Supporting Information For

Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts with DMSO

Mukund M. D. Pramanik,^{a, b} Namrata Rastogi*, a, b

^{*a*}Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India ^{*b*}Academy of Scientific and Innovative Research, New Delhi 110001, India

namrataiit@gmail.com; namrata.rastogi@cdri.res.in

Table of Contents

Gemeral Information	2
General Procedures	2
Product Characterization	4
References	11
Spectra	12

1. General Information

All reactions were monitored by TLC, visualization was effected with UV and/or by developing in iodine. Melting points were recorded on a Precision melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin Elmer's RX I FTIR spectrophotometer. NMR spectra were recorded on a Brucker Avance spectrometer at 400 MHz (¹H) and 100 MHz (¹³C). Chemical shifts are reported in δ (ppm) relative to TMS as the internal standard. To describe spin multiplicity, standard abbreviations such as s, d, t, q, m, dd referring to singlet, doublet, triplet, quartet, multiplet and doublet of doublet respectively, are used. The ESI-HRMS spectra were recorded on Agilent 6520- Q-TofLC/MS system.

The diazonium salts were synthesized from corresponding anilines following **Method** A^{1a} or **Method** B^{1b} as described below. DMSO was freshly distilled over CaH₂ before the reaction. All other chemicals and catalysts were purchased from commercial sources and used as received.

2. General Procedures

General procedure for the synthesis of (het)aryl diazonium tetrafluoroborates

Method A (for 1a, 1g-i, 1k, 1m-n, 1r-u, 1w-1za)

To a stirred solution of aniline (10.0 mmol) in absolute ethanol (3.0 mL) and aqueous HBF₄ (50%, 2.5 mL), *tert*-butyl nitrite (2.7 mL) was added dropwise at 0 °C. The reaction was stirred at room temperature for 1 h followed by addition of diethyl ether (20 mL). The resulting precipitate of corresponding aryldiazonium tetrafluoroborate was filtered off, washed with diethyl ether (3×10 mL), dried in vacuo and used without further purification.

Method B (for 1b-f, 1j, 1l, 1o-q, 1v, 1zb)

To a stirred solution of aniline (10.0 mmol) in water (2.0 mL) and aqueous HBF₄ (50%, 2.5 mL) was added an aqueous solution of NaNO₂ (1.5 gm in 2 mL H₂O) dropwise at 0 °C. The reaction was stirred at 0 °C for 45 minutes. The resulting precipitate was filtered off and washed successively with ice water (3×10 mL) and diethyl ether (3×10 mL). The solid was recrystallized with acetone and cold diethyl ether, dried in vacuo and used without further purification.

General procedure for methylsulfoxidation with DMSO

In a 5 mL snap vial equipped with magnetic stirring bar, the (het)aryldiazonium tetrafluoroborate 1 (0.5 mmol) and photocatalyst $[Ru(bpy)_3]Cl_2$ (0.01 mmol, 2 mol%)

were dissolved in anhydrous DMSO (1.0 mL). The resulting reaction mixture was degassed by three "pump-freeze-thaw" cycles via a syringe needle. The vial was irradiated using 450 nm blue LEDs with a cooling device maintaining a temperature around 25 °C. After 2-4h of irradiation (TLC monitoring) the reaction mixture was diluted with water (10 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Purification of the crude product was achieved by column chromatograpy on silica gel using hexane/ethyl acetate as eluent to afford the pure product **3**.

Details of TEMPO trapping experiment

In а 5 mL snap vial equipped with magnetic stirring bar. the 4methoxybenzenediazonium tetrafluoroborate 1a (0.5 mmol), $[Ru(bpy)_3]Cl_2$ (0.01 mmol, 2 mol%) and TEMPO (0.75 mmol) were dissolved in anhydrous DMSO (1.0 mL). The resulting reaction mixture was degassed by three "pump-freeze-thaw" cycles via a syringe needle. The vial was irradiated using 450 nm blue LEDs with a cooling device maintaining a temperature around 25 °C. After 4h of irradiation the reaction mixture was diluted with water (10 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was analyzed by High Resolution Mass Spectrometry.

3. Product Characterization

1-Methoxy-4-(methylsulfinyl)benzene (3a)²

Colorless solid; isolated yield 68% (58 mg). R_f 0.50 (60% EtOAc/hexane); Mp 42-44 °C (lit.² 42-43.6 °C); **IR** (Film, cm⁻¹): 1068, 1218, 1259, 1645; ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.54 (m, 2H), 6.94 – 6.97 (m, 2H), 3.78 (s, 3H), 2.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 136.5, 125.5, 114.9, 55.5, 43.9; **HRMS** for C₈H₁₀O₂S: calcd. (MH⁺): 171.0474, found: 171.0473

1-Methoxy-4-(methylsulfinyl)benzene-d₃ (3a')

Colorless oil; isolated yield 68% (59 mg). R_f 0.50 (60% EtOAc/hexane); **IR** (Film, cm⁻¹): 1068, 1219, 1385, 1638; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 136.5, 125.5, 114.9, 55.5; **HRMS** for C₈H₇D₃O₂S: calcd. (MH⁺): 174.0663, found: 174.0657

Methylsulfinylbenzene (3b)³

Yellow oil; isolated yield 40% (28 mg). R_f 0.50 (50% EtOAc/hexane); **IR** (Film, cm⁻¹): 1047, 1644, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.59 (m, 2H), 7.42 – 7.48 (m, 3H), 2.65 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 145.6, 131.0, 129.3, 123.4, 43.9; **HRMS** for C₇H₈OS: calcd. (MH⁺): 141.0369, found: 141.0367

1,2-Dimethoxy-4-(methylsulfinyl)benzene (3c)

Brown oil; isolated yield 67% (67 mg). $R_f 0.50$ (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1069, 1219, 1638; ¹**H NMR** (400 MHz, CDCl₃) δ 7.20 (s, 1H), 6.89 (dd, J = 2.0, 8.3 Hz, 1H), 6.89 (d, J = 8.3 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 2.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 150.2, 137.0, 116.9, 111.2, 105.9, 56.2, 56.2, 44.2; **HRMS** for C₉H₁₂O₃S: calcd. (MH⁺): 201.0580, found: 201.0578

1-Methyl-4-(methylsulfinyl)benzene (3d)²

Brown gummy solid; isolated yield 35% (27 mg). R_f 0.50 (60% EtOAc/hexane); **IR** (Film, cm⁻¹): 1039, 1646, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 7.9 Hz, 2H), 2.63 (s, 3H), 2.35 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 142.5, 141.5, 130.0, 123.6, 44.0, 21.4; **HRMS** for C₈H₁₀OS: calcd. (MH⁺): 155.0525, found: 155.0522

1,2-Dimethyl-4-(methylsulfinyl)benzene (3e)⁴

Brown gummy solid; isolated yield 32% (27 mg). R_f 0.50 (60% EtOAc/hexane); **IR** (Film, cm⁻¹): 1026, 1156, 1637, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (s, 1H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.21 (s, 1H), 2.63 (s, 3H), 2.25 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 140.2, 138.2, 130.5, 124.4, 121.1, 44.0, 19.8, 19.7; **HRMS** for C₉H₁₂OS: calcd. (MH⁺): 169.0682, found: 169.0684

1-Isopropyl-4-(methylsulfinyl)benzene (3f)³

Brown oil; isolated yield 62% (57 mg). R_f 0.50 (50% EtOAc/hexane); **IR** (Film, cm⁻¹): 1054, 1155, 1644, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 2.85 – 2.95 (m, 1H), 2.65 (s, 3H), 1.20 (d, J = 6.9 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 152.4, 142.8, 127.5, 123.7, 43.9, 34.1, 23.8; **HRMS** for C₁₀H₁₄OS: calcd. (MH⁺): 183.0838, found: 183.0836

1-(Methylsulfinyl)-4-nitrobenzene (3g)²

Yellow solid; isolated yield 80% (74 mg). R_f 0.50 (60% EtOAc/hexane); Mp 148-150 °C (150.6-151.9 °C); **IR** (Film, cm⁻¹): 1055, 1347, 1529, 1644, 3019; ¹H **NMR** (400 MHz, CDCl₃) δ 8.31 – 8.34 (m, 2H), 7.75 – 7.79 (m, 2H), 2.72 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 153.3, 129.1, 124.7, 124.5, 43.9; **HRMS** for C₇H₇NO₃S: calcd. (MH⁺): 186.0219, found: 186.0218

1-(Methylsulfinyl)-3-nitrobenzene (3h)²

Yellow solid; isolated yield 69% (64 mg). R_f 0.50 (60% EtOAc/hexane); Mp 115-116 °C (lit.² 114.3-115.7 °C); **IR** (Film, cm⁻¹): 1068, 1352, 1534, 1644, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.30 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.70 (t, J = 8.0 Hz, 1H), 2.74 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 148.8, 148.7, 130.6, 129.3, 125.7, 119.0, 44.0; **HRMS** for C₇H₇NO₃S: calcd. (MH⁺): 186.0219, found: 186.0215

1-(Methylsulfinyl)-2-nitrobenzene (3i)³

Yellow solid; isolated yield 78% (73 mg). R_f 0.50 (60% EtOAc/hexane); Mp 56-58 °C; **IR** (Film, cm⁻¹): 1068, 1345, 1529, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (dd, J = 1.3, 7.9 Hz, 1H), 8.25 (dd, J = 1.2, 8.2 Hz, 1H), 7.89 – 7.94 (m, 1H), 7.63 – 7.68 (m, 1H), 2.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 144.6, 135.7, 131.5, 126.1, 125.1, 43.8; **HRMS** for C₇H₇NO₃S: calcd. (MH⁺): 186.0219, found: 186.0223

2-Methoxy-1-(methylsulfinyl)-4-nitrobenzene (3j)

Brown solid; isolated yield 73% (79 mg). R_f 0.50 (70% EtOAc/hexane); Mp 128-130 °C; **IR** (Film, cm⁻¹): 1037, 1347, 1531, 1719, 3021; ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 8.01 (m, 2H), 7.70 (d, J = 1.8 Hz, 1H), 3.95 (s, 3H), 2.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 150.8, 141.1, 125.9, 116.7, 105.8, 56.6, 40.9; **HRMS** for C₈H₉NO₄S: calcd. (MH⁺): 216.0325, found: 216.0320

2-Chloro-1-(methylsulfinyl)-4-nitrobenzene (3k)

Brown solid; isolated yield 75% (82 mg). R_f 0.5f0 (60% EtOAc/hexane); Mp 87-88 °C; **IR** (Film, cm⁻¹): 669, 1064, 1344, 1536, 1644, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 8.31 (dd, J = 1.6, 8.6 Hz, 1H), 8.21 (d, J = 1.9 Hz, 1H), 8.11 (d, J = 8.6 Hz, 1H), 2.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 150.0, 130.8, 126.8, 125.0, 123.0, 41.4; **HRMS** for C₇H₆ClNO₃S: calcd. (MH⁺): 219.9830, found: 219.9829

4-Chloro-1-(methylsulfinyl)-2-nitrobenzene (31)

Brown solid; isolated yield 67% (74 mg). R_f 0.50 (60% EtOAc/hexane); Mp 124-126 °C; **IR** (Film, cm⁻¹): 669, 1064, 1344, 1538, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, J = 8.4 Hz, 1H), 8.23 (d, J = 2.0 Hz, 1H), 7.87 (dd, J = 2.1, 8.4 Hz, 1H), 2.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 143.8, 137.9, 135.7, 127.6, 125.1, 43.8; **HRMS** for C₇H₆ClNO₃S: calcd. (MH⁺): 219.9830, found: 219.9831

4-Chloro-1-(methylsulfinyl)-2-nitrobenzene-d₃ (3l')

Brown solid; isolated yield 69% (77 mg). R_f 0.50 (60% EtOAc/hexane); Mp 118-120 °C; **IR** (Film, cm⁻¹): 522, 1061, 1344, 1538, 1638, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 8.22 - 8.25 (m, 2H), 7.86 (dd, J = 2.0, 8.4 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃) δ 145.0, 143.7, 137.9, 135.7, 127.6, 125.1; **HRMS** for C₇H₃D₃ClNO₃S: calcd. (MH⁺): 223.0018, found: 223.0016

1-Chloro-4-(methylsulfinyl)benzene (3m)²

Colorless solid; isolated yield 60% (52 mg). R_f 0.50 (50% EtOAc/hexane); Mp 45-47 °C (lit.² 45-46.3 °C); **IR** (Film, cm⁻¹): 771, 822, 1052, 1644; ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.54 (m, 2H), 7.43 – 7.46 (m, 2H), 2.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 137.3, 129.7, 125.0, 44.0; **HRMS** for C₇H₇ClOS: calcd. (MH⁺): 174.9979, found: 174.9978

1-Bromo-4-(methylsulfinyl)benzene (3n)⁵

Yellow solid; isolated yield 50% (55 mg). R_f 0.50 (50% EtOAc/hexane); Mp 85-87 °C; **IR** (Film, cm⁻¹): 669, 1068, 1645, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 2.65 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 144.9, 132.6, 125.5, 125.2, 44.0; **HRMS** for C₇H₇BrOS: calcd. (MH⁺): 218.9474, found: 218.9479

2-Bromo-4-chloro-1-(methylsulfinyl)benzene (30)

Yellow solid; isolated yield 62% (78 mg). R_f 0.50 (40% EtOAc/hexane); Mp 98-99 °C; **IR** (Film, cm⁻¹): 669, 771, 1023, 1059, 1646, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, J = 8.3 Hz, 1H), 7.49 – 7.52 (m, 2H), 2.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 137.8, 132.6, 129.2, 126.9, 118.7, 41.9; **HRMS** for C₇H₆BrClOS: calcd. (MH⁺): 252.9084, found: 252.9085

4-Fluoro-4'-(methylsulfinyl)biphenyl (3p)

Yellow solid; isolated yield 63% (74 mg). R_f 0.50 (60% EtOAc/hexane); Mp 113-114 °C; **IR** (Film, cm⁻¹): 1046, 1159, 1603, 3020; ¹**H NMR** (400 MHz, CDCl₃) δ 7.61 – 7.66 (m, 4H), 7.47 – 7.51 (m, 2H), 7.09 (t, J = 8.6 Hz, 2H), 2.69 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 162.9 (d, $J_{C-F} = 246.5$ Hz), 144.6, 143.2, 135.9 (d, $J_{C-F} = 3.1$ Hz), 128.9 (d, $J_{C-F} = 8.3$ Hz), 127.9, 124.1, 115.9 (d, $J_{C-F} = 21.6$ Hz), 44.0; **HRMS** for C₁₃H₁₁FOS: calcd. (MH⁺): 235.0587, found: 235.0590

1-(Methylsulfinyl)-3-(trifluoromethyl)benzene (3q)²

Brown oil; isolated yield 64% (67 mg). R_f 0.50 (50% EtOAc/hexane); **IR** (Film, cm⁻¹): 769, 1064, 1326, 3395; ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (br s, 1H), 7.80 (d, J = 7.3 Hz, 1H), 7.71 (d, J = 7.7 Hz, 1H), 7.60 – 7.64 (m, 1H), 2.74 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 147.3, 131.9, 130.0, 127.9, 127.8, 126.9, 120.7, 44.0; **HRMS** for C₈H₇F₃OS: calcd. (MH⁺): 209.0242, found: 209.0245

5-(Methylsulfinyl)benzo[d][1,3]dioxole (3r)

Brown oil; isolated yield 65% (60 mg). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1040, 1241, 1637, 3018; ¹**H NMR** (400 MHz, CDCl₃) δ 7.09 (d, J = 1.3 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 5.98 (s, 2H), 2.61 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 150.3, 148.8, 138.9, 118.4, 108.8, 103.8, 101.9, 44.2; **HRMS** for C₈H₈O₃S: calcd. (MH⁺): 185.0267, found: 185.0268

6-(Methylsulfinyl)-2,3-dihydrobenzo[b][1,4]dioxine (3s)

Brown oil; isolated yield 65% (65 mg). $R_f 0.50$ (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1067, 1253, 1285, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 7.11 (d, J = 2.1 Hz, 1H), 7.03 (dd, J = 2.1, 8.4 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 4.21 (s, 4H), 2.61 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 146.1, 144.4, 137.8, 118.3, 116.9, 113.0, 64.4, 64.3, 44.0; **HRMS** for C₉H₁₀O₃S: calcd. (MH⁺): 199.0423, found: 199.0421

6-Bromo-7-(methylsulfinyl)-2,3-dihydrobenzo[b][1,4]dioxine (3t)

Brown gummy solid; isolated yield 67% (93 mg). R_f 0.50 (70% EtOAc/hexane); **IR** (Film, cm⁻¹): 1066, 1089, 1258, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (s, 1H), 7.00 (s, 1H), 4.22 (s, 4H), 2.69 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 146.5, 144.6, 137.2, 121.5, 114.7, 108.5, 64.5, 64.2, 42.3; **HRMS** for C₉H₉BrO₃S: calcd. (MH⁺): 276.9529, found: 276.9528

4-(methylsulfinyl)benzonitrile (3u)²

Colorless solid; isolated yield 65% (54 mg). $R_f 0.50$ (50% EtOAc/hexane); Mp 87-89 °C (lit.² 86.3-87.9 °C); **IR** (Film, cm⁻¹): 1054, 1644, 2233, 3019; ¹**H** NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.5 Hz, 2H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 133.0, 124.3, 117.7, 114.9, 43.8; **HRMS** for C₈H₇NOS: calcd. (MH⁺): 166.0321, found: 166.0325

1-(Methylsulfinyl)-4-thiocyanatobenzene (3v)

Brown gummy solid; isolated yield 74% (73 mg). R_f 0.50 (60% EtOAc/hexane); **IR** (Film, cm⁻¹): 669, 1052, 2162, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 7.60-7.67 (m, 4H), 2.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 130.0, 128.2, 125.3, 109.2, 44.0; **HRMS** for C₈H₇NOS₂: calcd. (MH⁺): 198.0042, found: 198.0042

1-(Methylsulfinyl)-4-thiocyanatobenzene-d3 (3v')

Brown gummy solid; isolated yield 75% (75 mg). R_f 0.50 (60% EtOAc/hexane); **IR** (Film, cm⁻¹): 669, 1054, 1637, 3019; ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.66 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 130.0, 128.2, 125.3, 109.2; **HRMS** for C₈H₄D₃NOS₂: calcd. (MH⁺): 201.0230, found: 201.0231

1-(4-(methylsulfinyl)phenyl)ethanone (3w)²

Brown solid; isolated yield 71% (65 mg). $R_f 0.50$ (50% EtOAc/hexane); Mp 108-109 °C (lit.² 107.1-108.0 °C); **IR** (Film, cm⁻¹): 1068, 1687, 3020; ¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 8.0 Hz, 2H), 2.69 (s, 3H), 2.58 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 197.0, 150.9, 139.1, 129.2, 123.8, 43.8, 26.8; **HRMS** for C₉H₁₀O₂S: calcd. (MH⁺): 183.0474, found: 183.0477

Methyl 2-(methylsulfinyl)benzoate (3x)⁶

Brown oil; isolated yield 49% (49 mg). R_f 0.50 (50% EtOAc/hexane); **IR** (Film, cm⁻¹): 1065, 1644, 1714, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, J = 7.9 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.76 (t, J = 7.7 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 3.88 (s, 3H), 2.78 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.8, 150.4, 134.1, 130.7, 130.2, 126.5, 124.2, 52.6, 44.1; **HRMS** for C₉H₁₀O₃S: calcd. (MH⁺): 199.0423, found: 199.0428

Methyl 3-(methylsulfinyl)thiophene-2-carboxylate (3y)

Colorless solid; isolated yield 73% (75 mg). R_f 0.50 (50% EtOAc/hexane); Mp 105-106 °C; IR (Film, cm⁻¹): 1056, 1156, 1275, 1644, 1705, 3020; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.61 (m, 2H), 3.84 (s, 3H), 2.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 154.2, 132.3, 127.1, 126.1, 52.7, 42.7; HRMS for C₇H₈O₃S₂: calcd. (MH⁺): 204.9988, found: 204.9989

Methyl 4-bromo-3-(methylsulfinyl)thiophene-2-carboxylate (3z)

Brown solid; isolated yield 60% (85 mg). R_f 0.50 (50% EtOAc/hexane); Mp 109-110 °C; **IR** (Film, cm⁻¹): 627, 1067, 1637, 1718; ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (s, 1H), 3.85 (s, 3H), 3.01(s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.0, 145.1, 132.6, 130.6, 110.2, 53.1, 40.0; **HRMS** for C₇H₇BrO₃S₂: calcd. (MH⁺): 282.9093, found: 282.9095

Ethyl 4-(methylsulfinyl)benzoate (3za)

Brown oil; isolated yield 75% (80 mg). $R_f 0.50$ (50% EtOAc/hexane); **IR** (Film, cm⁻¹): 1051, 1277, 1639, 1717, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.2 Hz, 2H), 4.34 (q, 2H), 2.68 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.5, 150.7, 133.0, 130.5, 123.5, 61.5, 43.9, 14.3; **HRMS** for C₁₀H₁₂O₃S: calcd. (MH⁺): 213.0580, found: 213.0577

1-(Methylsulfinyl)-4-(phenylsulfonyl)benzene (3zb)

Brown solid; isolated yield 80% (112 mg). R_f 0.50 (100% EtOAc); Mp 85-86 °C; **IR** (Film, cm⁻¹): 607, 1068, 1637, 3019; ¹**H NMR** (400 MHz, CDCl₃) δ 8.01 – 8.04 (m, 2H), 7.88 – 7.91 (m, 2H), 7.69 – 7.72 (m, 2H), 7.52 – 7.56 (m, 1H), 7.45 – 7.49 (m, 2H), 2.67 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 151.7, 144.3, 140.8, 133.7, 129.5, 128.6, 127.9, 124.5, 43.8; **HRMS** for C₁₃H₁₂O₃S₂: calcd. (MH⁺): 281.0301, found: 141.0367

4. References

- (a) J. Wu, Y. Gu, X. Leng and Q. Shen, *Angew. Chem., Int. Ed.*, 2015, 54, 7648; (b)
 K. Zhang, X.-H. Xu and F.-L. Qing, *J. Org. Chem.*, 2015, 80, 7658
- P. Hanson, R. A. A. J. Hendrickx and J. R. L. Smith, Org. Biomol. Chem., 2008, 6, 745
- 3. J. Sun, C. Zhu, Z. Dai, M. Yang, Y. Pan, and H. Hu, J. Org. Chem., 2004, 69, 8500
- 4. M. Akazome, Y. Ueno, H. Ooiso and K. Ogura, J. Org. Chem., 2000, 65, 68
- 5. L. Zhao, H. Zhang and Y. Wang, J. Org. Chem., 2016, 81, 129
- W. Dai, G. Li, L. Wang, B. Chen, S. Shang, Y. Lv and S. Gao, *RSC Adv.*, 2014, 4, 46545

5. Spectra

Figure 4: ¹³C NMR spectrum of 3a'

Figure 6: ¹³C NMR spectrum of 3b

Figure 8: ¹³C NMR spectrum of 3c

Figure 12: ¹³C NMR spectrum of 3e

Figure 14: ¹³C NMR spectrum of 3f

Figure 18: ¹³C NMR spectrum of 3h

Figure 20: ¹³C NMR spectrum of 3i

Figure 30: ¹³C NMR spectrum of 3m

Figure 32: ¹³C NMR spectrum of 3n

Figure 40: ¹³C NMR spectrum of 3r

Figure 46: ¹³C NMR spectrum of 3u

Figure 54: ¹³C NMR spectrum of 3x

Figure 60: ¹³C NMR spectrum of 3za

