Electronic Supplementary Information

Comparison of N-acetylcysteine and cysteine in their ability to replenish intracellular cysteine by a specific fluorescent probe

Xinyuan He,^{ab} Xiaofeng Wu,^{ab} Wen Shi*^{ab} and Huimin Ma*^{ab}

^aBeijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China. E-mail: shiwen@iccas.ac.cn; mahm@iccas.ac.cn

Table of contents

- 1. Apparatus and reagents
- 2. Synthesis of probe 1
- 3. General procedure for determining Cys
- 4. Absorption spectra of probe 1 towards other substances
- 5. Reaction mechanisms of probe 1 with Hcy and GSH
- 6. Analyses of reaction products
- 7. Effects of pH, temperature and time on the reaction
- 8. Selectivity study
- 9. Determination of Cys in human serum
- **10.** Studies on the cytotoxicity of probe **1**
- **11.** Cell imaging

1. Apparatus and reagents

Fluorescence measurements were made on a Hitachi F-4600 spectrophotometer in 10 mm \times 10 mm quartz cells (Tokyo, Japan). ¹H NMR and ¹³C NMR spectra were measured with a Bruker DMX-400 spectrometer in CD₃OD-D₄. Electrospray ionization (ESI) mass spectra were measured on LCQ Fleet mass spectrometer (Thermo Fisher). High resolution electrospray ionization mass spectra (HR-ESI-MS) were recorded on an APEX IV FTMS instrument (Bruker, Daltonics). Absorption spectra were recorded in 1-cm quartz cells with a TU-1900 spectrophotometer (Beijing, China). A Delta 320 pH-meter [Mettler-Toledo Instruments (Shanghai) Co., China] was used for pH measurements.

1,2,3,3-Tetramethyl-3H-indolium iodide, 3-diethylaminophenol, malonic acid were purchased from Alfa Aesar. Glutathione (GSH) and cysteine (Cys) were purchased from J & K. Dulbecco's modified eagle media (DMEM), fetal bovine serum, streptomycine, penicillin and phosphate buffer saline (PBS; 155 mM NaCl, 2.97 mM Na₂HPO₄, and 1.06 mM KH₂PO₄) of pH 7.4 were obtained from Thermo Fisher. All other chemicals used were of analytical grade. Ultrapure water (over 18 M Ω ·cm) was used throughout. A mixed serum sample from healthy people was provided by Xijing Hospital and informed consent was obtained from each donor.

2. Synthesis of probe 1

Scheme S1. Synthesis of probe 1.

4-Chloro-7-diethylaminocoumarin-3-aldehyde (CDCA) was synthesized starting from 7-(diethylamino)-4-hydroxy-2*H*-chromen-2-one following the procedure reported in literature (Liu et al, *J. Am. Chem. Soc.*, 2014, 136, 574).

Then, CDCA (1 mmol, 279 mg) and 1,2,3,3-tetramethyl-3*H*-indolium iodide (1.2 mmol, 361 mg) were dissolved in 20 mL ethanol. The mixture was refluxed for 4 h with stirring. After cooling to room temperature, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography eluted with CH₂Cl₂/CH₃OH (v/v, 10:1), affording probe **1** as purple solid (153 mg, yield 35%). HR-ESI-MS: calcd for $[C_{26}H_{28}CIN_2O_2]^+$, *m/z* = 435.1839; found, *m/z* = 435.1834. ¹H NMR (400 MHz, CD₃OD-D₄): δ = 8.63-8.59 (d, J = 16.0 Hz, 1H), 8.34-8.30 (d, J = 16.0 Hz, 1H), 7.98-7.95 (d, J = 12.0 Hz, 1H), 7.83-7.79 (m, 2H), 7.69-7.63 (m, 2H), 7.05-7.03 (d, J = 8.0 Hz, 1H), 6.70 (s, 1H), 4.10 (s, 3H), 3.70-3.65 (q, J=6.7 Hz, 4H), 1.89 (s, 6H), 1.35-1.31 (t, J=8.0 Hz, 6H). ¹³C NMR (400 MHz, CD₃OD-D₄): δ 182.2, 158.3, 156.1, 154.9, 154.3, 145.5, 143.2, 141.9, 129.3, 129.1, 122.5, 114.2, 112.5, 112.0, 109.8, 108.4, 96.2, 51.8, 45.2, 32.9, 25.8, 11.4.

Fig. S1 1 H NMR spectrum of probe 1 (400 MHz, CD₃OD-D₄, 298 K).

Fig. S2 ¹³C NMR spectrum of probe **1** (400 MHz, CD₃OD-D₄, 298K).

3. General procedure for determining Cys

Unless otherwise noted, all the measurements were conducted in PBS (pH 7.4) in accordance with the following procedure. In a 2-mL tube, 1 mL of PBS and 10 μ L of 1 mM probe **1** were mixed, followed by addition of appropriate volume of Cys solution. After incubation at 37 °C for 2 h in a thermostat, the reaction solution was transferred to a quartz cell of 1-cm optical length to measure absorbance or fluorescence with $\lambda_{ex/em} = 405/460$ nm and both excitation and emission slit widths of 10 nm. In the meantime, a blank solution containing no Cys was prepared and measured under the same conditions for comparison.

4. Absorption spectra of probe 1 towards other substances

Fig. S3 (A) Absorption and (B) fluorescence emission spectra of probe **1** (10 μ M) in the presence of various species: probe **1** itself (black); 100 μ M Hcy (red); 100 μ M GSH (blue); 100 μ M glycine (dark cyan); 100 μ M methionine (magenta).

5. Reaction mechanisms of probe 1 with Hcy and GSH

Scheme S2 Possible reaction mechanisms of probe 1 with Hcy and GSH.

6. Analyses of reaction products

Fig. S4 Chromatographs of probe **1** (20 μ M) in the presence of various substances: (A) probe **1** itself; (B) 100 μ M Cys; (C) 100 μ M NAC; (D) 100 μ M GSH and (E) 100 μ M Hcy. The assignments of the peaks: (1) 4.53 min, product **4**; (2) 6.47 min, product **2**; (3) 7.08 min, product **3**; (4) 7.60 min, product **2**'; (5) 10.42 min, product **5**; (6) 10.89 min, probe **1** (see Scheme 1, Scheme S2 and Fig. S5g below for the structures of these products).

Fig. S5 Absorption spectra of (a) product **2** and (d) product **2**' (i.e., peak 2 and peak 4 in curve B of Fig S4). (b) ESI mass spectrum of the isolated product **2**. (c) The MS/MS

spectrum of the isolated product 2 with m/z = 520.1. (e) ESI mass spectrum of the isolated product 2'. (f) The MS/MS spectrum of the isolated product 2' with m/z = 520.1. (g) Proposed equilibrium of the two products 2 and 2'.

Fig. S6 (A) Absorption spectrum and (B) ESI mass spectrum of the isolated reaction product of probe 1 with NAC. (C) The MS/MS spectrum of the isolated reaction product with m/z = 562.1.

Fig. S7 (A) Absorption spectrum and (B) ESI mass spectrum of the isolated reaction product of probe 1 with GSH. (C) The MS/MS spectrum of the isolated reaction product with m/z = 706.1.

Fig. S8 (A) Absorption spectrum and (B) ESI mass spectrum of the isolated reaction product of probe 1 with Hcy. (C) The MS/MS spectrum of the isolated reaction product with m/z = 534.1.

7. Effects of pH, temperature and time on the reaction

Fig. S9 Effects of (A) pH, (B) reaction temperature and (C) time on the fluorescence of probe **1** (10 μ M) with Cys (100 μ M). $\lambda_{ex}/\lambda_{em} = 405$ nm/460 nm.

8. Selectivity study

Fig. S10 (A) Fluorescence response of probe **1** (10 μ M) to NAC at varied concentrations (from bottom to top: 0, 10, 20, 50 and 100 μ M). (B) Time-dependent fluorescence response of probe **1** (10 μ M) in the presence of different thiols: 20 μ M Cys (black, control); 20 μ M Cys + 20 μ M NAC (red); 20 μ M Cys + 1 mM GSH (blue); 20 μ M Cys + 20 μ M Hcy (dark cyan). $\lambda_{ex/em} = 405/460$ nm.

Fig. S11 Fluorescence response of probe **1** (10 μM) to various substances: (1) blank; (2) Na₂CO₃ (100 μM); (3) Na₂SO₄ (100 μM); (4) CH₃COONa (100 μM); (5) MgSO₄ (1 mM); (6) CaCl₂ (1 mM); (7) vitamin C (100 μM); (8) vitamin B₆ (100 μM); (9) glucose (100 μM); (10) creatinine (100 μM); (11) phenylalanine (100 μM); (12) glutamine (100 μM); (13) alanine (100 μM); (14) aspartate (100 μM); (15) arginine (100 μM); (16) glutamic acid (100 μM); (17) Cys (100 μM). $\lambda_{ex/em} = 405/460$ nm.

9. Determination of Cys in human serum

Human serum sample (1 mL) was transferred to a 5-mL centrifuge tube. Then, 0.15 mL of a 66.7 g/L tris(2-carboxyethyl)phosphine solution (reducing reagent) at nearly neutral pH (ca. pH 6) was added to the sample. The resulting mixture was vigorously vortex-mixed at intervals and incubated for 30 min at room temperature. Afterward, 3 mL of acetonitrile was introduced to precipitate the protein, and the separated supernatant was blow-dried in a tube by a pure N₂ flow. Then, 1 mL of borate buffer solution (20 mM, pH 7.4, containing 2 mM EDTA) was added to the tube, vortex-mixed, and centrifuged at 12000 r/min for 5 min. The supernatant was collected. For fluorescence analysis, 100 µL of the supernatant was taken out and mixed with 900 µL of PBS (pH 7.4) containing 10 μ M of probe 1, and 2 h later fluorescence signal was recorded. For HPLC analysis (Liu et al, Anal. Chem., 2015, 87, 11475), 180 µL of the supernatant was taken out and mixed with 20 µL of a 5 g/L ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonic acid (SBD-F) solution for the derivatization reaction. The reaction was performed at 60 °C in a water bath for 1 h. The final solution was filtered with a 0.22 µm Millipore membrane and kept at 4 °C for use. The HPLC separation of the Cys derivatives was carried out using isocratic elution method. The mobile phase consisted of 0.1 M acetate buffer (pH 4.5) and methanol, whose volume ratio is 97:3 (v/v).

Analyte	added	found ^a	recovery ^a		
	(µM)	(µM)	(%)		
Cys	0	262 ± 4			
	100	363 ± 7	100 ± 2		
	200	456 ± 10	99 ± 2		
^a Mean of three determinations \pm standard deviation					

Table S1 Determination of Cys in human serum

Table S2 Determination of Cys in human serum with added GSH or NAC

Substance added	concentration	Cys found ^a	recovery ^a
	(µM)	(µM)	(%)
GSH	100	268 ± 4	102 ± 1
	200	270 ± 6	103 ± 2
NAC	100	260 ± 7	99 ± 3
	200	265 ± 7	101 ± 3

^a Mean of three determinations \pm standard deviation

Fig. S12. HPLC chromatograms of the standard Cys sample (black) and the human serum sample (red). The concentration of Cys in human serum was determined to be 247 \pm 13 μ M.

10. Studies on the cytotoxicity of probe 1

Fig. S13 Percentage of viable LO2 cells after treatment with indicated concentrations of probe **1** after 24 h.

Fig. S14 Percentage of viable HepG2 cells after treatment with indicated concentrations of probe **1** after 24 h.

11. Cell imaging

Fig. S15 Fluorescence images and relative pixel intensities of the corresponding fluorescence images of (A) LO2 and (B) HepG2 cells. (1) Cells only; (2) cells incubated with 10 μ M of probe **1** for 1 h at 37 °C; (3) cells pretreated with 2 mM of NEM, and then incubated with 10 μ M of probe **1** for 1 h at 37 °C. Scale bar, 20 μ m.

Fig. S16 Fluorescence images of HepG2 cells. HepG2 cells were pre-treated with NEM (2 mM), then incubated with 100 μ M of NAC (A) or Cys (B) for different periods of time (0, 30, 60, 120 min), and finally incubated with probe **1** (10 μ M). The differential interference contrast images are shown below the corresponding fluorescence images. (C) Relative pixel intensity of the corresponding fluorescence images. Statistical analyses are performed using the Student's t-test: ** p < 0.01, *** p < 0.001. Emission was collected at 430–490 nm with excitation at 405 nm. Scale bar, 20 μ m.