Supporting Information

Transfer and amplification of chirality in Phe-based C_{3}-symmetric tricarboxamides

Julia Buendía, ${ }^{a}$ Fátima García, ${ }^{a}$ Belén Yélamos, ${ }^{\text {b }}$ Luis Sánchez*a${ }^{a}$ Departamento de Química Orgánica, Facultad de Ciencias Químicas, UniversidadComplutense de Madrid, E-28040 Madrid (Spain).${ }^{\text {b }}$ Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas,Universidad Complutense de Madrid, 28040-Madrid (Spain)
Contents:
1.- Supplementary Figures and Tables S-2
FTIR spectra S-2
Concentration and temperature-dependent ${ }^{1} H$ NMR spectra S-3
SEM images S-4
$C D$ spectra of 1 in different solvents S-5
Photographs of the organogels formed by 1 and 2 S-5
VT-CD spectra of 1 S-6
Amplification of chirality experiments S-6
2. Experimental section S-7
3. Synthetic details and characterization S-8
4. Collection of spectra S-16

1. Supplementary Figures and Tables

Figure S1. Partial FTIR spectra of 1 and 2.

Figure S2. Partial ${ }^{1} \mathrm{H}$ NMR spectra of 1 in (a) CDCl_{3} at different concentrations (300 $\mathrm{MHz}, 298 \mathrm{~K}$), and in (b) $\mathrm{CD}_{3} \mathrm{CN}$ at 1 mM and different temperatures. The resonances in red correspond to the inner and outer amides.

Figure S3. SEM images of the fibrillar structures formed by the self-assembly of $1(a, b)$ and 2 (c, d) on to a glass substrate.

Figure S4. CD spectra of $\mathbf{1}$ in solvents of different polarity $\left(1 \times 10^{-4} \mathrm{M}, 298 \mathrm{~K}\right)$.

Figure S5. Photograph of the organogels formed from $\mathbf{1}$ and $\mathbf{2}$ in CCl_{4} at $\mathbf{7 m M}$ at room temperature (left) and at $70^{\circ} \mathrm{C}$ (right).

Figure S6. (a) CD spectra of 1 in CCl_{4} at $25^{\circ} \mathrm{C}$ (black line) and at $70^{\circ} \mathrm{C}$ (red line). (b) Cooling curve of 1 in CCl_{4} at $2 \times 10^{-4} \mathrm{M}$. The red line depicts the fitting of the variation of the dichroic signal at 323 nm to a sigmoidal curve $\left(R^{2}=0.9969\right)$.

Figure S7. (a) CD spectra of mixtures of 1 and $2\left(\mathrm{CCl}_{4}, 293 \mathrm{~K}, 1 \times 10^{-4} \mathrm{M}\right)$. (b) Changes in the CD intensity against the e.e. observed upon adding increasing aliquots of 1 to a solution of $2\left(\mathrm{CCl}_{4}, 293 \mathrm{~K}, 1 \times 10^{-4} \mathrm{M}\right)$. The red lines represent the fitting to straight line.

2. Experimental section

General. All solvents were dried according to standard procedures. Reagents were used as purchased. All air-sensitive reactions were carried out under argon atmosphere. Flash chromatography was performed using silica gel (Merck, Kieselgel 60, 230-240 mesh or Scharlau 60, 230-240 mesh). Analytical thin layer chromatography (TLC) was performed using aluminium-coated Merck Kieselgel 60 F254 plates. NMR spectra were recorded on a Bruker Avance $300\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}\right.$: 75 MHz) spectrometer at 298 K using partially deuterated solvents as internal standards. Coupling constants (\mathcal{J}) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, br = broad. FT-IR spectra were recorded on a Bruker Tensor 27 (ATR device) spectrometer. Circular dichroism (CD) measurements were performed on a Jasco-810 dichrograph equipped with a Peltier thermoelectric temperature controller. The spectra were recorded in the continuous mode between 400 and 200 nm , with a wavelength increment of 1 nm , a response time of 4 s , and a bandwidth of 1 nm . A 1 mm path length quartz cuvette (Hellma) was used. SEM images were obtained from on a JEOL JSM 6335F microscope working at 10kV. Matrix Assisted Laser Desorption Ionization (coupled to a Time-Of-Flight analyzer) experiments (MALDI-TOF) were recorded on a Bruker REFLEX spectrometer.

3. Synthetic details and characterization

Compounds 3, 4, 5 and 6 were prepared according to previously reported synthetic procedures (see: Jayaraman, M.; Fréchet, J. M. J. J. Am. Chem. Soc. 1998, 120, 12996-12997; Park, I.S.; Yoon, Y.R.; Jung, M; Kim, K.; Park, S.; Shin, S.; Lim, Y.; Lee, M. Chem. Asian. J. 2011, 6, 452-458; Buendía, J.; Sánchez, L.; Org. Lett. 2013, 22, 5746-5749) and showed identical spectroscopic properties to those reported therein.
(9H-fluoren-9-yl)methyl (S)-1-(3-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-((2-(2-(2-methoxyethoxy)ethoxy)ethoxy)methyl)propylcarbamoyl)-2 phenylethylcarbamate (7)

$N, N, N^{\prime}, N^{\prime}$-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU) $(1.30 \mathrm{~g}, 3.49 \mathrm{mmol})$ was dissolved in dry DMF (19 mL) under argon atmosphere and N -(9-Fluorenylmethoxycarbonyl)-L-phenylalanine (1.35 g, 3.49 mmol) and N, N Diisopropylethylamine (DIPEA) ($1.3 \mathrm{~mL}, 7.76 \mathrm{mmol}$) were added. The reaction mixture was stirred for 20 minutes. Then, amine $6(0.77 \mathrm{~g}, 1.94 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight. The residue was washed with HCl (1M)/water/ice, $\mathrm{NaOH}(3 \mathrm{M})$ and NaHCO_{3}, extracted with diethyl ether and dried over MgSO_{4}. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (silica gel, chloroform:methanol 100:1) affording compound 7 as a colorless solid ($1.10 \mathrm{~g}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.70(2 \mathrm{H}$,
$\left.\mathrm{H}_{\mathrm{a}}, \mathrm{d}, J=7.4\right) ; 7.50\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}, \mathrm{t}, \mathrm{J}=7.0\right) ; 7.34\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}, \mathrm{t}, \mathrm{J}=7.0\right) ; 7.28-7.11\left(7 \mathrm{H}, \mathrm{H}_{\mathrm{d}+\mathrm{j}+\mathrm{k}+\mathrm{l}}\right.$, m); $6.93\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{m}}, \mathrm{t}, \mathrm{J}=5.3\right) ; 5.81\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}, \mathrm{d}, \mathrm{J}=8.2\right) ; 4.44-4.19\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{f+h}}, \mathrm{~m}\right) ; 4.12(1 \mathrm{H}$, $\left.H_{e}, t, J=6.8\right) ; 3.60-3.16\left(36 H, H_{n+p+q+r+s+t+u+v+w}, m\right) ; 3.15-2.92\left(2 H, H_{i+i}, m\right) ; 2.00(1 H$, $\left.\mathrm{H}_{0}, \mathrm{~m}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 170.58,155.62,143.68,141.11,136.84,129.21$, 128.36, 127.54, 126.91, 126.63, 124.89, 119.79, 71.72, 70.85, 70.41, 70.24, 70.22, 70.16, 70.08, 66.52, 58.80, 56.27, 46.98, 40.32, 38.65, 38.48. FTIR (neat) 701, 741, 760, 942, 1041, 1092, 1244, 1350, 1450, 1530, 1658, 1717, 2871, 3280. HRMS (MALDI-TOF): calc. for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{NaO}_{11}[\mathrm{M}+\mathrm{Na}]^{+} 789.3938$; found 789.3972.

(S)-N-(3-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-((2-(2-(2-methoxyethoxy)

 ethoxy)ethoxy)methyl)propyl)-2-amino-3-phenylpropanamide (8)

Compound 7 ($1.1 \mathrm{~g}, 1.43 \mathrm{mmol}$) was dissolved in methylene chloride (35 mL) and piperidine (9 mL) was added. The reaction mixture was stirred for 24 hours. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (silica gel, chloroform:methanol 100:5) affording compound 8 as a yellow oil ($0.56 \mathrm{~g}, 72 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.64\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}, \mathrm{t}, \mathrm{J}=5.5\right) ; 7.30-$ $7.14\left(5 \mathrm{H}, \mathrm{H}_{\mathrm{a}+\mathrm{b}+\mathrm{c}}, \mathrm{m}\right) ; 3.61-3.26\left(37 \mathrm{H}, \mathrm{H}_{\mathrm{e}+\mathrm{g}+\mathrm{i}+j+k+1+\mathrm{m}+\mathrm{n}+o+\mathrm{p}}, \mathrm{m}\right) ; 3.18\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{d} \text { ód'}}, \mathrm{dd}, J=13.6\right.$, 4.3); $2.64\left(1 \mathrm{H}, \mathrm{H}_{\text {d ód }}\right.$, dd, $\left.J=13.6,9.1\right) ; 2.06\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{h}}, \mathrm{m}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 174.36, 138.22, 129.33, 128.59, 126.64, 71.90, 71.12, 70.59, 70.52, 70.48, 70.43, 59.00, 56.74, 41.23, 39.81, 39.13. FTIR (neat) 702, 746, 849, 1033, 1096, 1247, 1292, 1353, 1451, 1525, 1658, 2868, 3357. HRMS (MALDI-TOF): calc. for $\mathrm{C}_{27} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{9}$ $[\mathrm{M}+\mathrm{H}]^{+} 545.3438$; found 545.3423 .
(9H-fluoren-9-yl)methyl (R)-1-(3-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-((2-(2-(2-methoxyethoxy)ethoxy)ethoxy)methyl)propyIcarbamoyl)-2 phenylethylcarbamate (9)

$N, N, N N^{\prime}, N^{\prime}$-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU) $(1.96 \mathrm{~g}, 5.17 \mathrm{mmol})$ was dissolved in dry DMF (10 mL) under argon atmosphere and N -(9-Fluorenylmethoxycarbonyl)-D-phenylalanine (2.0 g, 5.17 mmol$)$ and $\mathrm{N}, \mathrm{N}-$ Diisopropylethylamine (DIPEA) ($2.0 \mathrm{~mL}, 11.48 \mathrm{mmol}$) were added. The reaction mixture was stirred for 20 minutes. Then, amine $6(1.14 \mathrm{~g}, 2.87 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight. The residue was washed with $\mathrm{HCl}(1 \mathrm{M}) /$ water/ice, $\mathrm{NaOH}(3 \mathrm{M})$ and NaHCO_{3}, extracted with diethyl ether and dried over MgSO_{4}. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (silica gel, chloroform:methanol 100:1) affording compound 9 as a colorless solid ($0.99 \mathrm{~g}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $7.75\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}, \mathrm{d}, \mathrm{J}=7.4\right) ; 7.54\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}, \mathrm{t}, \mathrm{J}=7.0\right) ; 7.39\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}, \mathrm{t}, \mathrm{J}=7.0\right) ; 7.33-7.16$ (7H, $\left.\mathrm{H}_{\mathrm{d}+j+k+1}, \mathrm{~m}\right)$; $6.95\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{m}}, \mathrm{t}, \mathrm{J}=5.3\right) ; 5.72\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}, \mathrm{d}, \mathrm{J}=8.2\right) ; 4.46-4.23\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{f}+\mathrm{h}}\right.$,
 $\mathrm{m}) ; 2.04\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{o}}, \mathrm{m}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 170.86,156.86,143.95,141.40$, 137.01, 129.49, 128.65, 127.81, 127.18, 126.93, 125.18, 120.07, 72.01, 71.18, 70.69, 70.54, 70.52, 70.47, 70.44, 66.89, 59.10, 56.48, 47.27, 40.60, 39.04, 38.75. FTIR (neat) 742, 760, 850, 942, 1041, 1093, 1199, 1244, 1350, 1450, 1532, 1659, 1717, 2872, 3282. HRMS (MALDI-TOF): calc. for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{NaO}_{11}[\mathrm{M}+\mathrm{Na}]^{+} 789.3938$; found 789.3967.
(R)-N-(3-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-((2-(2-(2-methoxyethoxy) ethoxy)ethoxy)methyl)propyl)-2-amino-3-phenylpropanamide (10)

$\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{9}$
Exact Mass: 544.336
Compound 9 ($0.99 \mathrm{~g}, 1.29 \mathrm{mmol}$) was dissolved in methylene chloride (32 mL) and piperidine (8 mL) was added. The reaction mixture was stirred for 24 hours. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (silica gel, chloroform:methanol 100:5) affording compound 10 as a yellow oil ($0.37 \mathrm{~g}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.67\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}, \mathrm{t}, \mathrm{J}=5.5\right) ; 7.30-$
 4.3); 2.67 ($1 \mathrm{H}, \mathrm{H}_{\text {dód }}{ }^{\prime}$, dd, $J=13.6,9.1$); $2.08\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{h}}, \mathrm{m}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta}$ 174.27, 138.16, 129.35, 128.60, 126.67, 71.90, 71.11, 70.59, 70.52, 70.47, 70.43, 59.01, 56.72, 41.16, 39.82, 39.12. FTIR (neat) 703, 746, 850, 939, 1033, 1097, 1199, 1247, 1292, 1353, 1452, 1525, 1658, 2869, 3357. HRMS (MALDI-TOF): calc. for $\mathrm{C}_{27} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{9}\left[\mathrm{M}+\mathrm{H}^{+} 545.3438\right.$; found 545.3425.

N-((S)-1-(3-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-((2-(2-(2-methoxyethoxy) ethoxy)ethoxy)methyl)propylcarbamoyl)-2-phenylethyl)-4-iodobenzamide (11)

$N, N, N^{\prime}, N^{\prime}$-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU) ($0.70 \mathrm{~g}, 1.85 \mathrm{mmol}$) was dissolved in dry DMF (18 mL) under argon atmosphere and 4iodobenzoic acid ($0.46 \mathrm{~g}, 1.85 \mathrm{mmol}$) and N, N-Diisopropylethylamine (DIPEA) (0.7 mL , 4.12 mmol) were added. The reaction mixture was stirred for 20 minutes. Then, amine 8 ($0.56 \mathrm{~g}, 1.03 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature overnight. The residue was washed with $\mathrm{HCl}(1 \mathrm{M}) /$ water/ice, NaOH (3M) and NaHCO_{3}, extracted with diethyl ether and dried over MgSO_{4}. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (silica gel, chloroform:methanol $50: 1$) affording compound 11 as a white solid ($0.44 \mathrm{~g}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.72\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}, \mathrm{d}, \mathrm{J}=8.5\right) ; 7.46$ (2H, $\left.\mathrm{H}_{\mathrm{b}}, \mathrm{d}, \mathrm{J}=8.5\right) ; 7.29-7.13\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{c}+\mathrm{f}+\mathrm{g}+\mathrm{h}}, \mathrm{m}\right) ; 6.99\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{i}}, \mathrm{t}, \mathrm{J}=5.4\right) ; 4.74\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}, \mathrm{q}\right.$,
 ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 170.66,166.11,137.71,136.91,133.56,129.46,128.86$, 128.59, 126.94, 98.66, 71.95, 70.99, 70.95, 70.67, 70.51, 70.43, 70.40, 70.36, 59.05, 55.14, 40.37, 38.76. FTIR (neat) 700, 749, 846, 1005, 1104, 1245, 1353, 1451, 1476, 1534, 1586, 1635, 1722, 2868, 3295. HRMS (MALDI-TOF): calc. for $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{NaO}_{10}$ $\left[^{M}+\mathrm{Na}\right]^{+} 797.2486$; found 797.2487.

N-((R)-1-(3-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-((2-(2-(2-methoxyethoxy)

 ethoxy)ethoxy)methyl)propylcarbamoyl)-2-phenylethyl)-4-iodobenzamide (12)
$\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}-$ Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU) ($0.46 \mathrm{~g}, 1.21 \mathrm{mmol}$) was dissolved in dry DMF (12 mL) under argon atmosphere and 4iodobenzoic acid ($0.30 \mathrm{~g}, 1.21 \mathrm{mmol}$) and N, N-Diisopropylethylamine (DIPEA) (0.5 mL , 2.68 mmol) were added. The reaction mixture was stirred for 20 minutes. Then, amine $10(0.40 \mathrm{~g}, 0.67 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight. The residue was washed with $\mathrm{HCl}(1 \mathrm{M}) /$ water/ice, NaOH (3M) and NaHCO_{3}, extracted with diethyl ether and dried over MgSO_{4}. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (silica gel, chloroform:methanol 50:1) affording compound 12 as a white solid ($0.36 \mathrm{~g}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.75\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}, \mathrm{d}, \mathrm{J}=8.5\right) ; 7.48$ (2H, $\mathrm{H}_{\mathrm{b}}, \mathrm{d}, \mathrm{J}=8.5$); 7.29-7.16 (5H, $\left.\mathrm{H}_{\mathrm{ftg+h}}, \mathrm{~m}\right) ; 7.10\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}, \mathrm{d}, \mathrm{J}=7.4\right.$); $7.01\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{i}}, \mathrm{t}\right.$, $J=5.4) ; 4.75\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{d}}, \mathrm{q}, J=6.9\right) ; 3.67-3.22\left(36 \mathrm{H}, \mathrm{H}_{\mathrm{j}+1+\mathrm{m}+\mathrm{n+o+p+q+r+s}}, \mathrm{~m}\right) ; 3.18-3.11(2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{e}+\mathrm{e}}, \mathrm{m}\right) ; 2.04\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{k}}, \mathrm{m}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 170.64,166.14,137.82$, 136.91, 133.64, 129.53, 128.90, 128.67, 127.03, 98.74, 72.03, 71.12, 71.08, 70.76, 70.59, 70.50, 70.47, 70.42, 59.13, 55.15, 40.57, 38.79. FTIR (neat) 664, 701, 846, 1005, 1105, 1245, 1280, 1353, 1451, 1476, 1535, 1587, 1635, 1722, 2869, 3295. HRMS (MALDI-TOF): calc. for $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+} 797.2486$; found 797.2459.

Compound 1

Compound 11 ($0.49 \mathrm{~g}, 0.63 \mathrm{mmol}$), compound 13 ($0.029 \mathrm{~g}, 0.19 \mathrm{mmol}$), bis-(triphenylphosphine)-palladium(II) chloride ($0.007 \mathrm{~g}, 0.01 \mathrm{mmol}$), copper(I) iodide $(0.0021 \mathrm{~g}, 0.011 \mathrm{mmol})$, were dissolved in dry THF (10 mL) and subjected to several vacuum/argon cycles. After that, triethylamine (2.5 mL) was added and subjected to more vacuum/argon cycles. The reaction mixture was heated at $67^{\circ} \mathrm{C}$ and stirred 48 hours. After evaporation of the solvent under reduced pressure, the residue was washed with HCl 1 M , extracted with chloroform, washed with $\mathrm{NH}_{4} \mathrm{Cl}$ saturated solution and water and dried over MgSO_{4}. After evaporation of the solvent, the residue was purified by column chromatography (silica gel, chloroform:methanol 50:1) affording compound 1 as a yellow solid ($0.15 \mathrm{~g}, 38 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.76(6 \mathrm{H}$, $\mathrm{H}_{\mathrm{c}}, \mathrm{d}, \mathrm{J}=8.4$); 7.68 (3H, $\mathrm{H}_{\mathrm{a}}, \mathrm{s}$); 7.56 ($6 \mathrm{H}, \mathrm{H}_{\mathrm{b}}, \mathrm{d}, \mathrm{J}=8.4$); 7.34-7.20 (15H, $\left.\mathrm{H}_{\mathrm{g}+\mathrm{h}+\mathrm{i}}, \mathrm{m}\right)$; 7.08 (3H, H $, ~ d, ~ J=7.6) ; ~ 6.90\left(3 H, H_{j}, t, J=5.5\right) ; 4.77\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{e}}, \mathrm{m}\right) ; 3.66-3.23(108 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{k}+\mathrm{m}+\mathrm{n}+\mathrm{o+p+q+r+++t}}, \mathrm{~m}\right)$, $3.19\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{f}+\mathrm{f}}, \mathrm{d}, \mathrm{J}=6.7\right)$; $2.05\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{l}}, \mathrm{m}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta$ 170.61, 166.09, 136.97, 134,63, 134.02, 131.87, 129.54, 128.68, 127.38, 127.02, 126.12, 123.91, 90.07, 89.94, 72.03, 71.15, 71.10, 70.77, 70.59, 70.51, 70.47, 70.42, 59.12, 55.21, 40.60, 38.79. FTIR (neat) 699, 751, 851, 877, 1105, 1249, 1306, 1354, 1450, 1497, 1532, 1632, 2868, 2919, 3287. HRMS (MALDI-TOF): calc. for $\mathrm{C}_{114} \mathrm{H}_{157} \mathrm{~N}_{6} \mathrm{NaO}_{30}[\mathrm{M}+\mathrm{H}+\mathrm{Na}]^{+}$2113.0842; found 2113.0869 .

Compound 2

Compound 12 ($0.40 \mathrm{~g}, 0.52 \mathrm{mmol}$), compound 13 ($0.024 \mathrm{~g}, 0.16 \mathrm{mmol}$), bis-(triphenylphosphine)-palladium(II) chloride ($0.011 \mathrm{~g}, 0.016 \mathrm{mmol}$), copper(I) iodide $(0.0012 \mathrm{~g}, 0.006 \mathrm{mmol})$, were dissolved in dry THF (10 mL) and subjected to several vacuum/argon cycles. After that, triethylamine (2 mL) was added and subjected to more vacuum/argon cycles. The reaction mixture was heated at $67^{\circ} \mathrm{C}$ and stirred 20 hours. After evaporation of the solvent under reduced pressure, the residue was washed with HCl 1 M , extracted with chloroform, washed with $\mathrm{NH}_{4} \mathrm{Cl}$ saturated solution and water and dried over MgSO_{4}. After evaporation of the solvent, the residue was purified by column chromatography (silica gel, chloroform:methanol 50:1) affording compound 2 as a yellow solid ($0.15 \mathrm{~g}, 47 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.77(6 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{c}}, \mathrm{d}, \mathrm{J}=8.4\right) ; 7.69\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{a}}, \mathrm{s}\right) ; 7.57\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{b}}, \mathrm{d}, \mathrm{J}=8.4\right) ; 7.32-7.20\left(15 \mathrm{H}, \mathrm{H}_{\mathrm{g}+\mathrm{h}+}, \mathrm{m}\right)$; $7.16\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{d}}, \mathrm{d}, \mathrm{J}=7.6\right) ; 7.08\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{j}}, \mathrm{t}, \mathrm{J}=5.5\right) ; 4.79\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{e}}, \mathrm{m}\right) ; 3.66-3.27(108 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{k}+\mathrm{m}+\mathrm{n}+\mathrm{o+p+q+r+5+t}}, \mathrm{~m}\right)$, $3.19\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{f}+\mathrm{f}}, \mathrm{m}\right)$; $2.06\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{l}}, \mathrm{m}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 170.83, 166.16, 136.90, 134,62, 133.91, 131.87, 129.55, 128.68, 127.42, 127.03, 126.14, 123.89, 90.07, 89.95, 72.01, 71.06, 70.99, 70.74, 70.57, 70.45, 70.47, 70.42, 59.13, 55.21, 40.55, 38.76. FTIR (neat) 700, 754, 853, 1026, 1107, 1245, 1281, 1378, 1454, 1495, 1546, 1641, 2858, 2923, 3294. HRMS (MALDI-TOF): calc. for $\mathrm{C}_{114} \mathrm{H}_{156} \mathrm{~N}_{6} \mathrm{NaO}_{30}[\mathrm{M}+\mathrm{Na}]^{+} 2112.076$; found 2112.084 .

4. Collection of spectra

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum ($\mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of compound 7 .

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of compound 8.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of compound 9 .

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of compound 11.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of compound 11.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-HMQC spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of compound 12.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMQC}$ spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of compound 1.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMQC}$ spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of compound 2.

