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Oligonucleotides, peptides, sugars, and DNA-anchored conjugates 
Oligonucleotides and peptides. DNA oligonucleotides were obtained from Integrated DNA 

Technologies (Coralville, IA) or prepared by solid-phase synthesis on an ABI 394 instrument using 
reagents from Glen Research. All oligonucleotides were purified by 7 M urea denaturing PAGE with 
running buffer 1 TBE (89 mM each Tris and boric acid and 2 mM EDTA, pH 8.3) as described 
previously.1 Peptides were synthesized on the solid phase as described.2 

Sugars. 2-Chloro-4-nitrophenyl β-D-glucuronide, the immediate precursor to DNA-anchored glycosyl 
donor conjugate 1a, and 4-nitrophenyl α-D-glucuronide, the immediate precursor to DNA-anchored 
glycosyl donor conjugate 2b, were synthesized as described in the final section of this ESI. 4-Nitrophenyl 
β-D-glucuronide, the immediate precursor to DNA-anchored glycosyl donor conjugate 1b, was obtained 
from Chem-Impex (cat. no. 21811). Phenyl β-D-glucuronide, the immediate precursor to DNA-anchored 
glycosyl donor conjugate 1c, was obtained from Carbosynth (cat. no. MP04835). 

Preparation of DNA-anchored peptide conjugates. DNA-anchored peptide conjugates were 
synthesized by disulfide formation between a DNA HEG-tethered 3-thiol and the N-terminal cysteine 
side chain of the peptide. The experimental procedure is provided in our recent report.3 

Preparation of DNA-anchored glycosyl donor conjugates. The 5-NH2-DNA was prepared with a C6 
tether between the 5-phosphate and the amino group. An aqueous 20 µL sample containing 2 nmol of 5-
NH2-DNA, 100 mM MOPS pH 7.0, 30 mM O-arylglucuronic acid (from a 300 mM stock in DMF), and 
450 mM DMT-MM4 was incubated at room temperature for 24 h. The reaction was diluted to 800 µL with 
water, filtered, and purified by HPLC [Shimdazu Prominence instrument; Phenomenex Gemini-NX C18 
column, 5 µm, 10  250 mm; gradient of 15% solvent A (20 mM triethylammonium acetate in 50% 
acetonitrile/50% water, pH 7.0) and 85% solvent B (20 mM triethylammonium acetate in water, pH 7.0) at 
0 min to 30% solvent A and 70% solvent B at 45 min with flow rate of 3.5 mL/min]. Fractions were 
pooled, dried in a SpeedVac, and redissolved in water. See Table S2 for MALDI mass spectrometry 
analysis. 
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oligonucleotide purpose oligonucleotide sequence 
  

Selections with DNA 3-OH or DNA-HEG-CAAYAA + 1a (ArO--D-Glc-DNA) 
DNA 3-OH substrate GGATAATACGACTCACTAT 

DNA-HEG-CAAYAA substrate GGATAATACGACTCACTAT-HEG-CAAYAA 

DNA-anchored glycosyl donor substrate ArO--D-Glc-GAAGAGATGGCGACTTCG a 

forward primer for selection CGAAGTCGCCATCTCTTC 

reverse primer for selection (AAC)4XCCATCAGGATCAGCT 

random pool for selection CGAAGTCGCCATCTCTTC-N40-ATAGTGAGTCGTATTAAGCTGATCCTGATGG 

splint for ligation step during selection b ATAGTGAGTCGTATTATCCTCCATCAGGATCAGCTTAATACGACTCACTAT  

  

Reselection of 11GV112 with DNA 3-OH + 1a (ArO--D-Glc-DNA) 

DNA 3-OH substrate GGATCTAGCACATCCCTAT 

DNA-anchored glycosyl donor substrate ArO--D-Glc-GAAACTTTTTAGATTTCG c 

forward primer for selection CGAAATCTAAAAAGTTTC 

reverse primer for selection (AAC)4XCCATCAGGATCAGCT 

partially randomized pool for selection d CGAAATCTAAAAAGTTTC-N40-ATAGGGATGTGCTAGAAGCTGATCCTGATGG 

splint for ligation step during selection b ATAGGGATGTGCTAGATCCTCCATCAGGATCAGCTTCTAGCACATCCCTAT 

  

Selection with DNA 3-OH + 2b (ArO--D-Glc-DNA) 

DNA 3-OH substrate GGATCCTGGATACAAATAT 

DNA-anchored glycosyl donor substrate ArO--D-Glc-GAACAGGTTTATACTTCG c 

forward primer for selection CGAAGTATAAACCTGTTC 

reverse primer for selection (AAC)4XCCATCAGGATCAGCT 

random pool for selection CGAAGTATAAACCTGTTC-N40-ATATTTGTATCCAGGAAGCTGATCCTGATGG  

splint for ligation step during selection b ATATTTGTATCCAGGATCCTCCATCAGGATCAGCTTCCTGGATACAAATAT 

 
Table S1. Oligonucleotide sequences used in this report. All sequences are written 5 to 3. In the reverse PCR 
primer for selection, X denotes the HEG spacer to stop Taq polymerase. 
a The tabulated 18 nt sequence was used for deoxyribozyme assays. For the selection process itself, the 36 nt 

sequence that additionally included (AAC)6 at its 3-terminus was used in odd-numbered rounds, to enable a 
larger PAGE shift during the selection step. This was done to avoid survival of aberrantly migrating products that 
consistently migrate at the same gel position. 

b The underlined T in the splint was absent in the round 1 ligation step because the DNA pool in this step was 
prepared by solid-phase synthesis and therefore did not have an untemplated A nucleotide at its 3-end. The 
underlined T was included in all other selection rounds to account for the untemplated A nucleotide that is added at 
the 3-end of each PCR product by Taq polymerase. 

c The tabulated 18 nt sequence was used for deoxyribozyme assays. For the selection process itself, the 36 nt 
sequence that additionally included (AAC)6 at its 3-terminus was used in all selection rounds. 

d The partially randomized pool was prepared such that each nucleotide of the initially random (N40) region is the 
parent nucleotide with 75% probability and one of the other three nucleotides with 25% probability. 
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Procedure for ligation step in subsequent rounds. A 17 µL sample containing the PCR-amplified 
DNA pool (~5–10 pmol), 30 pmol of DNA splint, and 50 pmol of 5-phosphorylated glycosyl acceptor 
substrate (DNA 3-OH or DNA-HEG-CAAYAA) was annealed in 5 mM Tris, pH 7.5, 15 mM NaCl, and 
0.1 mM EDTA by heating at 95 °C for 3 min and cooling on ice for 5 min. To this solution was added 2 
µL of 10 T4 DNA ligase buffer (Fermentas) and 1 µL of 1 U/µL T4 DNA ligase (Fermentas). 10 T4 
DNA ligase buffer that lacks DTT (400 mM Tris, pH 7.8, 100 mM MgCl2, and 5 mM ATP) was used with 
the disulfide-linked oligonucleotide-peptide conjugate. The sample was incubated at 37 °C for 12 h and 
purified by 8% PAGE. 

Procedure for selection step in round 1. Each selection experiment was initiated with 200 pmol of the 
ligated pool. A 20 µL sample containing 200 pmol of ligated pool and 300 pmol of DNA-glycosyl donor 
substrate was annealed in (conditions A) 5 mM HEPES, pH 7.5, 15 mM NaCl, and 0.1 mM EDTA or 
(conditions B) 5 mM CHES, pH 9.0, 15 mM NaCl, and 0.1 mM EDTA by heating at 95 °C for 3 min and 
cooling on ice for 5 min. The selection reaction was initiated by bringing the sample to 40 µL total volume 
containing (conditions A) 70 mM HEPES, pH 7.5, 40 mM MgCl2, 20 mM MnCl2, 1 mM ZnCl2, and 150 
mM NaCl or (conditions B) 50 mM CHES, pH 9.0, 40 mM MgCl2, and 150 mM NaCl. The Mn2+ was 
added from a 10 stock solution containing 200 mM MnCl2. The Zn2+ was added from a 10 stock 
solution containing 10 mM ZnCl2, 20 mM HNO3, and 200 mM HEPES at pH 7.5; this stock solution was 
freshly prepared from a 100 stock of 100 mM ZnCl2 in 200 mM HNO3. The metal ion stocks were added 
last to the final sample. The sample was incubated at 37 °C for 14 h. 

Procedure for selection step in subsequent rounds. A 10 µL sample containing the ligated pool and 30 
pmol of DNA-glycosyl donor substrate was annealed in (conditions A) 5 mM HEPES, pH 7.5, 15 mM 
NaCl, and 0.1 mM EDTA or (conditions B) 5 mM CHES, pH 9.0, 15 mM NaCl, and 0.1 mM EDTA by 
heating at 95 °C for 3 min and cooling on ice for 5 min. The selection reaction was initiated by bringing 
the sample to 20 µL total volume containing (conditions A) 70 mM HEPES, pH 7.5, 40 mM MgCl2, 20 
mM MnCl2, 1 mM ZnCl2, and 150 mM NaCl or (conditions B) 50 mM CHES, pH 9.0, 40 mM MgCl2, and 
150 mM NaCl. The sample was incubated at 37 °C for 14 h. 

Procedure for PCR. In each selection round, two PCR reactions were performed, 10-cycle PCR 
followed by 30-cycle PCR. First, a 100 µL sample was prepared containing the PAGE-purified selection 
product, 200 pmol of forward primer, 50 pmol of reverse primer, 20 nmol of each dNTP, 10 µL of 10 
Taq polymerase buffer [1 = 20 mM Tris-HCl, pH 8.8, 10 mM (NH4)2SO4, 10 mM KCl, 2 mM MgSO4, 
and 0.1% Triton X-100], and Taq polymerase. This sample was cycled 10 times according to the 
following PCR program: 94 °C for 2 min, 10 (94 °C for 30 s, 47 °C for 30 s, 72 °C for 30 s), 72 °C for 5 
min. Taq polymerase was removed by phenol/chloroform extraction. Second, a 50 µL sample was 
prepared containing 1 µL of the 10-cycle PCR product, 100 pmol of forward primer, 25 pmol of reverse 
primer, 10 nmol of each dNTP, 20 µCi of -32P-dCTP (800 Ci/mmol), 5 µL of 10 Taq polymerase 
buffer, and Taq polymerase. This sample was cycled 30 times according to the following PCR program: 
94 °C for 2 min, 30 (94 °C for 30 s, 47 °C for 30 s, 72 °C for 30 s), 72 °C for 5 min. Samples were 
separated by 8% PAGE. 

Cloning and screening of individual deoxyribozymes. The PCR primers used for cloning were the 
forward primer used in selection and the reverse primer as 5-TAATTAATTAATTACCCATCAGGATCAGCT-3. 
The 10-cycle PCR product from the appropriate selection round was diluted 103-fold. A 50 µL sample was 
prepared containing 1 µL of the diluted 10-cycle PCR product from the appropriate selection round, 25 
pmol of forward cloning primer, 25 pmol of reverse cloning primer, 10 nmol of each dNTP, 5 µL of 10 
Taq polymerase buffer, and Taq polymerase. This sample was cycled 30 times according to the following 
PCR program: 94 °C for 2 min, 30 (94 °C for 30 s, 47 °C for 30 s, 72 °C for 30 s), 72 °C for 5 min. The 
sample was separated by 1% agarose gel and extracted using a GeneJET Gel Extraction Kit (Fermentas). 
The extracted product was quantified by absorbance (A260) and diluted to 4–8 ng/µL. A 1 µL portion of 
the diluted PCR product was inserted into the pCR2.1-TOPO vector using a TOPO TA cloning kit (Life 
Technologies). Individual E. coli colonies harboring plasmids with inserts were identified by blue-white 
screening and grown in LB/amp media. Miniprep DNA was prepared using a GeneJET Plasmid Miniprep 
Kit (Fermentas) and screened for properly sized inserts by EcoRI digestion and agarose gel analysis. 
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Before sequencing, assays of individual deoxyribozyme clones were performed with PAGE-purified DNA 
strands prepared by PCR from the miniprep DNA, using the single-turnover assay procedure described 
below. 

 
 

Single-turnover deoxyribozyme assay procedure 
Single-turnover deoxyribozyme assay. The glycosyl acceptor substrate (DNA 3-OH or DNA-HEG-

CAAYAA) was 5-32P-radiolabeled using -32P-ATP and T4 polynucleotide kinase (Fermentas), using 10 
kinase buffer (500 mM Tris, pH 7.6, 100 mM MgCl2, 1 mM spermidine, and 50 mM DTT); DTT was 
omitted from the buffer for the disulfide-linked oligonucleotide-peptide conjugate. A 10 µL sample 
containing 0.2 pmol of 5-32P radiolabeled glycosyl acceptor substrate, 10 pmol of deoxyribozyme, and 30 
pmol of DNA-glycosyl donor substrate were annealed in (for conditions A) 5 mM HEPES, pH 7.5, 15 mM 
NaCl, and 0.1 mM EDTA or (for conditions B) 5 mM CHES, pH 9.0, 15 mM NaCl, and 0.1 mM EDTA 
by heating at 95 °C for 3 min and cooling on ice 5 min. The DNA-catalyzed reaction was initiated by 
bringing the sample to 20 µL total volume containing (conditions A) 70 mM HEPES, pH 7.5, 1 mM 
ZnCl2, 20 mM MnCl2, 40 mM MgCl2 and 150 mM NaCl or (conditions B) 50 mM CHES, pH 9.0, 40 mM 
MgCl2, and 150 mM NaCl. For assays of 16MJ132 and 16MJ101, similar kobs and yield were observed 
with 0.2–0.5 mM Zn2+, whereas the yield was lower at or above 0.6 mM Zn2+; in the assays of Fig. 4 and 
related experiments, 0.4 mM Zn2+ was used. The sample was incubated at 37 °C. At appropriate time 
points, 2 µL aliquots were quenched with 5 µL of stop solution (80% formamide, 1 TBE [89 mM each 
Tris and boric acid and 2 mM EDTA, pH 8.3], 50 mM EDTA, 0.025% bromophenol blue, 0.025% xylene 
cyanol). Samples were separated by 20% PAGE and quantified using a Phosphorimager. Values of kobs 
were obtained by fitting the yield versus time data directly to first-order kinetics; i.e., yield = Y•(1 – e–kt), 
where k = kobs and Y is the final yield. 
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Synthesis of O-arylglycoside compounds 
 
Reagents were commercial grade and used without purification unless otherwise indicated. Dry 

CH3CN was obtained from Acros Acroseal bottles. Thin-layer chromatography (TLC) was performed on 
silica gel plates pre-coated with fluorescent indicator with visualization by UV light (254 nm). Flash 
column chromatography was performed with silica gel (230-400 mesh). NMR spectra were recorded on a 
Varian Unity instrument. The chemical shifts in parts per million (δ) are reported downfield from TMS or 
DSS (0 ppm) and referenced to the residual proton signal of the deuterated solvent, as follows: CDCl3 
(7.26 ppm), CD3OD (3.31 ppm), or D2O (4.79 ppm) for 1H NMR spectra; CDCl3 (77.2 ppm) for 13C NMR 
spectra. Apparent multiplicities of 1H NMR peaks are reported as s (singlet), d (doublet), or m (multiplet 
and overlapping spin systems), along with values for apparent coupling constants (J, Hz). Mass 
spectrometry data were obtained at the UIUC School of Chemical Sciences Mass Spectrometry 
Laboratory using a Waters Quattro II instrument (LR-ESI). 
 
2-Chloro-4-nitrophenyl 2,3,4-tri-O-acetyl-β-D-glucuronide methyl ester (see ref. 5 for analogous 
procedure) 
In a flame-dried 25 mL round-bottom flask under argon, 1-bromo-2,3,4-tri-O-acetyl--D-glucuronide 
methyl ester (105 mg, 0.264 mmol, 1.0 equiv; Carbosynth, cat. no. MB04460) was dissolved in 2.8 mL of 
anhydrous CH3CN. 2-Chloro-4-nitrophenol (49 mg, 0.282 mmol, 1.1 equiv) and Ag2O (151 mg, 0.652 
mmol, 2.5 equiv) were added, the flask was covered with aluminum foil, and the mixture was stirred at 
room temperature for 24 h, at which point the reaction was complete as assessed by TLC. The mixture 
was filtered through Celite, and the yellow filtrate was concentrated on a rotary evaporator. The resulting 
light brown oil was dissolved in 30 mL of ethyl acetate, washed with saturated NaHCO3 (3  25 mL) and 
saturated NaCl (3  25 mL), dried over MgSO4, and concentrated on a rotary evaporator. The light brown 
solid was purified by flash column chromatography, eluting with 3:1 hexanes:ethyl acetate to 1:1 
hexanes:ethyl acetate, to provide a white solid (113 mg, 0.231 mmol, 87% yield). 
TLC: Rf = 0.69 (1:1 hexanes:ethyl acetate). 
1H NMR: (500 MHz, CDCl3) δ 8.30 (d, J = 2.7 Hz, 1H), 8.15 (dd, J = 9.1 Hz, 2.7 Hz, 1H), 7.31 (d, J = 9.1 
Hz, 1H), 5.43-5.36 (m, 3H), 5.32-5.30 (m, 1H), 4.32 (d, J = 8.6 Hz, 1H), 3.75 (s, 3H), 2.11 (s, 3H), 2.09 
(s, 3H), 2.08 (s, 3H) ppm. 
13C NMR: (125 MHz, CDCl3) δ 170.0, 169.4, 169.1, 166.7, 143.4, 139.6, 126.3, 125.0, 123.8, 116.7, 99.0, 
72.8, 71.0, 71.0, 70.3, 68.7, 53.2, 20.7, 20.62, 20.59 ppm. 
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