Electronic Supplementary Information

Carbon Dioxide Separation from Flue Gas by Mixed Matrix Membranes with Dual Phase Microporous Polymeric Constituents

Ali K. Sekizkardes,^{a,b*} Victor A. Kusuma, ^{a,c} Ganpat Dahe, ^{a,b} Elliot A. Roth, ^{a,b} Lawrence J. Hill, ^{a,b} Anne Marti, ^{a,b} Megan Macala, ^{a,c} Surendar R. Venna ^{a,c}*, and David Hopkinson^a

^{a.} U.S. Department of Energy National Energy and Technology Laboratory, Pittsburgh, Pennsylvania 15236, US. Email; <u>ali.sekizkardes@netl.doe.gov</u> and Surendar.Venna@netl.doe.gov

b. Oak Ridge Institute for Science and Education, Pittsburgh, PA 15236, United States

c. AECOM Pittsburgh, PA 15236, United States.

Materials and Preparation

All chemicals were purchased from Sigma Aldrich and were used without any further purification. BILP-101 and PIM-1 was synthesized based on the previous reports.^{1,2} Thermogravimetric analysis (TGA) was performed using a TGA Q500 thermal analysis system. Powder X-ray diffraction (PXRD) was collected by Bruker AXS D8 Discover powder diffractometer at 40 kV, 40 mA for Cu Ka. Surface area measurements were performed using an Autosorb 1 from Quantachrome. Scanning electron microscopy (SEM) was performed using an FEI Quanta 600 scanning electron microscope. ¹H (300 MHz) NMR spectrum was recorded on a Bruker AVANCE III 300 spectrometer. Fourier transform infra-red (FT-IR) Spectra were collected by using a Bruker vertex 70. *Preparation of BILP-101*

BILP-101 was synthesized by the experimental procedure reported by Sekizkardes *et al.* ¹ 1,2,4,5-benzenetetramine tetrahydrochloride (100 mg, 0.35 mmol), 70 mL anhydrous DMF, and a stirrer-bar. The resultant homogeneous solution was cooled to -30 °C and treated drop-wise with 1,3,5-triformylbenzene (40 mg, 0.23 mmol) dissolved in anhydrous DMF (17 mL). The temperature was maintained around - 40 °C for 1 hour and warm to room temperature overnight. After air introduction for 15 min., the reaction mixture was transferred to oven and heated gradually to 130 °C and kept for two days to afford a fluffy light brown powder. The solid was washed with DMF, acetone, water, 1 M HCl, 1 M NaOH, water, and acetone. Dried product was vacuumed to give BILP-101 as a fluffy brown powder (72 mg, yield 92%).

Preparation of PIM-1

BILP-101 was synthesized by the experimental procedure reported by Budd et al.²

3,3,3',3'-tetramethyl-1-1''-spirobisindane-5,5',6,6'-tetrol (12.4 mmol, 4.1 g) and 2,3,5,6tetra-fluorophthalonitrile (12.4 mmol, 2.4 g) were dissolved in dry DMF (120 mL). K₂CO₃ was added in the solution and the reaction was stirred at 65°C for three days. Water (110 mL) was added after cooling the reaction mixture and the product was afforded by filtration. Further purification was performed by reprecipitation from CHCl₃ solution with MeOH and a bright yellow solid product was afforded (5.12 g, yield 92 %), after thermal activation at 120 °C.

Figure S1: ¹H (300 MHz) spectrum of PIM-1

Figure S2: FT-IR spectrum (400-4000 cm⁻¹) of PIM-1

Figure S3: FT-IR spectrum (1000-4000 cm⁻¹) of BILP-101

Figure S4: Full N₂ adsorption/desorption isotherm at 77K and pore size distribution for PIM-1 calculated by non-local density functional theory (NLDFT) model.

Temperature ⁰C

Figure S6: PXRD pattern for PIM-1 and PIM-1/BILP-101 MMMs.

Figure S7: Density measurements for PIM-1, BILP-101 and 17, 30, and 40 wt% BILP-101 in PIM-1 collected by a Helium pycnometer.

	ρ (g/cm³)	mass (g)	estimated uncertainty (+ 1 mg)
PIM-1	1.28	0.0138	0.07
17 wt%	1.34	0.0426	0.02
30 wt%	1.59	0.0065	0.15
40 wt%	1.39	0.0149	0.07
BILP-101	1.47	0.0252	0.04

Figure S8. Cross-sectional SEM images for PIM-1

Figure S9: Cross-sectional SEM images for BILP-101

Figure S10: Cross-sectional SEM images for 17 wt% BILP-101 in PIM-1

Figure S11: Cross-sectional SEM images for 30 wt% BILP-101 in PIM-1

Figure S12: Cross-sectional SEM images for 40 wt% BILP-101 in PIM-1

Table S1. 4 weeks aging data for 30 wt% BILP-101 in PIM-1.

30 wt% BILP-101 in PIM-1	CO ₂ permeability (Barrer)	CO ₂ /N ₂ selectivity
1 week	7200	15.3
2 week	6100	15.7
4 week	4600	16.7

References

- 1. A. K. Sekizkardes, J. T. Culp, T. Islamoglu, A. Marti, D. Hopkinson, C. Myers, H. M. El-Kaderi and H. B. Nulwala, *Chemical Communications*, 2015, **51**, 13393-13396.
- 2. P. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib and C. E. Tattershall, *Chemical Communications*, 2004, 230-231.