Bis(carbodicarbene)phosphenium trication: A case against hypervalency
 Nemanja Đorđević, Rakesh Ganguly, Milena Petković, and Dragoslav Vidović

SUPPORTING INFORMATION

Table of Content
General. 2
Experimental Details and Spectroscopic Data 3
Crystallographic Methods 7
Computational Methods 8
References 16

General. All preparations and manipulations were carried out using standard Schlenk techniques and a dry-box under argon atmosphere. Solvents (diethyl ether and benzene) were distilled over sodium/benzophenone while acetonitrile, $\mathrm{C}_{6} \mathrm{D}_{6}$, and $\mathrm{CD}_{3} \mathrm{CN}$ were distilled over CaH_{2}. All solvents were stored over $4 \AA$ molecular sieves prior to use. Phosphorus tribromide $\left(\mathrm{PBr}_{3}\right)$ was distilled before use. Silver hexafluoroanitmonate $\left(\mathrm{AgSbF}_{6}\right)$ was purchased from Sigma Aldrich and used without further purification. The ligand, carbodicarbene (\mathbf{L}^{2}) was prepared by literature methods. ${ }^{51}$ Melting point was measured with a OpticMelt Stanford Research System. NMR spectra were recorded on the Brüker Avance III 400 and Brüker Avance 500 instruments. Chemical shifts (δ) are reported in parts per million (ppm) downfield from internal - tetramethylsilane (for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$) and external standard - 85% phosphoric acid (for ${ }^{31} \mathrm{P}$). Mass spectrum was obtained on Waters Q-TOF Premier MS mass spectrometer using the electrospray ionization (ESI) mode.

Experimental Details and Spectroscopic Data

Synthesis of $\left[\left\{\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{MeN})_{2} \mathrm{C}\right\}_{2} \mathrm{CPBr}_{2}\right] \mathrm{Br}$, $\left[\mathrm{L}^{2} \mathrm{PBr}_{2}\right] \mathrm{Br}$.
The solution of $0.50 \mathrm{~g}(1.64 \mathrm{mmol})$ of $\left\{\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{MeN})_{2} \mathrm{C}\right\}_{2} \mathrm{C}\left(\mathrm{L}^{2}\right)$ in 200 mL of benzene was added to 2.5 equivalents of PBr_{3}. The reaction mixture was stirred overnight at room temperature followed by filtration. The resulting orange solid was dried under vacuum to yield $0.87 \mathrm{~g}(92 \%)$ of $\left[\mathrm{L}^{2} \mathrm{PBr}_{2}\right] \mathrm{Br}$. The crystallization of $\left[\mathrm{L}^{2} \mathrm{PBr}_{2}\right] \mathrm{Br}$ was achieved by layering the saturated acetonitrile solution of this compound with diethyl ether at room temperature. M.p.: color change (orange to brown) was observed at $210^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta 3.83\left(\mathrm{~d},{ }^{5} \mathrm{~J} \mathrm{PH}=2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.59-7.73(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta 33.6$ (d, ${ }^{4} \mathrm{JpC}=8 \mathrm{~Hz}, \mathrm{NCH}_{3}$), 56.5 (d, ${ }^{1} \mathrm{JpC}=89 \mathrm{~Hz}, \mathrm{CCC}$), 112.4 (s, CH arom.), 126.0 (s, CH arom.), 132.3 (s, CH arom.), 150.8 (d, ${ }^{2} \mathrm{~J}_{\mathrm{PC}}=23 \mathrm{~Hz}, \mathrm{NCN}$). ${ }^{31 \mathrm{P}} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 202 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 163.79$ (s). HR-MS Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{20}{ }^{79} \mathrm{Br}^{81} \mathrm{BrN}_{4} \mathrm{P}\right]^{+}\left(\mathrm{L}^{2} \mathrm{PBr}_{2}{ }^{+}\right): \mathrm{m} / \mathrm{z} 494.9772$. Found: 494.9787.

Synthesis of $\left[\left\{\left\{\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{MeN})_{2} \mathrm{C}\right\}_{2} \mathrm{C}\right\}_{2} \mathrm{P}\right]\left[\mathrm{SbF}_{6}\right]_{2}[\mathrm{Br}],\left[\mathrm{L}^{2}{ }_{2} \mathrm{P}\right]\left[\mathrm{SbF}{ }_{6}\right]_{2}[\mathrm{Br}]$.

The formation of $\left[\mathrm{L}^{2}{ }_{2} \mathrm{P}\right]\left[\mathrm{SbF}_{6}\right]_{2}[\mathrm{Br}]$ was observed upon addition of 1 or 2 equivalents of AgSbF_{6} to the acetonitrile solution of $\left[\mathrm{L}^{2} \mathrm{PBr}_{2}\right] \mathrm{Br}$ as shown by the copies of the ${ }^{31} \mathrm{P}$ NMR spectra (Figures S 6 and S 7) recorded right after the addition of the silver salt. A small crop of crystals suitable for single crystal X-ray diffraction were obtained using the former solution as describe below. However, the title compound could not be isolated in its pure form even though numerous attempts (recrystallization, precipitation etc.) have been made. It appears that the trication is extremely unstable in solution resulting in the formation of a substantial amount of "di-protonated" ligand i.e. [$\left.\mathrm{L}^{2} \mathrm{H}_{2}\right]^{2+}$ (see Figure S5) even though the only P-containing species soluble in this reaction mixture is the trication (Figure S4). In fact, during the data collection for the ${ }^{13} \mathrm{C}$ NMR spectrum (overnight collection) it was noticed that the solution changed color from the usual red to orange suggesting the decomposition of the trication and the only δc signals that could be resolved belonged to $\left[L^{2} \mathrm{H}_{2}\right]^{2+}$ Lastly, as both preparatory methods differ only in the amount of the silver salt added we described only the former one.

- Synthesis of $\left[L^{2}{ }_{2} P\right]\left[S b F_{6}\right]_{2}[B r]$ using 1 equivalent of $A g S b F_{6} .0 .7 \mathrm{~mL}$ of $\mathrm{CD}_{3} \mathrm{CN}$ was added to $15 \mathrm{mg}(0.026 \mathrm{mmol})$ of [$L^{2} \mathrm{PBr}_{2}$]Br and $9 \mathrm{mg}(0.026 \mathrm{mmol})$ of AgSbF_{6} (J . Young NMR tube). Immediately upon addition, the solution changed color from orange to red. The white precipitate (AgBr) was filtered-off and the resulting red solution was layered with diethyl ether. Few crystals of $\left[\mathrm{L}^{2}{ }_{2} \mathrm{P}_{\mathrm{P}}\left[\mathrm{SbF}_{6}\right]_{2}[\mathrm{Br}]\right.$ suitable for X -ray analysis were formed at room temperature after 3 days. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right): \delta 3.69\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.73-7.86(\mathrm{~m}, 16 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}, 202 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 302.18$ (s). HRMS: numerous attempts to detect $\left[\mathrm{L}^{2}{ }_{2} \mathrm{P}\right]^{3+}$ were not successful.

Selected NMR spectra:

Figure S1. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\left[\mathbf{L}^{\mathbf{2}} \mathbf{P B r}_{2}\right] \mathrm{Br}$.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Spectrum of $\left[\mathbf{L}^{\mathbf{2}} \mathbf{P B r} \mathbf{P}_{2}\right] \mathrm{Br}$.

$$
\left[\begin{array}{c}
\mathrm{Br} \\
\mathrm{~L}^{2}-P^{\prime}: \\
\\
\\
\\
\mathrm{Br}
\end{array}\right] \mathrm{Br}
$$

Figure S3. ${ }^{31} \mathrm{P}$ NMR Spectrum of $\left[\mathbf{L}^{\mathbf{2}} \mathbf{P B r}_{2}\right] \mathrm{Br}$.

Figure S4. ${ }^{31} \mathrm{P}$ NMR Spectrum of $\left[\mathbf{L}^{\mathbf{2}} \mathbf{2} \mathbf{P}\right]\left[\mathrm{SbF}_{6}\right]_{2}[\mathrm{Br}]$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\left[\mathbf{L}^{\mathbf{2}} \mathbf{2} \mathbf{P}\right]\left[\mathrm{SbF}_{6}\right]_{2}[\mathrm{Br}]$.

Figure S6. ${ }^{31} \mathrm{P}$ NMR Spectrum of the reaction mixture $\left[\mathbf{L}^{\mathbf{2}} \mathbf{P B} \mathbf{B r}_{2}\right] \mathrm{Br}$ and 1 equiv $\operatorname{AgSbF} \mathrm{F}_{6}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

$\begin{aligned} & \text { प্ড } \\ & \text { den } \end{aligned}$		\% \%

Figure S7. ${ }^{31} \mathrm{P}$ NMR Spectrum of the reaction mixture $\left[\mathbf{L}^{\mathbf{2}} \mathbf{P B r}_{2}\right] \mathrm{Br}$ and 2 equiv $\mathrm{AgSbF}_{6}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$

Crystallographic methods

Single crystals were mounted on quartz fiber and the X-ray intensity data were collected at $103(2) \mathrm{K}$ (for $\left[\mathrm{L}^{2} \mathrm{PBrr}_{2}\right] \mathrm{Br}$) and 153(2) K (for [$\left.\mathrm{L}^{2}{ }_{2} \mathrm{P}\right]\left[\mathrm{SbF}_{6}\right]_{2}[\mathrm{Br}]$) on a Bruker X8 APEX system, using Mo Ka radiation, with the SMART suite of programs. ${ }^{\mathrm{S} 2}$ Data were processed and corrected for Lorentz and polarization effects with SAINT ${ }^{s 3}$ and for absorption effects with SABADS. ${ }^{54}$ Structural solution and refinement were carried out with the SHELXTL suite of programs. ${ }^{55}$ The structure was solved by direct method and refined for all data by full-matrix least-squares methods on F^{2}. All non-hydrogen atoms were subjected to anisotropic refinement. The hydrogen atoms were generated geometrically and allowed to ride on their respective parent atoms; they were assigned appropriate isotopic thermal parameters.

Crystallographic data for [$L^{2} \mathrm{PBr}_{2}$]Br: $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{Br}_{6} \mathrm{NgPP}_{2}, \mathrm{M}_{\mathrm{r}}$ 1191.23, monoclinic, $\mathrm{P} 121 / \mathrm{c} 1, \mathrm{a}=15.790(3), \mathrm{b}=17.796(3) \mathrm{A}$, and $c=16.457(3) \AA, \alpha=90^{\circ}, \beta=104.672(4)^{\circ}$, and $\gamma=90^{\circ}, V=4473.6(14) \AA^{3}, Z=4, \rho_{c}=1.769 \mathrm{gcm}^{-3}, T=103(2) \mathrm{K}, \lambda=$ $0.71073 \AA ; 12317$ reflections collected, 12317 independent [$R_{\text {int }}=0.1157$], which were used in all calculations; R1 $=0.0771$, $w R 2=0.1104$ for $\mathrm{I}>2 \sigma(\mathrm{I})$, and $R 1=0.1305, \mathrm{wR} 2=0.1274$ for all unique reflections; $m a x$ and min residual electron densities $1.239 \mathrm{e}^{-3}$ and $-1.033 \mathrm{e}^{-3}$. CCDC 1441055.

Crystallographic data for $\left[\mathrm{L}^{2}{ }_{2} \mathrm{P}\right]\left[\mathrm{SbF}_{6}\right][\mathrm{Br}]: \mathrm{C}_{84} \mathrm{H}_{94} \mathrm{Br}_{2} \mathrm{~F}_{24} \mathrm{~N}_{19} \mathrm{O}_{0.50} \mathrm{P}_{2} \mathrm{Sb}_{4}, \mathrm{M}_{r} 2542.54$, triclinic, $\mathrm{P}-1$, $\mathrm{a}=12.1048(3)$, $\mathrm{b}=$ 13.7318(4), and $c=16.1379(5) \AA, \alpha=108.8842(16)^{\circ}, \beta=98.2298(14)^{\circ}$, and $Y=102.7525(14)^{\circ}, V=2407.61(12) \AA^{3}, Z=$ $1, \rho_{c}=1.754 \mathrm{gcm}^{-3}, \mathrm{~T}=153(2) \mathrm{K}, \lambda=0.71073 \AA ; 47167$ reflections collected, 15411 independent [R int $=0.0828$], which were
used in all calculations; $\mathrm{R} 1=0.0532, \mathrm{wR} 2=0.1000$ for $\mathrm{I}>2 \sigma(\mathrm{I})$, and $\mathrm{R} 1=0.1170$, $\mathrm{wR} 2=0.1195$ for all unique reflections;
max and min residual electron densities $1.326 e^{\circ} \AA^{3}$ and $-1.378 e^{3} \AA^{3}$. CCDC 1441056.

Computational Methods

Quantum chemical calculations were performed with the Gaussian program package ${ }^{56}$. Frequency calculations on all optimized structures confirmed that they represent minima on potential energy hypersurfaces. QTAIM analysis was carried out with the AIMAll software package ${ }^{\text {S7 }}$.

Atom coordinates for $\mathbf{L}^{\mathbf{2}}$, structure optimized at B3LYP/6-31G(d) level.

6	0.438929	0.133661	0.206527	1	-2.692574	1.740837	1.924333
6	0.197371	0.130898	1.540694	1	-1.717351	1.453201	0.442968
6	1.576333	-0.011126	-0.517152	1	1.180146	-2.441019	1.550823
7	2.881751	0.460152	-0.266957	1	1.840537	-2.308909	3.207608
6	3.678403	0.282494	-1.403491	1	2.596814	-1.424028	1.862931
6	2.935858	-0.355579	-2.334186	1	0.482237	-2.239400	-2.282423
7	1.661917	-0.544976	-1.809905	1	0.586128	-0.982007	-3.544982
7	0.766941	-0.649201	2.568242	1	-0.371535	-0.697256	-2.051651
6	0.039215	-0.482897	3.751747	1	2.488637	2.248650	0.764170
6	-0.923468	0.436026	3.520389	1	4.198544	1.726157	0.722646
7	-0.836853	0.820986	2.186982	1	3.032207	0.908803	1.787876
6	-1.686013	1.758765	1.494035	1	3.204550	-0.712352	-3.316863
6	1.643452	-1.763188	2.281138	1	4.710705	0.597162	-1.426832
6	0.532114	-1.156817	-2.465553	1	-1.651035	0.868370	4.190358
6	3.164240	1.383242	0.809969	1	0.300315	-1.010590	4.656499
1	-1.296589	2.785425	1.542299				

Atom coordinates for $\left[\mathbf{L}^{2}{ }_{2} \mathbf{P}\right]^{3+}$ structure optimized at B3LYP/6-31G(d) level.

15	-0.000002	-1.184055	0.000037	1	0.876799	1.984465	-3.335881
6	1.508779	-0.294353	-0.045841	1	-0.505566	1.750054	-2.239626
6	-1.508794	-0.294371	0.045867	1	2.856730	0.828759	2.243234
6	-1.830914	1.107600	0.291179	1	3.753362	2.360991	2.163824
7	-1.38058	1.894393	1.313041	1	4.380960	0.031414	1.315299
6	-1.974526	3.143964	1.229385	1	2.872761	-0.673824	-2.628125
6	-2.804379	3.128244	0.152913	1	4.580661	-1.145305	-2.680165
7	-2.707650	1.874942	-0.421739	1	4.132039	0.405480	-1.943700
6	-2.667121	-1.201720	-0.090463	1	1.606730	-1.423524	2.586192
7	-2.931360	-2.086077	-1.093821	1	2.853053	-2.574052	3.121944
6	-4.101987	-2.763714	-0.818802	1	1.458925	-3.153523	2.173689
6	-4.580735	-2.283249	0.360288	1	-0.877135	1.984451	3.335952
7	-3.689881	-1.328295	0.804014	1	0.505339	1.750033	2.239834
6	2.667136	-1.201667	0.090476	1	-0.618716	0.401822	2.563582
7	3.689841	-1.328266	-0.804062	1	-2.856543	0.828752	-2.243342
6	4.580747	-2.283176	-0.360346	1	-3.753203	2.36971	-2.164000
6	4.102109	-2.763562	0.818819	1	-4.380858	0.931379	-1.315543
7	2.931520	-2.085890	1.093916	1	-1.606360	-1.423883	-2.585985
6	1.830867	1.107618	-0.291191	1	-2.852602	-2.574480	-3.121779
7	2.707661	1.874964	0.421650	1	-1.458605	-3.153833	-2.173259
6	2.804336	3.128264	-0.153012	1	-2.872954	-0.673706	2.628095
6	1.974399	3.143944	-1.229420	1	-4.580848	-1.145223	2.680039
7	1.386925	1.894404	-1.313021	1	-4.132205	0.405519	1.943495
6	3.821262	-0.631815	-2.090190	1	-4.493975	-3.523205	-1.478913
6	2.156116	-2.326044	2.319729	1	-5.469176	-2.543859	0.916319
6	3.473399	1.465361	1.607986	1	5.469146	-2.543809	-0.916433

6	0.535007	1.480459	-2.430284	1	4.494174	-3.522989	1.478959
6	-2.155780	-2.326374	-2.319495	1	-1.766385	3.925716	1.944852
6	-3.821416	-0.631758	2.090084	1	-3.451173	3.895313	-0.247328
6	-0.535252	1.480447	2.430388	1	3.451159	3.895337	0.247174
6	-3.473278	1.465339	-1.608144	1	1.766198	3.925723	-1.944874

Atom coordinates for structure 1 optimized at B3LYP/6-31G(d) level.

15	0.008174	-0.013997	0.000000
17	-0.109921	0.190517	2.426797
17	2.108829	-0.378329	0.000000
17	-0.109921	0.190517	-2.426797
17	-0.727203	-2.015133	0.000000

Atom coordinates for structure 2 optimized at B3LYP/6-31G(d) level.

15	0.004304	-0.007382	0.000000
35	-0.116681	0.202652	2.554071
35	2.270074	-0.392481	0.000000
35	-0.116681	0.202652	-2.554071
35	-0.796060	-2.161771	0.000000

Atom coordinates for structure 3 optimized at B3LYP/6-31G(d) level.

15	-0.082499	-0.647292	0.106127	6	0.209432	-0.823110	-2.869903
7	0.338249	-0.699990	2.011712	6	-3.176137	1.960064	-0.695125
6	1.530104	-0.224404	2.380555	1	4.193579	0.538071	0.689974
7	2.173539	0.381208	1.248846	1	3.427499	2.068700	1.147277
6	1.542926	0.346284	0.028767	1	3.796916	0.852684	2.413268
7	-0.459051	-0.193432	-1.754836	1	-3.496096	2.111017	-1.726573
6	-1.457839	0.630893	0.436147	1	-3.988467	1.525854	-0.101307
7	-2.037543	1.063864	-0.731782	1	-2.902227	2.918662	-0.239080
6	-1.512509	0.594520	-1.982999	1	-0.488342	-0.991748	-3.698543
8	2.095582	-0.270110	3.479273	1	1.047344	-0.211434	-3.227715
8	2.035586	0.843883	-0.976120	1	0.615550	-1.789186	-2.541723
8	-1.855700	0.992732	1.536569	1	-1.072619	-2.159301	2.458876
8	-2.048927	0.910035	-3.051545	1	0.148867	-1.888404	3.734513
6	3.478243	0.998750	1.380729	1	-1.171531	-0.713139	3.481225
6	-0.476344	-1.397934	2.979170				

Atom coordinates for structure 4 optimized at B3LYP/6-31G(d) level.

6	0.008436	-0.032227	0.004115	17	4.426420	1.704635	-0.359114
6	-0.000918	-0.045692	1.360399	1	1.441834	-1.023280	3.618525
7	1.328093	-0.037282	1.760929	1	2.823920	0.023163	3.215674
6	2.166871	-0.020508	0.691824	1	1.276860	0.752006	3.707781
7	1.339670	-0.020547	-0.385172	1	1.030608	-0.473533	-2.399155
6	1.740919	-0.074748	3.162655	1	1.870150	1.077214	-2.106849
6	1.771901	0.038505	-1.781155	1	2.732984	-0.462470	-1.880643
15	4.454087	0.089748	1.020679	1	-0.818159	-0.067172	2.065068
17	6.698784	0.201478	1.342815	1	-0.801706	-0.032470	-0.709157
17	4.576106	-1.634155	-0.219650				

Atom coordinates for structure 5 optimized at B3LYP/6-31G(d) level.

15	0.181993	-0.682183	0.110695	1	0.157999	-1.299275	5.003558
6	0.123790	-0.240326	1.928268	1	-0.408560	1.396562	4.683226
6	2.053864	-0.080265	-0.010938	1	0.193493	2.548447	1.319207
6	2.989054	0.350228	0.898636	1	-1.514888	2.073452	1.529284
7	4.230369	0.386433	0.281797	1	-0.643089	2.904922	2.850140
6	4.071904	-0.019105	-0.981250	1	-0.442035	-2.973738	2.001655
7	2.783227	-0.313431	-1.183885	1	1.348464	-2.827214	1.981027
7	0.297275	-1.213715	2.854124	1	0.504436	-3.182342	3.505245
6	0.090471	-0.690609	4.115592	6	5.493748	0.805019	0.898536

6	-0.185419	0.629505	3.958415	1		1.659477	-1.698901	-2.293181
7	-0.142698	0.902306	2.601371	1	1.585355	-0.020637	-2.890306	
17	-0.422721	1.004386	-1.017935	1	3.060704	-0.998674	-3.143620	
17	-2.220014	-1.105497	0.695922	1	6.296078	0.715372	0.165399	
6	-0.551853	2.192860	2.029617	1	5.416247	1.844915	1.223648	
6	0.439812	-2.645124	2.558836	1	5.713825	0.163746	1.754851	
6	2.234939	-0.786523	-2.463473	1	4.858657	-0.095885	-1.717025	
1	2.879894	0.646807	1.930443					

Atom coordinates for structure 6 optimized at B3LYP/6-31G(d) level.

6	0.166275	-0.974007	-0.212714	1		-2.250953	-1.086238
5.520986							
6	-0.087729	-0.470800	1.190298	1	-3.502751	-0.402635	4.473383
6	0.956958	-0.068970	2.001700	1	2.152308	0.384780	5.151644
6	0.897423	0.225279	3.384581	1	3.050122	0.401152	3.624867
6	2.118542	0.738145	4.108124	1	2.193752	1.842546	4.164190
15	-1.804919	-0.401346	1.789147	1	1.245274	-1.018782	-0.427324
6	-1.492146	-0.497357	3.578982	1	-0.237886	-1.986595	-0.380523
6	-2.589408	-1.025926	4.474992	1	-0.286966	-0.342881	-0.999404
6	-0.279009	-0.092107	4.103925	6	-2.217268	1.458126	1.566781
1	1.957393	-0.041328	1.545994	1	-2.285158	1.703191	0.496854
1	-0.191010	-0.081401	5.200032	1	-3.188096	1.686470	2.030215
1	-2.923999	-2.036519	4.185871	1	-1.446643	2.087203	2.027394

Atom coordinates for structure 7 optimized at B3LYP/6-31G(d) level.

15	-0.285184	0.000000	-0.201655	1		3.290820	-0.783626
	-0.393554	-0.066817	1.517921	1	3.228804	0.784697	-0.061974
6	1.299925	0.066817	-0.877019	1	2.560279	-0.638590	0.750836
6	1.388214	0.406091	-2.344210	1	0.289639	0.783626	3.388039
6	2.639562	-0.145126	-0.223889	1	1.017837	-0.784697	3.064804
6	-1.747404	-0.406091	2.090224	1	1.561321	0.638590	2.163576
6	0.668769	0.145126	2.563233	1	-2.090399	0.341540	2.837970
6	1.978864	-0.341540	-2.916837	1	-2.518917	-0.463645	1.309753
1	0.395208	0.463645	-2.811442	1	-1.777063	-1.379032	2.629855
1	1.887097	1.379032	-2.552049				

Figure S8. The QTAIM partial charges for the optimized structures.

Figure S9. Selected bonding and antibonding molecular orbitals for the trication.

Table S1. Ellipticity values for selected P-C bonds of several compounds

PMe_{3}			$\left[L^{2}{ }_{2}{ }^{\text {P }}\right]^{3+}$
0.15	$\begin{aligned} & 0.03(\mathrm{P}-\mathrm{C}) \\ & 0.49(\mathrm{P}=\mathrm{C}) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05(\mathrm{P}-\mathrm{C}) \\ & 0.50(\mathrm{P}=\mathrm{C}) \\ & \hline \end{aligned}$	0.31

Determination of the valence electron equivalent (γ)

Molecule: $\left[\mathrm{L}^{2}{ }_{2} \mathbf{P}\right]^{3+}$
Summary of charge map (the total charge is +3)

Two resonance forms are required to reproduce this distribution

A

(P has 10 e)

B

(P has 2 e)

Portions: $[(0.3875) \times \mathbf{A}]+[(0.6125) \times \mathbf{B}]$
Such that charge on $P=(0.3875 x-1)+(0.6125 x+3)=+1.45$
Then $\gamma(\mathrm{P})=(0.3875 \times 10)+(0.6125 \times 2)=5.10$
Molecules: 1 and 2
Contributing resonance forms
A

$\begin{array}{lll}\text { B } & & \mathrm{X}^{-} \\ \mathrm{X}^{-} & \mathrm{P}^{3+} & \mathrm{X}^{-} \\ & & \mathrm{X}^{-}\end{array}$
(P has 10 e)
(P has 2 e)

For X $=\mathrm{Cl}$, charges: $\mathrm{P}+1.12, \mathrm{Cl}-0.53$ (average)
This is reproduced by $[0.47 \times \mathbf{A}]+[0.53 \times \mathbf{B}]$
Such that charge on $P=(0.47 \times-1)+(0.53 x+3)=+1.12$
Then $\gamma(P)=(0.47 \times 10)+(0.53 \times 2)=5.76$
For $\mathrm{X}=\mathrm{Br}$, charges: $\mathrm{P}+0.88, \mathrm{Br}-0.47$ (average)
This is reproduced by $[0.53 \times \mathbf{A}]+[0.47 \times \mathbf{B}]$
Such that charge on $P=(0.53 x-1)+(0.47 x+3)=+0.88$
Then $\gamma(\mathrm{P})=(0.53 \times 10)+(0.47 \times 2)=6.24$

Summary of charge map (the total charge is -1)

Two resonance forms are required to reproduce this distribution
A

(P has 10 e)

(P has 2 e)

Portions: $[(0.38) \times \mathbf{A}]+[(0.62) \times \mathbf{B}]$
Such that charge on $P=(0.38 x-1)+(0.62 x+3)=+1.48$
Then $\gamma(\mathrm{P})=(0.38 \times 10)+(0.62 \times 2)=5.04$
Molecule 4
Summary of charge map (the total charge is 0)

Three resonance forms are required to reproduce this distribution

(P has 10 e)

(P has 8 e)

(P has 2 e)

Portions: $[(0.26) \times \mathbf{A}]+[(0.283) \times \mathbf{B}]+[(0.457) \times \mathbf{C}]$
Such that charge on $P=(0.26 x-1)+(0.283 \times 0)+(0.457 x+3)=+1.12$
Then $\gamma(\mathrm{P})=(0.26 \times 10)+(0.283 \times 8)+(0.457 \times 2)=5.778$

Molecule 5
Summary of charge map (the total charge is +1)

Four resonance forms are required to reproduce this distribution
A

(P has 10 e)
B

(P has 8 e)
C

(P has 2 e)

Portions: $[(0.26) \times \mathbf{A}]+[(0.08) \times \mathbf{B}]+[(0.16) \times \mathbf{C}]+[(0.5) \times \mathbf{D}]$
Such that charge on $P=(0.26 x-1)+(0.08 \times 0)+(0.16 x+1)+(0.5 x+3)=+1.40$
Then $\gamma(\mathrm{P})=(0.26 \times 10)+(0.08 \times 8)+(0.16 \times 6)+(0.5 \times 2)=5.2$
Molecule 6
Summary of charge map (the total charge is -1)

Charge on $\mathrm{P}=+1.52$
Three resonance forms are required to reproduce this distribution

(P has 10 e)

(Phas 4 e)

(P has 2 e)

Portions: $[(0.35) \times \mathbf{A}]+[(0.08) \times \mathbf{B}]+[(0.57) \times \mathbf{C}]$
Such that charge on $P=(0.35 x-1)+(0.08 x+2)+(0.57 x+3)=+1.52$
Then $\gamma(\mathrm{P})=(0.35 \times 10)+(0.08 \times 4)+(0.57 \times 2)=4.96$

Molecule 7

Summary of charge map (the total charge is -1)

Two resonance forms are required to reproduce this distribution
A

(P has 10 e)

(P has 2 e)

Portions: [(0.4225) x A] + [(0.5775) x B]
Such that charge on $P=(0.4225 x-1)+(0.5775 x+3)=+1.31$
Then $\gamma(P)=(0.4225 \times 10)+(0.5775 \times 2)=5.38$

Graph S1. Valence equivalent parameter vs QTAIM charge

References:
S1. C. A. Dyker, V. Lavallo, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2008, 47, 3206.
S2 SMART version 5.628; Bruker AXS Inc.: Madison, WI, 2001.
S3 SAINT+ version 6.22a; Bruker AXS Inc.: Madison, WI, 2001.
S4 Sheldrick, G. M. SADABS; 1996.
S5 SHELXTL version 5.1; Bruker AXS Inc.: Madison, WI, 1997.
S6 M. J. Frisch, et al. Gaussian 09 Revision D.01, Gaussian Inc. Wallingford, CT, 2009.
S7 T. A. Keith, AIMAll (Version 27.09.15), TK Gristmill Software, Overland Park KS, USA, 2015 http://aim.tkgristmill.com.

