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General information

For peptide synthesis, Fmoc-protected amino acids Fmoc-Ala-OH, Fmoc-Gly-OH,
Fmoc-Phe-OH, Fmoc-lle-OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-GIn(Trt)-OH, Fmoc-
Asn(Trt)-OH and Fmoc-D-Ala-OH were purchased from GL Biochem. 2-
chlorotritylchloride resin (loading value ~0.65 mmol/g) was purchased from Nankai
Synthesis. N-methylpyrolidone (NMP), dichloromethane (DCM), dimethylformamide
(DMF), diisopropylethylamine (DIPEA), trifluoroacetic acid (TFA), triisopropylsilane
(TIPS) were purchased from Energy Chemical. 2,2-dimethoxy-2-phenylacetophenone
(DMPA) were purchased from Aladdin Chemical. Other solvents and reagents were
purchased from Energy Chemical and J&K without further purification.

The reverse phase high performance liquid chromatography (HPLC) was
performed on Shimadzu prominence LC-20AT instrument equipped with C18 column
and acetonitrile /water as the eluent condition. H-NMR spectra were recorded on
Bruker Avance-Ill 400MHz. LC-MS was recorded on Shimadzu LCMS 2020 equipped
with electrospray ionization. Circular dichroism spectra were recorded on Applied
photophysics chirascan instrument. In serum digestion two-month-old mice were
purchased from Guangdong medical laboratory animal center.

Synthesis of unnatural amino acids (S;~Seg)
The synthesis of S5 was showed as an example, and Ss, S4, S¢ were synthesized in
the similar route.

Cl

gCI COOH‘)\. o N o L nacoon CN N Ojo
Cl NH N

H Nl(NO3)2 “6H,0 0N 1
& .COOH  KOH @\/\l’D PCl5, CHCly ©\/\NQ D
CH3OH, 50°C cl KOH, CHyH, 45 CH,OH, 45°C ‘ ‘

1

H O
Fmoc-OSu
KOn DME > CN (0] 3moliL HCI, 50°C HaN \HJ‘OH NasHcos Fmoc” N\{:‘OH
Z~~_Br Ni° CH,Cl,/CH5OH HEOICchN
O/\N N /\/\
Va V4

Figure S1 The synthetic route of Sg
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Compound 1:
Potassium hydroxide (76.8 g, 1.4 mol) was dissolved in anhydrous methanol (250

ml) and heated to 60°C, then L-proline (46 g, 0.4 mol) was added into the mixture.

After complete dissolution, 2-chlorobenzyl chloride (65.7 ml, 0.52 mol) was added
dropwise. After 24h, CH,Cl, (200 ml) was added and the reaction mixture stood for
4h. Then the mixture was filtered out and the residue was washed by CH,Cl, twice.
The filtrate was gathered, concentrated and crystallized in acetone to obtain
compound 1 (80.6 g, yield: 82%).

Compound 2:
Compound 1 (24.8 g, 0.1 mol) was added into CH,Cl, (200 ml) and the mixture was

cooled to 0°C. Phosphorus pentachloride (30.2 g, 0.15 mol) was added dropwise and

stirred for 1h, followed by the addition of 2-aminobenzophenone (20.0 g, 0.1 mol).
The reaction was stirred at r.t. for 4h. CH,Cl, was removed under vacuum and
acetone was added for crystallization to obtain compound 2 (23.5 g, yield: 56%).

Compound 3:
Compound 2 (25.0 g, 0.065 mol), nickel (Il) nitrate hexahydrate (31.6 g, 0.11 mol)
and glycine (20.5 g, 0.27 mol) were dissolved in anhydrous methanol (300 ml) and

heated to 50°C. The potassium hydroxide (25.0 g, 0.47 mol) in methanol (150 ml)

solution was added dropwise. After 4h, acetic acid was added. Methanol was
removed and followed by the addition of water (800 ml), and stirred at r.t. overnight
to promote the precipitation. The mixture was filtered out and residue was gathered
to obtain red solid compound 3 (22 g, yield: 75%).

Compound 4

Under N, atmosphere, compound 3 (20.0 g, 0.04 mol) was dissolved in DMF (200
ml), followed by the addition of powdered potassium hydroxide (21.1 g, 0.4 mol) and
the reaction mixture was stirred at r.t. for 1h. Under the condition of ice bath, 5-
bromo-1-pentene (4.7 ml, 0.042 mol) was added dropwise. Then the reaction was
gradually warmed to r.t. and stirred for 4h before the addition of 5% v/v acetic acid
in water. The reaction continued to be stirred for 6h to promote the precipitation
and filtered out. The residue was gathered and washed by water for three times to
obtain compound 4 (19.7 g, yield: 87%).

Compound 5
Compound 4 (19.7 g, 0.035 mol) was dissolved in methanol/CH,Cl, (v/v = 50
ml/100 ml), and 3M hydrochloric acid (100 ml) was added into the mixture. The

reaction was heated to 60°C and stirred overnight until yellow/green color change

was observed. Then the solvent was removed in vacuo and chloroform was used for



extraction for three times to recover the ligand. The amino acid aqueous fraction
was used for the next step without further purification.

Compound 6 (Ss)

Sodium bicarbonate (16.8 g, 0.2 mol) and EDTA-Na (18.6 g, 0.05 mol) were added
into the aqueous fraction to remove residual nickel. After stirring for 20 minutes,
sodium bicarbonate was added again to make pH value of the mixture stay at 7-8.

Then the mixture was cooled to 0°C with ice bath. 9-fluorenylmethyl succinimidyl

carbonate (11.7 g, 0.035 mol) was dissolved in 1,4-dioxane (50 ml) and added
dropwise into the aqueous solution. The reaction was gradually warmed to r.t. and
stirred for 12h. 1,4-dioxane was removed in vacuo and citric acid was added to make
pH value of the mixture stay at 2-3. The reaction was extracted with ethyl acetate for
three times. The organic layers were gathered, dried with Na,SO, and concentrated
in vacuo. The final product S; was obtained after the purification of flash
chromatography (CH,Cl,:H,0 = 20:1) (4.9 g, yield: 38%).

'H NMR (400 MHz, CDCl3) 6 7.76 (d, J = 7.5 Hz, 2H), 7.59 (d, J = 7.4 Hz, 2H), 7.40 (t, J =
7.4 Hz, 2H), 7.31 (td, J = 7.4, 0.9 Hz, 2H), 5.75 (s, 1H), 5.57 (s, 1H), 4.98 (dd, J = 27.6,
13.4 Hz, 2H), 4.40 (s, 2H), 4.21 (t, J = 6.5 Hz, 1H), 2.34 - 2.16 (m, 1H), 2.00 (d, J = 35.3
Hz, 3H), 1.62 (s, 2H).

Preparation of cyclic pentapeptide sulfides before oxidation

The synthesis of cyclic pentapeptide sulfide Ac-(cyclo-1,5)-[SsSAAAC]-NH, was
showed as an example, and other peptide sulfides were synthesized in the similar
route. All peptides were prepared by standard Fmoc solid-phase synthesis on 2-

chlorotritylchloride resin.
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Figure S2 The synthetic route of cyclic peptide sulfide

Step 1: swelling
The required resin was put into the tube and placed on the vacuum manifold.
NMP (5 ml) was added and the resin was bubbled with N, for 15 minutes.

Step 2: coupling of the first Ala
Fmoc-Ala-OH (5 eq.) and DIPEA (10 eq.) were dissolved in NMP (5 ml) and added
to the resin. The reaction mixture was bubbled with N, for 3h.



Step 3: washing
Coupling reagents were drained, and the resin was washed by CH,Cl, and NMP (3
x 5 ml)

Step 4: deprotection
50% morpholine in NMP was added and the resin was bubbled with N, (2 x 30
min).

Step 5: coupling of Fmoc-Ala-OH with HCTU

Ala (3 eq.), HCTU (2.94 eq.) and DIPEA (6 eq.) were dissolved in NMP (5 ml) and
added to the resin. The reaction mixture was bubbled with N, for 2h. Then washing,
deprotection and coupling of the another Ala and Ss were followed in the similar
procedure.

Step 6: N-terminal acetylation
Acetic anhydride (1 ml) and DIPEA (3 ml) were dissolved in NMP (16 ml) and
added to the resin. The reaction mixture was bubbled with N, (2 x 1 h).

Step 7: intermolecular thiol-ene reaction

The resin was swelled in NMP (5 ml), followed by the addition of Cys (1 eq.) and
DMPA (1 eq.) under N, atmosphere. Then the flask was put under the UV lamp at
365 nm and reacted for 2h. The resulting resin was washed by CH,Cl, (3 x 10ml).

Step 8: macrocyclization

The crude peptide was cleaved from the resin by agitation with cleavage cocktail
(TFA: TIPS: H,0=95:2.5:2.5, v/v/v) for 2h. Then Et,0 was added for precipitation of
peptides and removed after centrifugation. The precipitate peptide was dissolved in

anhydrous DMF (50 ml), and the mixture was cooled to 0°C with ice bath. HATU (1

eq.) and DIPEA (1 eq.) were added into the mixture under N, atmosphere. The
reaction was gradually warmed to r.t. and stirred for 24h. Then DMF was removed
under vacuum and the crude was dissolved in H,O/CH3CN for further HPLC
purification.

Preparation of cyclic pentapeptide sulfilimines

Cyclic pentapeptide sulfide (1 eq.) and chloramine-T (1.2 eq.) were dissolved in
CH3CN (5 ml), and the reaction was stirred at r.t. for 24h. Then CH3;CN was removed
under vacuum and H,O/CH;CN were added to dissolve the crude for HPLC
purification.

Circular dichroism spectroscopy
All peptide samples were dissolved in deionized H,0 for CD measurements. CD
scans were performed at wavelength from 190 nm to 250 nm with the 0.1 cm path



length for twice. Variable temperature CD scans for peptide 3B were collected from

25°C to 70°C at 5°C intervals.

Guanidine-HCl denaturation experiment

Cyclic pentapeptide sulfilimine 12B (~1 mg) was added into varied concentration
of guanidine-HCI (0.5 ml) 0, 0.25, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 7.0 M. The helicity
was monitored by molar ellipticity at 215 nm.

Serum stability

The in vitro serum stability assay was performed on the basis of the procedure of
the following literature. Standard solution of the sulfilimine peptide 11B, termed as
Ac-(cyclo-1,5)-[SsALAC(NTs)]-NH, and its linear analog, termed as Ac-SsALAC(SH)-NH,,
were prepared in water. Each peptide was added to the murine serum (800 uL) and
incubated at 37°C at a final concentration of 100 uM (25% serum). Aliquots (5 uL)
were taken periodically at 0 to 18 h, and then 100 pl 12% trichloroacetic acid in
H,0/CH3CN (1:3) was added and cooled to 4 °C for 30 min to precipitate serum
proteins. Samples were then centrifuged at 14000 rpm for 10 min. The standard
supernatant was analyzed by LC/MS with a grace smart C18 250x 4.6mm column,
using a 3% per minute linear gradient from 20% to 80% acetonitrile over 20min. The
amount of starting material left in each sample was quantified by LC/MS-based peak
detection at 220 nm.

Reference
N. E. Shepherd, H. N. Hoang, G. Abbenante, D. P. Fairlie, J. Am. Chem. Soc., 2005, 127, 2974.

Condition screening for synthesis of peptide sulfilimines
Preparation of model substrate 1, 2 and 3

Substrates 1, 2 and 3 were synthesized for screening the optimal condition of
sulfilimine synthesis. Synthetic routes of 1, 2 and 3 were shown below.
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Figure S3 The synthetic route of substrate 1
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Figure S4 The synthetic route of substrate 2

Propenylbenzene (0.89 g, 7.5 mmol), Cys (1.23 g, 7.5 mmol) and DMPA (1.94 g, 7.5
mmol) were added into the flask purged of air, followed by the addition of methanol
(20 ml). Under N, atmosphere, the reaction was stirred by UV irradiation at 365 nm
for 3h. Then methanol was removed under vacuum, and the crude was purified by
flash chromatography (CH,Cl,: methanol = 100:1) to obtain substrate 2 (1.73 g, yield:
81%).

1H NMR (400 MHz, DMSO) 6 8.23 (d, J = 8.0 Hz, 1H), 7.30 — 7.24 (m, 2H), 7.20 — 7.15
(m, 3H), 4.35 (td, J = 8.1, 5.1 Hz, 1H), 2.87 (dd, J = 13.6, 5.1 Hz, 1H), 2.72 (dd, J = 13.6,
8.3 Hz, 1H), 2.67 — 2.20 (m, 4H), 1.84 (s, 3H), 1.78 (dd, J = 14.8, 7.4 Hz, 2H).
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Figure S5 The synthetic route of substrate 3

The preparation procedure of substrate 3 was similar with 2.

'H NMR (400 MHz, CDCl3) 6 7.31 —7.27 (m, 2H), 7.24 — 7.14 (m, 3H), 6.27 (d, J = 7.1
Hz, 1H), 4.82 (dt, J = 7.6, 4.9 Hz, 1H), 3.74 (s, 3H), 3.05 - 2.94 (m, 2H), 2.70 (t, /= 7.5
Hz, 2H), 2.52 (dd, J = 15.2, 8.0 Hz, 2H), 2.02 (s, 3H), 1.95 - 1.83 (m, 2H).

Condition screening for sulfilimine synthesis with PhI=NTs as the nitrogen source

We utilized 1, 2, and 3 as substrate models to investigate the optimal condition of
sulfilimine synthesis. The first method was based on the nitrogen source PhI=NTs.
The results were summarized in table S1. Different metal catalysts were tested, but
no corresponding peptide sulfilimines were observed.

(Abbreviation: Ts, p-tolylsulfonyl group ; Ns, p-nitrobenzolsulfonyl group)

Table S1 Reactions of substrate 1 with PhI=NTs?

catalyst (10 mol%) |

PhI=N-X N 7 N
H NHCOCH, ligand NHCOCHs '8

oy : O 9w 9w
N~ SN HoN N{\N NW\/ “coon |
HN TOW/\I’_" LW/\/\/ COOH “cucnr M2 JI ligand 1

(o)

entry catalyst ligand X yield (%)°

1 Fe(OTf), - Ts NR



2¢ AgNO3 1 Ts NR

3 CuOTf - Ts NR
44 CuOTf -- Ts NR
5 Fe(acac)s -- Ts NR
6 Fe(OTf), - Ns NR
7e Rh,(OAc), - Ts NR

@ Reaction conditions: peptide substrate (1.0 equiv), PhI=N-X (1.2 equiv) in CH3CN at
r.t., 24 h.

b Yield after HPLC purification. ¢ Ligand 1(8 mol%) was used. 9 4A MS was used.

¢ CH,Cl, was used as a solvent.

Then we tested the reactivity of substrate 2 and 3 with PhI=NTs under different
conditions. The results were summarized in table S2. However, the conversions were
not satisfactory. It was worth mentioning that the carboxyl group was harmful to
produce sulfilimines as entry 8 showed.

Table S2 Reactions of substrate 2, 3 with PhI=NTs?

e ) - -
entry R catalyst ligand yield (%)°
1 H CuOTf - 10
2 H CuOTf 1 11
3 H CuOTf 2 12
4c H CuOTf - 1
5 H AgOTf - 17
6 H AgOTf 1 19
7 H AgOTf 2 10
3 Me CuOTf - 30

@ Reaction conditions: sulfide (1.0 equiv), Phl=NTs (1.2 equiv) in CH3CN atr.t.,, 24 h.

bYield after columm chromatography. ¢ Reaction was performed at 50°C.

Condition screening for sulfilimine synthesis with chloramine-T as the nitrogen



source

Then we turned to the second method based on chloramine-T nitrogen source.
Substrate 2 and 3 were utilized to react with chloramine-T, and results were
summarized in table S3. We found chloramine-T was the more suitable reagent to
convert sulfides to sulfilimines.

Table S3 Reactions of substrate 2, 3 with chloramine-T?

o ©)
O N_. Na

S Cl
©/\/\S//,,.(NHCOCH3 ©/\/\s//,,.|/NHCOCH3
il
NTs COOR
COOR CH,CN, rt

entry R chloramine-T  yield (%)°
(equiv)
1 H 1.2 37
2 H 3.0 30
3¢ H 3.0 35
4 Me 1.2 75

@ Reaction conditions: sulfide (1.0 equiv), chloramine-T (1.2 equiv) in CH3CN at r.t., 24
h.

bYield after columm chromatography. ¢ Reaction was performed at 50°C.
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Figure S6 CD spectra of peptide sulfilimine 3B in H,0 and 50% TFE.



Table S4 Reactions of peptide sulfides with chloramine-T to generate 1~142

) conversion
peptide (%%)"
Ac-(cyclo-1,5)-[SsAAAC(NTS)]-NH, (1) 69
Ac-(cyclo-1,5)-[S4,AAAC(NTs)]-NH, (2) 53
Ac-(cyclo-1,5)-[SSAAAC(NTs)]-NH, (3) 60
Ac-(cyclo-1,5)-[SsAAAC(NTSs)]-NH, (4) 56
Ac-(cyclo-1,5)-[C(NTs)AAASs]-NH, (5) 81
Ac-(cyclo-1,5)-[homoC(NTs)AAAS,]-NH, (6) 85
Ac-(cyclo-1,5)-[S4AAAhomoC(NTs)]-NH, (7) 65
Ac-(cyclo-1,5)-[SsAGAC(NTs)]-NH, (8) 83
Ac-(cyclo-1,5)-[SsAFAC(NTs)]-NH, (9) 53
Ac-(cyclo-1,5)-[SsAIAC(NTs)]-NH, (10) 46°
Ac-(cyclo-1,5)-[SsALAC(NTs)]-NH, (11) 90
Ac-(cyclo-1,5)-[SsAVAC(NTSs)]-NH, (12) 57¢
Ac-(cyclo-1,5)-[SsSAQAC(NTs)]-NH, (13) 59
Ac-(cyclo-1,5)-[SsANAC(NTs)]-NH, (14) 53

@ Reaction conditions: peptide sulfide (1.0 equiv), chloramine-T (1.2 equiv) in CH;CN
atr.t., 24 h.

b Yield after HPLC purification and identified by 1,3,5-tribromobenzene as internal
standard.

¢Yield after isolation.

Table S5 Amide coupling constants 3/y4.chq and temperature coefficients (AS/T)
of peptide 12B at 288K, 293K, 298K, 303K, 308K and 313K.

3

peptide Inmcra (H2) AS/T (ppb/K)
Ss Ala Val Ala Cys Ss Ala Val Ala Cys
12B 19 37 65 39 70 -6.3 -43 95 -47 -35

Table S6 Amide NH chemical shift of peptide 12B at 288K, 293K, 298K, 303K,
308K and 313K.

K Ss Ala Val Ala Cys
HN HN HN HN HN

288 8.383 8.543 7.663 8.243 8.003

293 8.342 8.522 7.612 8.212 7.982




298 8.315 8.505 7.565 8.185 7.965
303 8.292 8.482 7.512 8.172 7.942
308 8.258 8.458 7.468 8.148 7.938
313 8.225 8.435 7.425 8.125 7.915
Jahnh 1.9Hz 3.7Hz 6.5Hz 3.9Hz 7.0Hz
- Ts phenyl H
\ Uﬁ/f
Wl Mt Ao
V3NH \ r i B — ) o
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1]
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Figure S7 The ROESY spectrum for peptide 12B (H,0:D,0=9:1, 288K, 600 MHz). The
amide protons were indicated and labelled by one letter amino acid codes and their
sequential numbers from N-terminal to C-terminal in 12B.
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Figure S9 Section from the ROESY spectrum for peptide 12B (H,0:D,0=9:1, 288K,
600 MHz). Residue amide NH-CaH connectivity was indicated and labelled by one
letter amino acid codes and their sequential numbers from N-terminal to C-terminal
in 12B.
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Figure S10 Region of 600-MHz NOESY spectrum of peptide 12B in H,0 solution

Table S7 MS data for peptides 1~14.

[M+H]* (m/z)

peptide calculated observed
1A 642.2 642.3
1B 642.2 642.3
2A 656.2 656.3
2B 656.2 656.3
3A 670.3 670.4
3B 670.3 670.4
4A 684.3 684.4
4B 684.3 684.4
5A 670.3 670.4
5B 670.3 670.4
6A 670.3 670.4
6B 670.3 670.4
7A 670.3 670.4
7B 670.3 670.4
8A 656.3 656.3
8B 656.3 656.3
9A 746.3 746.4
9B 746.3 746.4
10A 712.3 712.4
10B 712.3 712.4
11A 712.3 712.4
11B 712.3 712.5
12A 698.3 698.4
12B 698.3 698.3
13A 727.3 727.4
13B 727.3 727.4
14A 713.3 713.4

14B 713.3 713.3
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HPLC analyses of formation of peptides 1~15
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Figure S11 HPLC separation spectrum of sulfilimine 1A and 1B
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Figure $13 HPLC separation spectrum of sulfilimine 3A and 3B
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Figure $14 HPLC separation spectrum of sulfilimine 4A and 4B
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Figure $S18 HPLC separation spectrum of sulfilimine 8A and 8B
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Figure $24 HPLC separation spectrum of sulfilimine 14A and 14B
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