## **Supporting Information**

## Enhancing the alkaline hydrogen evolution reaction activity through the Ni-Mn<sub>3</sub>O<sub>4</sub> nanocomposites

Xu Li,<sup>a</sup> Peng Fei Liu,<sup>a</sup> Le Zhang,<sup>a</sup> Meng Yang Zu,<sup>a</sup> Yun Xia Yang<sup>a</sup> and Hua Gui Yang<sup>\*,</sup> <sup>a</sup>

<sup>a</sup> Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

## **Experimental Section**

**Materials:** Nickel chloride hexahydrate (NiCl<sub>2</sub>·6H<sub>2</sub>O), manganese (II) chloride tetrahydrate (MnCl<sub>2</sub>·4H<sub>2</sub>O), hydrazine hydrate (N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O), chlorhydric acid (HCl), and potassium hydroxide (KOH) were obtained from Sinopharm Chemistry Reagent Co., Ltd. Nafion (5wt.%) was obtained from Sigma-Aldrich. All chemicals were used as received without further purication and all aqueous solutions were prepared with ultrapure water (>18.25 M $\Omega$  cm) obtained from Millipore system.

**Synthesis of Ni-Mn<sub>3</sub>O<sub>4</sub>/NF nanocomposites:** Ni-Mn<sub>3</sub>O<sub>4</sub>/NF (synthesis of the optimal ratio of Ni:Mn=4:1 is given as an example) nanocomposites were synthesized through a hydrothermal process. NiCl<sub>2</sub>·6H<sub>2</sub>O (0.29 g, 1.2 mmol) and MnCl<sub>2</sub>·4H<sub>2</sub>O (0.059 g, 0.3 mmol) were dissolved and mixed in the beaker with 25 ml ultrapure water. 5mL N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O (80 wt%) was added to the mixed solution under stirring. The Ni foam (1.6-mm thick, 110 p.p.i., geometric area of 1 cm<sup>2</sup>) was cleaned by ultrasonication in 6 M HCl for 5 min to remove the surface oxide layer, washed sequentially by water and acetone. After being dried at 50 °C for 10 min, the nickel foam was transferred to a 50 ml Teflon lined stainless steel autoclave with precursor solution for hydrothermal reaction at 180°C for 24 h. After the autoclave was cooled to room temperature, the Ni-Mn<sub>3</sub>O<sub>4</sub>/NF was washed with ultrapure water three times and sonicated for 5 min and then dried at 70°C for 8 h in vacuum oven. The products with different molar ratio of the Ni and Mn were obtained by adjusting the molar ratios of the NiCl<sub>2</sub> • 6H<sub>2</sub>O and MnCl<sub>2</sub> • 4H<sub>2</sub>O (1:1, 2:1, 3:1, 4:1, 5:1, 1:4) in the precursor solution.

**Synthesis of Ni/NF nanocomposites:** The synthetic procedure was similar to the above except the absence of MnCl<sub>2</sub>·4H<sub>2</sub>O in the precursor solution.

Synthesis of  $Mn_3O_4/NF$  nanocomposites: The synthetic procedure was similar to the above except the absence of NiCl<sub>2</sub>·6H<sub>2</sub>O in the precursor solution.

**Electrochemical measurements:** All the electrochemical tests were performed in a conventional three-electrode system at an electrochemical station (CHI 660E), using Ag/AgCl (3.5 M KCl solution) electrode as the reference electrode, Pt mesh as the counter electrode respectively. The Ni-Mn<sub>3</sub>O<sub>4</sub>/NF, Ni/NF and Mn<sub>3</sub>O<sub>4</sub>/NF electrodes were directly used as the working electrode for electrochemical characterizations. All potentials were referenced to reversible hydrogen electrode (RHE) by the following calculations:  $E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.205$ . All LSV polarization

curves were corrected with 100% iR-compensation. AC impedance measurements were carried out in the same configuration when the working electrode was biased at the  $\eta$  of 200 mV from 10<sup>5</sup> Hz to 0.1 Hz with an AC amplitude of 5 mV. Chronopotentiometric measurement (j = 20 mA cm<sup>-2</sup>) was performed to evaluate the long-term stability. The electrochemical active surface area (ECSA) was determined by measuring the capacitive current associated with double-layer charging from the scan-rate dependence of cyclic voltammograms (CVs). The potential window of CVs was 0.12 V to 0.22 V vs. RHE. The double layer capacitance ( $C_{dl}$ ) was estimated by plotting the  $j = (j_a - j_c)$ at 0.17 V vs. RHE against the scan rate. The liner slope is twice of the double layer capacitance  $C_{dl}$ .



Figure S1. XRD spectra of catalysts obtained in this work with different Ni/Mn atomic ratio.



Figure S2. The SEM images of a) Ni-Mn<sub>3</sub>O<sub>4</sub>/NF, b) Ni/NF and c) Mn<sub>3</sub>O<sub>4</sub>/NF.



Figure S3. a) TEM and b) HRTEM images of Ni-Mn<sub>3</sub>O<sub>4</sub> nanocomposites.



Figure S4. EDX spectra of Ni- $Mn_3O_4/NF$  nanocomposites, revealing different atomic ratios of Ni : Mn.



**Figure S5.** The XPS survey spectra for the Ni-Mn<sub>3</sub>O<sub>4</sub>/NF and Ni/NF samples.



Figure S6. CVs at different scan rates in a potential window where no Faradaic processes occur  $(0.12 \text{ V} \sim 0.22 \text{ V} \text{ vs. RHE})$  for (a) Ni-Mn<sub>3</sub>O<sub>4</sub>/NF, (b) Ni/NF and (c) Mn<sub>3</sub>O<sub>4</sub>/NF respectively.



Figure S7. HER polarization curves for all Ni-Mn<sub>3</sub>O<sub>4</sub>/NF samples in 1 M KOH.