Neutral versus Polycationic Coordination-Cages: Experimental Evidence of the Charge Effect onto Neutral Guest Inclusion

György Szalóki, Vincent Croué, Magali Allain, Sébastien Goeb,* Marc Sallé*

Supporting Information

Chemicals and instrumentation

Chemicals

Complex $Pd(dctbf)_2(cod)^{[1]}$ (dctfb = 3,5-dichloro-2,4,6-trifluorobenzene) and ligand $L^{[2]}$ were synthetized as described in the literature. All reagents were commercial reagent grade and were used without further purification. For synthesis and crystallizations analytical grade non dry solvents were used. Silica gel chromatography was performed with a SIGMA Aldrich Chemistry SiO₂ (pore size 60 Å, 40-63 µm technical grades).

Instrumentation

The 300.3 (¹H), 75.5 (¹³C) and 282.6 MHz (¹⁹F) NMR spectra were recorded at room temperature using perdeuterated solvents as internal standards (¹H), external CFCl₃ (¹⁹F), on a NMR Bruker Avance III 300 spectrometer. DOSY NMR spectra were analyzed with MESTRENOVA software. ESI-FTICR spectra were performed on a lonSpec (Agilent), 9,4 T hybride ESI q-Q-q in CH₂Cl₂/CH₃NO₂ (5 x 10⁻⁴ M). Cyclic voltammetry experiments were carried out on a BioLogic SP-150 potentiostat and the conditions were the following: 0.1 M nBu_4NPF_6 in acetonitrile or methylene chloride, GC working electrode, Ag wire reference electrode and Pt counter electrode, calibrated using internal ferrocene. Elemental analyses were achieved on a Thermo Electron analyzer.

Experimental procedures and characterizations

Synthesis of self-assembly M_4L_2

The ligand **L** (90 mg, 0.07 mmol) and Pd(dctbf)₂(cod) (83 mg, 0.14 mmol, 2 equiv.) were dissolved in acetone (8.0 mL) and stirred for 48h at RT. The precipitate was filtered, washed with cold acetone and dried under vacuum to give compound M_4L_2 (138 mg, 0.03 mmol, 87%) as red needles. m.p.>250 °C; IR $\bar{\nu}$ = 2867, 1606, 1400 cm⁻¹; ¹H NMR (ppm, CDCl₃): 8.12 (8H, d, *J* = 6.5, CH_{pyr}.), 7.03 (8H, d, *J* = 6.5, CH_{pyr}.), 6.96 (4H, s, CH_{anthr}.), 4.25-4.07 (8H, m, CH₂), 3.85 (8H, t, *J* = 5.2, CH₂), 3.73-3.67 (8H, m, CH₂), 3.66-3.58 (16H, m, CH₂), 3.55-3.50 (8H, m, CH₂), 3.36 (12H, s, CH₃); ¹⁹F NMR (ppm, CDCl₃): -90.4 (F°), -118.0 (F°); ESI-FTICR (CH₂Cl₂/CH₃NO₂) *m*/*z* calculated: [M_4L_2 .(KOTf)₄-4TfO⁻]⁴⁺ 1213.95434, [M_4L_2 .(KOTf)₄-3TfO⁻]³⁺ 1668.58965; found: [M_4L_2 .(KOTf)₄-4TfO⁻]⁴⁺ 1213.94871, [M_4L_2 .(KOTf)₄-3TfO⁻]³⁺ 1668.58600; Anal. Calcd for C₁₈₄H₁₆₀Cl₁₆F₂₄N₈O₃₂Pd₄S₈: C, 47.02; H, 3.43; N, 2.38; S, 5.46. Found: C, 46.40; H, 3.34; N, 2.35; S, 5.32 %.

1.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 Figure S1. ¹H-NMR spectrum of M_4L_2 in CDCI₃.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

Figure S2. $^{19}\text{F-NMR}$ spectrum of M_4L_2 in CDCl_3.

ESI-FTICR experiment

For ESI-FTICR experiment, 8 equivalents of KOTf in CH_3NO_2 (C = 1.6 x 10⁻² M) was added to a solution of M_4L_2 in CH_2CI_2 (C = 2 x 10⁻³ M).

Figure S5. ESI-FTICR spectrum of M_4L_2 .(KOTf)₄ recorded in $CH_2CI_2/CH_3NO_2 = 5/5$.

K_a determination method

A DOSY experiment was run with a solution (0.5 mL) of cage M_4L_2 or $M_4L_2^{8+}$ (C = 2.0 x 10⁻³M) in CDCl₃/CD₃NO₂ (1/1) containing 1 equiv. of planar polyaromatic guest at 298K. K_a was calculated from diffusion coefficients D_{free} (free guest in CDCl₃/CD₃NO₂ (5/5)), D_{comp} (cages M_4L_2 or $M_4L_2^{8+}$ in CDCl₃/CD₃NO₂ (1/1)), and D_{obs} (guest in presence of cages M_4L_2 or $M_4L_2^{8+}$). The bounded fraction X was calculated using equation: D_{obs} = X D_{comp} + (1 - X)D_{free} and K_a using equation K_a = (1 - X) / (C x X²).

Figure S6. ¹H DOSY NMR of $M_4L_2^{8+}$ in CDCI₃/CD₃NO₂ = 5/5 (2 × 10⁻³ M).

gure S9. ¹H DOSY NMR spectrum of a stoichiometric mixture of coronene and M_4L_2 in $CD_3NO_2/CDCI_3 = 5/5$ (2 x 10⁻³ M).

Figure S11. 1H DOSY NMR spectrum of $M_4L_2^{8+}$ in $CD_3NO_2/CDCI_3 = 8/2$ (2 x 10⁻³ M).

gure S12. ¹H DOSY NMR spectrum of a stoichiometric mixture of coronene and $M_4L_2^{8+}$ in $CD_3NO_2/CDCI_3 = 8/2$ (1 x 10⁻³ M).

Figure S13. ¹H DOSY NMR spectrum of a stoichiometric mixture of coronene and M_4L_2 in $CD_3NO_2/CDCI_3 = 8/2$ (2 × 10⁻³ M).

Figure S15. ¹H DOSY NMR spectrum of a stoichiometric mixture of perylene and $M_4L_2^{8+}$ in $CD_3NO_2/CDCI_3 = 5/5$ (2 × 10⁻³ M).

gure S16. ¹H DOSY NMR spectrum of a stoichiometric mixture of perylene and M_4L_2 in $CD_3NO_2/CDCI_3 = 5/5$ (2 x 10⁻³ M).

Figure S17. ¹H DOSY NMR spectrum of pyrene in $CD_3NO_2/CDCI_3 = 5/5$ (2 × 10⁻³ M).

gure S18. ¹H DOSY NMR spectrum of a stoichiometric mixture of pyrene and $M_4L_2^{8+}$ in $CD_3NO_2/CDCI_3 = 5/5$ (2 x 10⁻³ M).

Figure S19. ¹H DOSY NMR spectrum of a stoichiometric mixture of pyrene and M_4L_2 in $CD_3NO_2/CDCI_3 = 5/5 (2 \times 10^{-3} \text{ M}).$

gure S20. ¹H DOSY NMR spectrum of triphenylene in $CD_3NO_2/CDCI_3 = 5/5$ (2 x 10⁻³ M).

Figure S21. ¹H DOSY NMR spectrum of a stoichiometric mixture of triphenylene and $M_4L_2^{8+}$ in $CD_3NO_2/CDCI_3 = 5/5$ (2 x 10⁻³ M).

Figure S22. ¹H DOSY NMR spectrum of a stoichiometric mixture of triphenylene and M_4L_2 in $CD_3NO_2/CDCI_3 = 5/5$ (2 × 10⁻³ M).

Procedure for triflate anion exchange

For $B_{12}F_{12}^{2-1}$:

Cage $M_4L_2^{8+}$ (30 mg, 0.005 mmol) and (TBA)₂B₁₂F₁₂ (30 mg, 0.037 mmol, 8 equiv.) were dissolved in acetonitrile (2.0 mL) and stirred at 40°C for 10 minutes. Then, diethyl ether (10.0 mL) was added and the resulting precipitate was isolated by centrifugation, washed with diethyl ether (3 x 3.0 mL) and dried under vacuum. This procedure was repeated 2 times to give the product $M_4L_2^{8+}(B_{12}F_{12}^{2-})_4$ (24 mg, 75%) as an orange solid. ¹H NMR (ppm, CD₃NO₂): 8.36 (8H, bs, CH_{pyr.}), 8.16-7.41 (40H, m, Ph), 7.11 (4H, s, CH_{anthr.}), 7.02 (8H, d, *J* = 5.6, CH_{pyr.}), 5.26 (4H, s, H_{Fc}), 4.98 (4H, s, H_{Fc}), 4.83 (4H, s, H_{Fc}), 4.75 (4H, s, H_{Fc}), 3.87 (8H, m, CH₂), 3.67-3.34 (40H, m, CH₂), 3.21 (12H, s, CH₃); ¹⁹F NMR (ppm, CD₃NO₂): -267.1.

For BF₄-:

Cage $M_4L_2^{8+}$ (30 mg, 0.005 mmol) and TBABF₄ (25 mg, 0.073 mmol, 16 equiv.) were dissolved in acetonitrile (2.0 mL) and stirred at 40°C for 10 minutes. Then, diethyl ether (10.0 mL) was added and the resulting precipitate was isolated by centrifugation, washed with diethyl ether (3 x 3.0 mL) and dried under vacuum. This procedure was repeated 2 times to give the product $M_4L_2^{8+}(BF_4^{-})_8$ (27 mg, 97%) as an orange solid. ¹H NMR (ppm, CD₃NO₂): 8.28 (8H, d, J = 4.6, CH_{pyr.}), 8.05-7.62 (40H, m, Ph), 7.08 (4H, s, CH_{anthr.}), 6.97 (8H, d, J = 4.6, CH_{pyr.}), 4.90 (4H, s, H_{Fc}), 4.80 (4H, s, H_{Fc}), 4.75 (8H, s, H_{Fc}), 3.89 (8H, m, CH₂), 3.67-3.34 (40H, m, CH₂), 3.20 (12H, s, CH₃); ¹⁹F NMR (ppm, CD₃NO₂): -151.9 (¹¹BF₄), -152.0 (¹⁰BF₄).

Figure S23. ¹H-NMR spectrum of $M_4L_2^{8+}(B_{12}F_{12}^{2-})_4$ in CD₃NO₂.

Figure S24. ¹⁹F-NMR spectrum of $M_4L_2^{8+}(B_{12}F_{12}^{2-})_4$ in CD_3NO_2 .

Figure S25. ¹H-NMR spectrum of $M_4L_2^{8+}(BF_4^{-})_8$ in CD₃NO₂.

Figure S26. ¹⁹F-NMR spectrum of $M_4L_2^{8+}(BF_4^{-})_8$ in CD_3NO_2 .

Figure S28. ¹H DOSY NMR spectrum of a stoichiometric mixture of coronene and $M_4L_2^{8+}(BF_4)_8$ in $CD_3NO_2/CDCI_3 = 8/2$ (1 × 10⁻³ M).

ure S30. ¹⁹F DOSY NMR spectrum of a stoichiometric mixture of TBA₂ $B_{12}F_{12}$ and M_4L_2 in $CD_3NO_2/CDCI_3 = 1/1$ (2 x 10⁻³ M).

Figure S31. ¹⁹F DOSY NMR spectrum of a stoichiometric mixture of $TBA_2B_{12}F_{12}$ and $M_4L_2^{8+}(BF_4^{-1})_8$ in $CD_3NO_2/CDCI_3 = 1/1$ (2 × 10⁻³ M).

Job Plot

Figure S32. Job plots for complexation of receptor M_4L_2 (H) with Coronene (G) determined by ¹H NMR (M_4L_2 H_B) in CDCI₃/CD₃NO₂ 1/1 at 298K, [H] + [G] = 10⁻³ mol.L⁻¹.

Figure S30. X-Ray crystal structure of host structure M₄L₂

For M_4L_2 : X-ray single-crystal diffraction data were collected at 120K on the Cristal beamline at SOLEIL Synchrotron (Saint-Aubin-France) on an Agilent 4-circles diffractometer equipped with an Atlas CCD detector. The radiation wavelength was 0.67 Å.

The structure was solved by direct methods, expanded and refined on F^2 by full matrix leastsquares techniques using SHELX97 package. All non-H atoms were anisotropically refined and multiscan empirical absorption was applied with CrysAlisPro program (CrysAlisPro, Agilent Technologies, V1.171, 2012). The crystal was very sensitive to decomposition and only poor diffraction data with low intensity was observed, involving low completeness. Nevertheless, main structure was solved (minus 10 C and 4 O on terminal PEG chains). The H atoms were not placed at their calculated positons since the main molecule was incomplete. The structure refinement showed disordered electron density which could not be reliably modeled and the program PLATON/SQUEEZE was used to remove the scattering contribution corresponding to acetonitrile solvent and missing atoms in the main structure from intensity data. The assumed solvent composition (26 CH₃CN in the unit cell) was used in the calculation of the empirical formula, formula weight, density, linear absorption coefficient and F(000).

Crystallographic data for M_4L_2 : $C_{210}H_{199}CI_{16}F_{24}N_{21}O_{32}P_8Pd_4S_8$, M = 5234.18, red prism, 0.28 x 0.17 x 0.08 mm³, monoclinic, space group *P* 2₁/*c*, a = 16.3201(3) Å, b = 29.0112(3) Å, c = 27.2545(3) Å, β = 105.883(1)°, V = 12411.4(3) Å³, Z = 2, pcalc = 1.401 g/cm³, μ = 0.609mm⁻¹, F(000) = 5324, θ min = 1.60°, θ max = 32.60°, 271014 reflections collected, 38045 unique (R_{int} = 0.115), parameters / restraints = 1202 / 0, R1 = 0.0794 and wR2 = 0.2232 using 26089 reflections with I>2\sigma(I), R1 = 0.1039 and wR2 = 0.2423 using all data, GOF = 1.065, -0.854 < $\Delta \rho$ < 2.675.Å⁻³. CCDC 1441971.

For coronene $\subset M_4L_2$: X-ray single-crystal diffraction data were collected at 180K on an Agilent Technologies SuperNova diffractometer equipped with Atlas CCD detector and mirror

X-Ray

monochromated micro-focus Cu-K_{α} radiation (λ = 1.54184 Å). The structure was solved by direct methods, expanded and refined on F² by full matrix least-squares techniques using SHELX97 (G.M. Sheldrick, 1998) package. All non-H atoms were refined anisotropically and multiscan empirical absorption was applied using CrysAlisPro program (CrysAlisPro, Agilent Technologies, V1.171.37.35g, 2014). The H atoms were included in the calculation without refinement. The structure refinement showed disordered electron density which could not be reliably modeled and the program PLATON/SQUEEZE was used to remove the scattering contribution corresponding to nitromethane solvent from the intensity data. The assumed solvent composition (18 CH₃NO₂ in the unit cell) was used in the calculation of the empirical formula, formula weight, density, linear absorption coefficient and F(000).

Crystallographic data for coronene $\subset M_4L_2$: C₂₂₆H₂₂₆Cl₁₆F₂₄N₂₆O₆₈Pd₄S₈, M = 6099.61, red prism, 0.21 x 0.11 x 0.06 mm³, triclinic, space group *P*-1, a = 17.8945(6) Å, b = 19.5103(6) Å, c = 20.5070(7) Å, α = 90.134(2)°, β = 99.808(3)°, γ = 110.635(3)°, V = 6587.2(4) Å³, Z = 1, pcalc = 1.538 g/cm³, μ = 5.131 mm⁻¹, F(000) = 3108, 0min = 2.43°, 0max = 76.49°, 54466 reflections collected, 26411 unique (R_{int} = 0.072), parameters / restraints = 1427 / 51, R1 = 0.0866 and wR2 = 0.2317 using 16298 reflections with I>2 σ (I), R1 = 0.1165 and wR2 = 0.2625 using all data, GOF = 0.969, -1.703 < $\Delta \rho$ < 2.396.Å⁻³. CCDC 1441826.

- [1] P. Espinet, J. M. Martínez-Ilarduya, C. Pérez-Briso, A. L. Casado, M. A. Alonso, *J. Organomet. Chem.*, **1998**, *551*, 9.
- [2] V. Croué, S. Goeb, G. Szalóki, M. Allain and M. Sallé, Angew. Chem. Int. Ed., 2016, 55, 1746.