Supporting Information

Suitability of ionic liquid electrolyte for room-temperature sodium-

ion battery applications

Chueh-Han Wang,^a Cheng-Hsien Yang^a and Jeng-Kuei Chang^{*abc}

^a Institute of Materials Science and Engineering, National Central University, Taiwan

^b Department of Mechanical Engineering, National Central University, Taiwan

^c Department of Chemical and Materials Engineering, National Central University,

Taiwan

*Corresponding author Telephone: +886-3-4227151 ext. 34908 Fax: +886-3-2805034 E-mail: jkchang@ncu.edu.tw Address: 300 Jhong-Da Road, National Central University, Taoyuan, Taiwan

Experimental procedure

Preparations of electrode materials and electrolytes

The Na_{0.44}MnO₂ was synthesized using a solid-state reaction method. Mn₂O₃ (99.9 wt%, Aldrich) and Na₂CO₃ (99.9 wt%, Aldrich) precursors were mixed in a molar ratio of 1:0.484 (10% excess of Na). The mixture was hand-ground, pelletized, and heated at 500 °C under air for 5 h. Then, the pellet was re-ground, re-pelletized, and heated again at 900 °C under air for 12 h. After the two-step calcination followed by pulverization of the pellet, the oxide powder was obtained. Carbon-coated LiFePO₄ powder was synthesized using a carbothermal reduction method at 700 °C involving the precursors of ferric oxide (99 wt%, Taiwan Polychem Co. Ltd.), ammonium dihydrogen phosphate (99 wt%, First Chemical Works Co. Ltd.), and lithium carbonate (99 wt%, First Chemical Works Co. Ltd.) in the required stoichiometric ratio. In the calcination, polyethylene glycol ($M_W = 6000$, Huacheng Industrial Co. Ltd.) was used as a reduction agent as well as a carbon source. FePO₄ was then prepared by delithiation of the prepared LiFePO₄. Acetonitrile solution with nitronium tetrafluoroborate (NO2BF4, 97 wt%, Acros Organics) was used as the delithiation agent. A mixture of the LiFePO₄ powder (1 g), NO₂BF₄ (1.7 g), and acetonitrile (100 mL) was stirred for 24 h at 25 °C with continuously purged argon. The obtained powder was repeatedly washed with distilled water. After centrifugation, the precipitated FePO₄ was collected and dried at 80 °C in a vacuum oven overnight before use. The NaFePO₄ electrode was prepared by electrochemical sodiation of the FePO₄ electrode. Hard carbon was purchased from Kureha Battery Materials Japan Co., Ltd. Graphite powder was provided by China Steel Chemical Corporation.

PMP–FSI IL (99.5 wt%, Solvionic) was dried under vacuum at 60 °C for 24 h before use. NaFSI (99.7 wt%, Solvionic) with a concentration of 1 M was dissolved in

the IL to provide Na⁺ conduction. A conventional organic electrolyte, consisting of 1:1 (by volume) ethylene carbonate (EC, 99 wt%, Alfa Aesar) and diethyl carbonate (DEC, 99 wt%, Alfa Aesar) as co-solvent and 1 M NaClO₄ solute, was also prepared for comparison. Each mixture was continuously stirred by a magnetic paddle for 24 h to ensure uniformity. All the chemicals were stored and handled in an argon-filled glove box (Innovation Technology Co. Ltd.), where both the moisture content and oxygen content were maintained at below 1 ppm. The electrolyte water contents, measured using a Karl Fisher titrator, were less than 100 ppm.

Cell assembly

An electrode slurry was prepared by mixing 75 wt% active material powder, 20 wt% carbon black, and 5 wt% poly(vinylidene fluoride) in N-methyl-2-pyrrolidone solution. The slurry was pasted onto Al (for cathodes) or Cu (for anode) foil and vacuum-dried at 80 °C for 8 h. The typical active material loading on each electrode was $1.5(\pm 0.2)$ mg cm⁻². Then, the electrode was roll-pressed and punched to match the required dimensions of a CR2032 coin cell. For Na half cells, Na foil and a glassy fiber membrane were used as the counter and the separator, respectively. The Na_{0.44}MnO₂/hard carbon full cells were also prepared with an active material weight ratio of 1:1. The assembly of the coin cells was performed in the argon-filled glove box.

Material and electrochemical characterizations

The charge-discharge performance (in terms of capacity, high-rate capability, and cyclic stability) of various cells was evaluated using an Arbin BT-2043 multichannel battery tester. Electrochemical impedance spectroscopy (EIS) analyses were conducted at the open-circuit potentials. The AC amplitude of 10 mV was adopted. The Na_{0.44}MnO₂/hard carbon full cells with the IL and conventional organic electrolytes were disassembled after 100 charge–discharge cycles. The electrode morphologies were examined using scanning electron microscopy (SEM; FEI Inspect F50). X-ray photoelectron spectroscopy (XPS; VG Sigma Probe) was employed to study the chemical compositions of the solid-electrolyte-interphase films.

Table S1 Discharge capacities (mAh g⁻¹) of various cells measured at various rateswith 1 M NaFSI/PMP-FSI IL electrolyte and conventional 1 MNaClO₄/EC/DEC electrolyte.

	NMO	O/Na	НС	/Na	NMC	D/HC
Discharge-charge Rate	IL electrolyte	Organic electrolyte	IL electrolyte	Organic electrolyte	IL electrolyte	Organic electrolyte
30 mA/g	107	117	280	290	120	117
50 mA/g	98	108	228	244	109	109
100 mA/g	78	101	153	208	104	103
500 mA/g	45	73	79	121	79	77
1 A/g	20	46	51	99	70	50

Table S2 R_s and R_{ct} values of various cells measured using EIS with 1 MNaFSI/PMP-FSI IL electrolyte and conventional 1 M NaClO₄/EC/DECelectrolyte.

Cell	Electrolyte	$R_{s}(\Omega)$	$R_{ct}(\Omega)$
NMO/Na	IL electrolyte	4.3	550
	Organic electrolyte	2.5	140
HC/Na	IL electrolyte	4.3	510
	Organic electrolyte	2.5	75
No/No	IL electrolyte	4.3	1120
1 1a /1 1a	Organic electrolyte	2.5	170
	IL electrolyte	4.3	3.4
	Organic electrolyte	2.5	55
HC/HC	IL electrolyte	4.3	2
	Organic electrolyte	2.5	3

Fig. S1 Cyclic voltammographs of (a) IL electrolyte and (b) conventional organic electrolyte recorded at Pt electrodes with a potential scan rate of 3 mV s⁻¹.

Fig. S2 Charge–discharge curves of NMO/NMO cells with (a) IL electrolyte and (b) conventional organic electrolyte recorded at 25 °C.

Fig. S3 EIS spectra of NMO/NMO cells with (a) IL electrolyte and (b) conventional organic electrolyte recorded after certain charge–discharge cycles. The solid lines are data fitting results.

Fig. S4 (a) EIS spectra of NFP/NFP cells with IL and conventional organic electrolytes (solid lines are the data fitting results). Charge–discharge curves of FePO₄/NFP cells with (b) IL electrolyte and (c) conventional organic electrolyte. Measurements were performed at 25 °C.

Fig. S5 SEM micrographs of pristine (a) NMO and (b) HC electrodes.

Fig. S6 Charge–discharge curve of LiFePO₄/graphite full cells with (a) 1 M LiFSI/PMP–FSI IL electrolyte and (b) conventional 1 M LiPF₆/EC/DEC electrolyte. (c) EIS spectra of the above two cells (solid lines are the data fitting results). Measurements were performed at 25 °C.