	0.6219683670	2.5685169520	0.0822053360	
Н	0.2579996520	3,9519345460	1,1454943630	
 ц		2 5007/06020	1 1080005400	
	0.11101901JU	2.500/400050	1.1700090400	
Ċ	0.0133101530	∠.00093668/0	0.4/4J9628/U	
Н	6.1934790630	1.5861668910	6.6272223020	
С	6.0827589130	-0.3088434870	3.0741266920	
Н	6.6862442940	0.9710191540	4.6820151750	
Н	5.6681823140	3.9295265290	10.1792098230	
H	5.2941293430	-1.3726460200	1.3734622620	
н Ц	6 5501110000	1 910/000130	9 0452657440	
11	0.0001122000	1 041070130	2.0720420000	
н	0.0014301/60	-1.0418/86030	3.∠/30438800	

Fable S13 Cartesian coordinates (Å) for the optimized structure of INT	2-LS
Table S15. Cartesian coordinates (A) for the optimized structure of INT	2-L3.

Co1	2,7891960833	4.3715973078	4.1047955940
50	2 1051004102	E E0E111204C	F 0701160704
ΡZ	3.1851684163	5.5951113046	5.9/21163/04
РЗ	2.6299613858	2.8915631644	2.4096827635
Si4	5 2920276983	3 6055371794	4 3365116063
5.5	1 0705000000	0.5701004017	1.0000100740
Bro	1.9/05009366	2.5/2189431/	5.5889195/49
Br6	1.9634208583	6.2108054776	2.6822597295
C7	4.3588799537	4.5456806059	6.9295344889
<u> </u>	1.0000755007	1.0100000000	6.000500470
08	4.1633/52616	1.1//05992//	5.6999520478
C9	1.7095838883	5.8788844700	7.0787001034
C10	3 8702468453	1 5712038294	2 7685673805
011	2 1042041467	2.4570006107	2.7000075000
CII	3.1243941407	3.45/082619/	0.0988010/20
C12	0.8605950127	2.2647542329	2.2899149312
C13	6,9855949863	4.2037568117	3,7746029539
014	E 0E0070CEC0	2 7204610500	C 01477C440C
CI4	5.2593726568	3.7294618509	0.214//04420
C15	4.9785377780	1.9033498406	3.5811818527
H16	4,4066663678	4.6826379020	3,6848478882
TT 1 7	1 0007202000	7 0/2005/021	7 7720500400
п1 /	1.009/303900	7.9439934031	1.1130300490
H18	2.5888320725	8.1194056161	4.5085156480
H19	4.5288279980	4.9627214105	1.4074876877
C20	1 3602751269	1 5210610946	0 3211061107
C20	4.3092731200	4.5210019840	0.3244001407
C21	5.11639/191/	7.5393421780	6.8341465890
H22	4.7622282765	6.9089831349	4.8132358403
C23	3 2864374342	8 3644342044	5 3153277293
02.0	1 0000100674	6.0076675001	0 1010500071
CZ4	1.8329189674	0.92/00/5091	8.18133338/1
H25	1.5935168190	4.8834600941	7.5348607259
C26	0.4721808751	6.1449047928	6.2239455820
020	2 0020040001	0 207(720002	0.1040001630
C27	3.8030046091	0.2976739003	2.1948801630
C28	4.5018278910	4.1052897823	0.7252377764
H29	2.3864373815	4.2374205975	0.4663677786
C30	3 0706617748	2 3569769606	-0 3549877716
000	0 0010001000	0.7000070070	0.05450000
0.51	0.0212001023	0.7803370078	2.0343620600
H32	0.5065460615	2.4878129266	3.3048956676
C33	0.0553952081	3.1261248696	1.3205820291
Н34	7.7877702204	3.5723575440	4.1757692681
H35	7 1594555941	5 2244710750	4 1370731801
1126	7 0715775100	4 2066502096	2 6922014550
про	1.0/13//3123	4.2000392000	2.0022914339
C37	6.1675802135	2.9473502217	6.9353675736
C38	5.9645940161	0.9321667249	3.7898965859
нза	3 6634969086	5 1244357327	8 8898039109
010	5.0054909000	2 7140605702	0.0000000000000000000000000000000000000
C40	5.2640556359	3./149605/92	9.0202659388
H41	5.6826366023	8.4388651828	6.5587841301
H42	5.8352756049	6.7421253384	7.0528227941
Н43	4.5750113259	7.7685612259	7.7611816963
11 1 0	2 7106611042	0 7402554720	6 1749646422
144	2.7190011043	0.1403334730	0.1/40040433
H45	3.9248316465	9.1870579722	4.9689958646
H46	2.7392823267	6.8380501498	8.7893848173
H47	0.9733846372	6.8372688387	8.8579640804
TT / O	0 4120254002	6 2007022256	6 9602510216
П40 	-0.4139334002	0.2007855550	0.0093319310
H49	0.3128298703	5.3500550898	5.48/2980659
Н50	0.5511625164	7.0919856196	5.6761432047
H51	2.9739386054	0.0368424108	1.5442571545
C52	4 7835264847	-0 6587916775	2 4395891377
		0.00070107700	1 01000000777
HDD	5.2/559/4425	3.3814398789	1.0199866577
H54	4.7613929764	4.4673507467	-0.2775536074
H55	3.2754733714	2.7839200484	-1.3453384847
Н56	2 0957011735	1 8583408806	-0 4073086701
115 0	2.00007011700	1 5000007520	0 1 (5 0 5 0 0 7 0 1
пј/	3.0330/3010/	1.3909097330	-0.1039396323
H58	-0.4561145727	0.5847782750	2.1333881280
Н59	1.1218835190	0.1579977873	2.8035566107
H60	0,9307169550	0.4542805498	1.0523106078
1161	0 3164351345	2 9300647027	0 2720200000
nol	0.3104331343	2.930004/02/	0.2/29290003
н62	0.1798294845	4.1974291546	1.5175215118
Н6З	-1.0087935901	2.8863951482	1.4385201339
C64	6.1738774630	2.9306410281	8.3255562193
465	6 8705211102	2 31/1/01000	6 1033600013
1100		2.01111401000	0.10000040
066	5.8081112990	-0.3430910431	3.2448204182
Н67	6.8400331768	1.1718473068	4.3956239537
H68	5.2463375841	3.7027172289	10.1078008010
H69	4,6980250356	-1.6463121380	1.9920721846
1100 1170	6 8700132620	2 200237/300	8 8616950303
п/О	0.0/00432020	2.23323/4309	0.0010039303
H/L	6.6427799081	-1.0810647628	3.4408833206

Table S14. Cartesian coordinates (Å) for the optimized structure of INT2-HS.

Co 2 3 2 5 5 1 0 2 2 5 5 1 0 1 7 5 5 1 1 0 1 1 1 0 1 1 1 0 1 1 3 5 5 3 2 1 0 4 4 2 3 1 0 0 1 3 5 5 3 2 4 0 1 1 0 0 1 3 5 5 3 2 4 0 1 1 0 0 1 3 5 5 3 2 4 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0
с р р з в в с с с с с с с с с с с с н н н н с с н с с н с с н с с н с с н с с н с с н с с н с с н с н
² Р ³ ² ⁵ ¹ ⁰ ⁴ ⁴ ² ⁴ ³ ¹ ⁷ ⁵ ⁵ ³ ² ³ ⁴ ⁴ ⁵ ⁵ ³ ² ¹ ⁰ ⁴ ⁴ ² ³ ¹ ⁰ ⁰ ⁴ ⁴ ² ³ ¹ ⁰ ⁰ ¹ ³ ⁵ ⁵ ³ ² ¹ ⁰ ⁴ ⁴ ² ³ ¹ ⁰ ⁰ ¹ ¹ ³ ⁵ ⁵ ³ ² ¹ ¹ ⁰ ⁴ ⁴ ² ¹ ⁰ ¹ ⁰ ¹ ¹ ¹ ⁰ ¹ ¹ ¹ ⁰ ¹ ¹ ¹ ¹ ⁰ ¹
Р sir BC C C C C C C C H H H H C C H C C H C C H C C H C C H C C H C H C H C H
Si 5 1 0 4 4 5 5 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0
вг 1 0 4 4 2 3 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 3 5 5 3 2 1 0 4 4 2 3 1 0 0 1 3 5 5 3 2 1 0 4 4 2 3 1 0 0 1 3 5 5 3 2 4 0 1 1 0 0 1 3 5 5 3 2 4 0 1 1 0 0 0 6 6 5 3 4 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ыссссссссссссссссниннесснссенсснсненнесснсенснинненненненнесси объекторование и соссессение и соссессенсенсенсенсенсенсенсенсенсенсенсен
0 4 4 2 4 3 1 7 5 5 3 2 3 4 4 5 5 3 2 1 0 4 4 2 3 1 0 0 8 7 7 6 6 3 5 6 6 5 3 4 3 1 0 0 1 3 5 5 5 3 2 4 0 1 1 0 0 - 6
4 4 2 4 4 2 2 1 1 7 5 3 2 3 1 1 7 5 5 3 2 1 0 4 4 2 3 1 1 0 1 1 0 1 3 5 5 3 2 4 0 1 1 0 0 1 3 5 5 3 2 4 0 1 1 0
СССССССССННН Н Н С С Н С С Н С С Н С С Н С Н С Н С Н С Н К Н Н Н Н
4 2 4 3 1 7 5 5 3 2 3 4 4 5 5 3 2 1 0 4 4 2 3 1 0 0 8 7 7 6 6 3 5 6 6 5 3 4 3 1 0 0 1 3 5 5 5 3 2 4 0 1 1 0 0 0 - 6
2 4 3 1 7 5 5 3 2 3 4 4 5 5 3 2 1 0 4 4 2 3 1 0 0 8 7 7 6 6 3 5 6 6 5 3 4 3 1 0 0 1 3 5 5 5 3 2 4 0 1 1 0 0 0 0 - 6
С С С С С С С Н Н Н Н С С Н С И С И
ссссссннннсснсснсснсснснснснсннннннннн
З 1 7 5 5 3 2 3 4 4 5 5 3 2 1 0 4 4 2 3 1 0 0 8 7 7 6 6 3 5 6 6 5 3 4 3 1 0 0 1 3 5 5 5 3 2 4 0 1 1 0 0 0 - 6
1 7 5 5 3 2 3 4 4 5 5 3 2 1 0 4 4 2 3 1 0 0 0 8 7 7 6 6 5 3 4 4 5 5 3 2 1 0 4 4 2 3 1 0 0 0 1 3 5 5 3 2 4 0 1 1 0 0 0 6 6 5 3 4 3 1 0 0 1 3 5 5 5 3 2 4 0 1 1 0 0 0 6 6 5 3 4 3 1 0 0 1 6 5
СССНННН ССНССНССНССНСНСНСННННННННННННН
ссснннн нсснссснсснснсннн нсснсн н н н
5 5 3 2 3 4 4 5 5 3 2 1 0 4 4 2 3 1 0 0 8 7 7 6 6 3 5 6 6 5 3 4 3 1 0 0 1 3 5 5 5 3 2 4 0 1 1 0 0 0 - 6
С H H H H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C H C H
с н 2 3 4 4 4 5 5 3 2 1 0 4 4 2 3 1 0 0 8 7 7 6 6 3 5 6 6 5 3 4 3 1 0 0 1 3 5 5 5 3 2 4 0 1 1 0 0 0 6 6 5 3 4 3 1 0 0 1 3 5 5 5 3 2 4 0 1 1 0 0 0 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
н н н с с н с с н с с н с с н с с н с н
н н н с с н с с с н с с н с с н с н
H 3 4 H 4 4 G 5 5 H C C
н с с н с и с н н н н
Н С С Н С С С Н С С Н С Н С Н С Н С Н С
С С H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C H C H H H H C H
С H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C
с н С С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С И С Н С Н
Н С С Н С С Н С С Н С Н И Н И С И С И С
С 2 2 H C 0 C H 1 C C 4 H C C 4 H C C 4 H C C 4 H C 0 H H H H 0 H H H 1 H H H H H H H H H H H H H H H H H H H
С H C C C H C H H H C H H H H H H H H H
1 0 2 1 1 0 4 4 1 1 0 4 4 2 3 1 0 4 4 2 3 1 1 0 0 8 7 7 6 6 6 5 3 4 3 1 0 0 0 1 3 5 5 5 3 2 4 0
1 0 4 1 0 4 2 3 1 0 8 7 7 6 6 3 1 0 0 8 7 7 6 6 3 5 6 6 6 5 3 2 4 1 1 0 -0 0 -0 6 6 5 3 2 4 0 1 1 0 0 0 -0 6 6
С 0 4 4 4 4 4 4 2 6 6 7 7 6 6 6 7 8 7 7 7 6 6 7 7 7 6 6 7 8 7 7 7 6 6 7 7 7 7 6 6 7 7 7 7 6 6 7 7 7 7
СС 4 4 2 3 1 0 0 4 4 2 3 1 0 0 8 7 7 6 6 3 5 6 6 6 5 3 4 3 1 0 0 1 3 5 5 5 3 2 4 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 4 4 4 4 4 2 3 1 1 0 0 8 7 6 6 3 5 6 6 6 5 6 6 6 7 6 6 3 6 6 7 6 6 3 6 6 7 6 6 3 6 6 7 7 6 6 7 7 6 3 7 7 6 3 7 7 6 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
С 4 2 2 3 1 4 2 3 1 1 4 2 3 1 1 4 2 3 1 1 4 2 3 1 1 4 2 3 1 1 4 2 3 1 1 4 2 3 1 1 4 1 4 1 4 4 4 4 2 4 4 1 1 4 4 4 4 4
H 2 C 3 C 1 H 0 C 0 H C 0 H 7 C 6 C H 7 C 1 C H 7 C 6 C H 7 C 1 C H 7 C
1 3 1 3 1 0 0 0 8 7 7 6 6 3 5 7 7 6 6 3 5 8 7 7 6 3 5 6 3 5 7 6 6 1 0 1 1 3 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ССНСНС ССНС НС Н Н Н Н Н Н Н Н Н Н Н Н Н
C 1 H 0 H 0 H 2 H C 6 H 7 C 6 H 7 C 6 H 6 F 7 C 6 C 6 H 7 F 7 C 6 C 6 H 7 F 7 C 6 C 6 H 7 F 7 C 6 C 6 H 7 F 7 F 7 F 6 C 6 F 7 F 7 F 7 F 7 F 7 F 7 F 7 F 7 F 7 F 7
H 0 H 8 H 7 H 7 C 6 H 7 C 6 H 7 C 6 H 6 H 6 H 5 H 6 H 6 H 3 C 1 H 6 H 3 H 1 H 3 H 1 H 1 H 1 H 1 H 1 H 1 H 1 H 1
С С Н С Н С Н С Н С Н С Н С Н С Н С Н С
С H H H T 7 6 6 3 5 6 6 3 7 7 7 6 6 3 7 7 7 6 6 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H 8 H 7 H 7 C 6 C 6 H 5 H 6 H 6 H 5 H 6 H 3 C 1 H 6 H 3 H 4 H 3 H 4 H 3 H 1 H 0 H 1 H 5 H 1 C 5 H 6 H 1 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6
H 7 H 7 C 6 C 6 H 3 C H 6 H 5 H 6 H 5 H 4 H 3 H 4 H 1 H 4 H 1 H 1 H 2 C 5 H 6 H 3 C H 6 H 3 C H 6 H 3 C H 6 H 1 C
н 7 H 7 G 6 G 3 S 5 G 6 G 1 S 5 G 6 G 7 S 5 G 6 G 7 S 5 G 6 G 7 S 5 G 6 G 7 S 5 G 7 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5
H C C G G G G G G G G G G G G G G G G G
C 6 6 6 4 3 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
С 6 4 3 С 5 4 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
H 3 H 3 H 6 H 6 H 3 H 4 H 3 H 4 H 3 H 1 H 3 H 1 H 3 H 5 H 3 H 3 H 4 H 3 H 1 H 1 H 1 H 1 H 1 H 0 H 1 H 0 H 1 H 0 H 1 H 0 H 1 H 0 H 1 H 0 H 1 H 1 H 1 H 1 H
H 3 5 6 6 H H 6 5 H H 6 5 H H 4 4 H H H H H H 1 1 H H H 1 1 H H H H
C 5 H 6 H 6 H 5 H 3 H 4 H 3 H 1 H 0 H 1 H 0 H 1 H 3 C 5 H 5 H 3 H 1 H 0 H 1 H 0 H 1 H 0 H 1 H 0 H 1 C 5 C 5 H 1 C 5 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6
н 6 н 5 н 3 н 4 н 3 н 4 н 3 н 4 н 4 н 3 н 1 н 4 н 1 н 0 н 1 н 3 5 н 1 н 3 5 н 1 н 3 1 н 1 н 3 1 н 1 1 н 3 н 1 1 н 3 н 1 1 н 3 н 1 1 н 3 н 1 1 н 3 н 1 1 н 1 5 5 н 1 1 1 н 1 5 5 н 1 1 1 н 1 5 5 5 н 1 1 1 1 н 1 5 5 5 н 1 1 1 1 н 1 5 5 5 1 н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H 6 H 5 H 3 H 4 H 3 H 1 H 0 H 1 H 0 H 1 H 0 H 1 H 5 H 5 H 5 H 2 H 4 H 1 H 0 H 0 H 1 H 0 H 1 H 0 H 1 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0
H 6 H 5 H 3 H 4 H 3 H 0 H 0 H 1 H 0 H 1 H 3 C 5 S H 5 H 3 C 5 S H 5 H 2 C 4 H 0 H 1 H 0 H 1 H 0 H 1 H 0 H 1 C 5 S 6 H 1 C 6 S 6 C 6 H 1 C 6 S 6 C
H 5 H 3 H 4 H 3 H 1 H 0 H 0 H 1 H 3 C 5 H 5 H 5 H 5 H 5 H 2 H 4 H 0 H 1 H 0 H 1 H 0 H 0 H 1 C 5 H 5 H 5 H 1 C 5 C 5 H 1 C 5 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6
H 3 H 4 H 3 H 1 H 0 H 0 H 1 H 0 H 1 H 0 H 1 H 3 C H 5 F H 3 H 2 H 4 H 0 H 1 H 0 H 0 H 1 H 0 H 0 H 1 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0
H 3 H 4 H 3 H 0 H 0 H 0 H 1 H 3 C 5 H 3 H 2 H 4 H 0 H 1 H 0 H 1 H 0 H 1 H 0 H 0 H 1 C 5 C 5 H 5 H 1 C 5 H 1 C 5 C 5 H 1 C 5 C 5 C 4 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1
H 4 H 3 H 1 H 0 H 0 H 1 H 3 C 5 H 5 H 5 H 5 H 3 H 2 H 4 H 0 H 1 H 1 H 0 H 1 H 0 C 5 H 5 C 5 H 5 C 5 H 5 C 5 H 1 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5
H 3 H 1 H 0 H 1 H 3 C 5 H 5 H 3 H 2 H 4 H 0 H 1 H 0 H 1 H 0 H
H 0 H 0 H 0 H 1 H 3 C 5 H 5 H 5 H 3 H 2 H 4 H 0 H 1 H 1 H 0 H 0 H 0 H 0 H 0 C 6
H 0 H 0 H 1 H 3 C 5 H 5 H 5 H 3 H 2 H 4 H 0 H 1 H 1 H 0 H 0 H 1 C 6
H 0 H 0 H 1 H 3 C 5 H 5 H 3 H 2 H 4 H 0 H 1 H 0 H 1 H 0 H 0 H -00 H -00
H 0 H 1 H 3 C 5 H 5 H 3 H 4 H 0 H 1 H 0 H
H 1 H 3 C 5 H 5 H 5 H 2 H 4 H 0 H 1 H 1 H 0 H 0 H 0 H 0 C 6
H 1 H 3 C 5 H 5 H 3 H 2 H 4 H 0 H 1 H 0 H 1 H 0 H 0 H -0 C 6
H 3 C 5 H 5 H 3 H 2 H 4 H 0 H 1 H 1 H 0 H 0 H 0 H -00 C 6
C 5 H 5 H 5 H 3 H 2 H 4 H 0 H 1 H 1 H 0 H 0 H 0 H 0 H 0 C 6
H 5 H 5 H 3 H 2 H 4 H 0 H 1 H 1 H 0 H 0 H 0 H -00 H -00
H 5 H 5 H 2 H 4 H 0 H 1 H 1 H 0 H 0 H 0 H -0 C 6
H 5 H 3 H 2 H 4 H 0 H 1 H 1 H 0 H 0 H -0 C 6
H 3 H 2 H 4 H 0 H 1 H 1 H 0 H 0 H -0 C 6
H 2 H 4 H 0 H 1 H 1 H 0 H 0 H -0 C 6
H 2 H 4 H 0 H 1 H 1 H 0 H 0 H -0 C 6
H 4 H 0 H 1 H 1 H 0 H 0 H -0 C 6
H 0 H 1 H 1 H 0 H 0 H -0 C 6
H 1 H 1 H 0 H 0 H -0 C 6
н 1 Н 1 Н 0 Н 0 Н -0 С 6
H 1 H 0 H 0 H -0 C 6
н 0 н 0 н -0
H 0 H -0 C 6
н 0 Н -0 С б
н -0
C 6
, n
0 0
Н 7
C 6
- U
п /
Н 5
Н 5
0
TT (
Н б

Table S15. Cartesian coordinates (Å) for the optimized structure of INT3.	

Co1	2 6410275319	3 9539044789	4 4048063358	
-0	2.01102/0019	5.9559011769	1.10100033330	
PZ	3.2558041323	5.1566615546	6.18634/431/	
P3	2.4890686434	2.4275130576	2.7630879709	
Si4	4 7347640824	3 1513314538	4 6386640439	
514	1.0001444006	0.0053314050	0500010455	
Br5	1.3391444226	2.385///0622	6.1210801491	
Br6	1.4647562692	5.8153818406	3.0500038537	
07	1 3309795526	1 07/0706720	7 2277020512	
C/	4.3300/03320	4.0/40/90/20	1.23/1930312	
C8	4.3617901890	6.6384189377	5.8030033861	
C9	1 8865565814	5 7082634044	7 3555521948	
<u>~1</u> 0	1.000000011	1 1105041704	,	
CIU	3./803515929	1.1105941/34	2.9320400089	
C11	2.7836299703	3.1045208630	1.0422258899	
C12	0 8011351409	1 5994688429	2 7192268647	
012	0.0011001100	2.0700163005	2.005250001/	
CI3	6.3300653256	3.9/22163025	3.9653596114	
C14	5.0505134467	3.1036802003	6.5169785625	
C15	/ 8120251182	1 1176131283	3 8379378746	
010	0129291102	1.11/0104200	5.0575570740	
HI 6	2.2903049503	/./84689/366	/.89/6863010	
H17	2.8779652770	7.5703517731	4.5011768162	
н18	4 2340513908	4 5419911188	1 7792212533	
1110	4.2340313300	4.0410011100	1.7792212000	
C19	4.4305084918	4.1275280150	8.6290941001	
C20	5.3668254137	7.0237531486	6.8816384472	
u 2 1	1 0233701005	6 2516390943	1 0379057570	
пат	4.9233791003	0.2310300043	4.9378937370	
C22	3.5756349533	7.8453361215	5.3016409862	
C23	2.2077847140	6.8005856730	8.3742168190	
U 2 A	1 600/501555	4 7640660601	7 0057600140	
п24	1.0004301333	4.7040000001	1.000/002142	
C25	0.6206744504	6.0704941483	6.5870675433	
C2.6	3.8437703966	-0.0708707812	2.1799430285	
C 2 7	1 1469455104	2 7005405502	0 0046277240	
C2 /	4.1400433104	5.7805405592	0.9940377340	
H28	2.0195885498	3.8934339143	0.9730981458	
C29	2,6283027943	2.1253949087	-0.1120033910	
C 2 0	0 6400000626	0 2065002406	2 1212024150	
030	0.0499909020	0.2003993490	2.1213024139	
C31	0.6008359499	1.5177856174	3.7977354933	
C32	-0.2263814882	2.5653872115	2.1382411292	
1122	7 10/1171612	2 2427544610	1 2270620471	
нээ	1.19411/1013	3.343/344619	4.22/96284/1	
Н34	6.5046624570	4.9629816447	4.4051241503	
H35	6.3094874964	4.0807687295	2.8745433215	
026	5 07/51667//	2 2226025774	7 2200760650	
0.50	5.0/45100/44	2.2220033774	1.2200700030	
C37	5.8754183715	0.5153091636	3.9711352701	
H38	3.8541660190	4.8506736348	9.2018200689	
C39	5 2/35180508	3 2277317087	9 3118360172	
	5.2455100500	5.2277517007	5.5110500172	
H40	0.0301891484	1.8095799124	0.5021233989	
H41	5.9866520906	6.1742146266	7.1918350732	
H42	4.8721327226	7.4225045096	7,7766442627	
1112	2 00/1007102	0 2050151247	C 1071225205	
H43	3.006109/102	8.323013134/	0.10/1335305	
H44	4.2720272805	8.5990517103	4.9071588649	
H45	3,1307068982	6.6340316766	8.9400888407	
TTAG	1 20/0001670	6 9695224090	0 1004401001	
П40	1.30490010/0	0.0003224900	9.1004401901	
H4'/	-0.1950471779	6.2634931517	7.2992064998	
H48	0.3171237567	5.2582675929	5.9194766879	
цло	0 7563000/03	6 9699092699	5 0717100040	
149	0.750500405	0.9000002009	5.9717100040	
H50	3.0685011202	-0.3061240096	1.4552615787	
C51	4.8965458852	-0.9641609813	2.3482187426	
452	4 9575105755	3 0471814964	1 1198552683	
1152	4.9979109739	5.04/1014/04	1.1190332003	
H53	4.2912547617	4.2735746230	0.0232544569	
Н54	2.8011399881	2.6439953420	-1.0661407727	
455	1 6281/03183	1 6796065759	-0 1573216843	
1155	1.0201405105	1.0790003739	0.13/3210043	
H56	3.3642257655	1.3116141750	-0.048/37/248	
H57	-0.3983823032	-0.1068337946	2.2296908846	
H58	1,2644472193	-0.5353941562	2.6410621698	
1100	1.20111/21/0	0.0000011002	2.0110021000	
Н59	0.8851858641	0.1642797441	1.0488113620	
H60	-0.1121871385	2.6816117104	1.0507428538	
н61	-0 1531525357	3 5608032933	2 5929607855	
1101	1 007 (000000)	0.170000022000	2.3323007033	
н62	-1.23/6298092	2.1/69894166	2.3218120544	
C63	5.9711657165	2.2758790973	8.6072461024	
н64	6 4306357230	1 4544968965	6 6802429433	
	5.3300337233 E 01/0E00E00	· · · · · · · · · · · · · · · · · · ·		
065	5.9140500533	-0.6/33950/16	3.2516998025	
Н66	6.7013988615	0.7500498665	4.6451937753	
Н67	5,2986004508	3,2653507202	10.3989586146	
ц <u>с</u> о	1 0250725101	_1 0037067160	1 765/017000	
поб	4.9232/33181	-1.003/20/109	1./03421/320	
H69	6.6021804222	1.5654236529	9.1403202155	
Н70	6.7439318741	-1.3670875597	3.3824235248	
-				

Table S16.	Cartesian coordinates (Å) for the optimized structure of INT4.	

Col	2 8692606753	4 1369138261	4 2123783500	
	2.0002000,000	1.10000100000		
P2	3.2634153774	5.1642190387	6.1618021006	
P3	2.5803548803	2.5191312929	2.7107326055	
0 1 1	1 0120211706	2 0000000001	4 6567000751	
514	4.0139241700	3.0900029031	4.050/099/51	
Br5	1.7076831690	5.9181577814	2.9599138608	
CG	4 2306207033	4 0052397439	7 2301129807	
00	4.2300207033	1.0052557155	7.2301123007	
C'/	4.3446016679	6.6894861261	5.9681559636	
C8	1.7423300176	5.5001822492	7.2213381053	
<u> </u>	2.700001100	1 1470055000	0.0040106501	
09	3./996944/89	1.14/0855886	2.8949196581	
C10	2.6410840777	3.0387478669	0.9266683643	
C11	0 8820415355	1 807//32787	3 095/097321	
CII	0.0020410000	1.00/4452/0/	5.0554057521	
C12	6.3826785261	3.9795114108	4.0737625517	
C13	4,9250216574	2.9871131632	6.5476707952	
014	4 0256750000	1 2020270122	2 0145020201	
C14	4.8356/50293	1.39283/9133	3.8145232381	
H15	1.7582664085	7.6072662380	7.7634809582	
н16	2 8641584615	7 6947709723	4 7110473401	
	2.0041004010	1.0947709729	1 0 0 0 0 0 1 0 1 0 0 0	
HI/	4.2044250266	4.4897832474	1.3607710400	
C18	4.2660191912	4.0612759264	8.6268260631	
010	E 000400EC0	C 0000200472	7 1200211407	
C19	5.2690433362	0.9888399472	/.139931149/	
H20	4.9615507155	6.3831024584	5.1083366132	
C21	3 5533439900	7 9183210284	5 5336283316	
021	1.004007765	7.5105210204	0.0464000501	
C22	1.834389//65	6.6269368908	8.2464280581	
H23	1.6603275087	4.5458316334	7.7659199457	
C24	0 1005075501	5 6602742516	6 3691370591	
CZ4	0.40039/3301	5.0002/42510	0.30043/0304	
C25	3.7833713934	-0.0501894380	2.1663470516	
C26	4 0113163937	3 6584629885	0 6717793297	
020	4.0113103337	5.0504025005	0.0717795297	
H2 /	1.892/1/1504	3.8449492082	0.8923433959	
C28	2.3131143088	1.9786071662	-0.1144437470	
C20	0 6401345611	0 3426642265	2 7557765095	
029	0.0401343011	0.3420042203	2.1551105905	
Н30	0.8500951054	1.9074001000	4.1944473003	
C31	-0 2143168813	2 6952179181	2 5143138871	
1120	7 0507005075	2.0002250470	4.0272207001	
H32	1.253/6253/5	3.329//524/0	4.23/330/801	
Н33	6.5525563491	4.9096991725	4.6292367950	
437	6 3325928269	1 2191677892	3 0054010885	
п34	0.3323920209	4.2191077092	5.0054010885	
C35	5.6363896795	2.0427462227	7.2944984609	
C36	5.8372762230	0.4273610563	3.9756355812	
	3.000/2/02200	0.12/0010000	0.1653530015	
H3/	3./2933286/9	4.840/561235	9.1653538945	
C38	4.9721839918	3.1068810724	9.3495874894	
<u>п</u> з0	5 9274228064	7 8280681743	6 8797008843	
1155	5.5274220004	7.0200001743	0.0797000043	
H40	5.9022036814	6.1338638061	7.4034052720	
H41	4.7090006773	7.2838633909	8.0369414608	
11/0	2 0040105072	0 2460006770	6 2667045755	
H4Z	2.9848185072	8.3469996//8	0.300/843/33	
Н4З	4.2494893409	8.6931436075	5.1881267987	
Н44	2 7570968008	6 6183823501	8 8368076599	
11 1 1 11 4 F	2.7070900000	6.6105025501	0.0472520042	
H45	0.9929988466	6.5505280922	8.94/3538043	
H46	-0.3931439547	5.7357065069	7.0190538727	
н47	0 3451326359	4 8143354163	5 6850734009	
	0.01010200000	1.0110001100	5.0000701000	
H48	0.53331/5/44	6.5602/22/51	5./4402541/8	
Н49	2.9893301600	-0.2532071300	1.4514028642	
C50	4 7772486156	-1 0020080947	2 3571775763	
	4.0115885806	1.0020000947	2.3371773703	
HSI	4.8115//5/86	2.9128//0296	0./8463/442/	
Н52	4.0638970855	4.0490635246	-0.3520036803	
453	2 2765916998	2 1108119823	-1 109/93663/	
1155	2.2703540550	2.1100119029	1.1094950054	
H54	1.3449541163	1.4929469720	0.0568173483	
H55	3.0875069804	1.2019486893	-0.1497396529	
1166	0 2526242101	0 0404421012	2 1206511721	
осп	-0.3320242101	0.0404421913	S.IZUOJII/ZI	
H57	1.3752632290	-0.3253710817	3.2152734845	
H28	0.6472411627	0.1689234736	1.6717102536	
TIEO	0 0400015000	0 61 65 50000	1 4107521042	
нру	-0.2498215668	∠.0103359090	1.419/031943	
H60	-0.0751673954	3.7514356905	2.7725966727	
н61	-1 19100061/1	2 3700110/00	2 8952628142	
1101	T.T.7T0000T4T	2.3/09110400	2.0752020142	
C62	5.6565827451	2.0944250476	8.6836328271	
Н63	6.1660348015	1.2370492977	6.7850421688	
C 6 4	5 0001000000	_0 7650601001	3 2632011201	
004	7.000100300/	-0.1020001301	3.2032944394	
H65	6.6651557538	0.6146595713	4.6618147897	
Н66	4,9819136675	3,1494274536	10.4366739154	
1100	1.3013130073	1 0010470000	1 701/00000	
ню/	4./50020/058	-1.93104/9896	1./910398334	
H68	6.2001955075	1.3411624366	9.2504111752	
цбо	6 500150/202	-1 5080920076	3 1051300705	
1109	0.JJULJ04JJZ	1.30000299/0	CO/00CFCUF.C	