Supporting Information

Amphiphilic Tribranched Scaffolds with Polyaromatic Panels That Wrap Perylene Stacks Displaying Unusual Emissions

Akira Suzuki, Munetaka Akita, Michito Yoshizawa*

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; *E-mail: yoshizawa.m.ac@m.titech.ac.jp

Contents

- Materials and methods
- Synthetic route of tribranched scaffold 2
- Synthesis of 1,3,5-tribromo-2,4,6-trimethylbenzene
- Synthesis of $\mathbf{1}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HH}-\mathrm{COSY} \& \mathrm{HSQC}\right.$ spectra $)$
- Synthesis of $\mathbf{1}_{\mathrm{Br}}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HH}-\mathrm{COSY} \& \mathrm{HSQC}\right.$ spectra)
- Synthesis of $\mathbf{2}_{\text {ome }}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HH}-\mathrm{COSY} \&\right.$ HSQC spectra)
- Synthesis of $\mathbf{2}_{\mathbf{O H}}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HH}-\mathrm{COSY} \&\right.$ HSQC spectra)
- Synthesis of tribranched scaffold $2\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HH}-\mathrm{COSY}, \mathrm{HSQC} \&\right.$ ESI-TOF MS spectrum)
- Formation of capsule (2) $)_{2}\left({ }^{1} \mathrm{H}\right.$ NMR, DOSY, DLS, UV-vis \& Fluorescence spectra)
- Synthetic route of tribranched scaffold 4
- Synthesis of $\mathbf{5}_{\mathrm{Br}}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HH}-\mathrm{COSY} \& \mathrm{HSQC}\right.$ spectra $)$
- Synthesis of $\mathbf{4}_{\mathrm{OH}}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{HH}-\mathrm{COSY} \& \mathrm{HSQC}\right.$ spectra $)$
- Synthesis of tribranched scaffold $4\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$-NMR, HH-COSY, HSQC \& ESI-TOF MS spectra)
- Formation of assembly (4) $)_{n}\left({ }^{1} \mathrm{H}\right.$ NMR, DOSY, DLS, UV-vis \& Fluorescence spectra)
- Synthesis of host-guest complexes $(\mathbf{2})_{4} \supset\left(\mathbf{3} \text { or } \mathbf{3}^{\prime}\right)_{3}$ and (4) $\supset\left(\mathbf{3} \text { or } \mathbf{3}^{\prime}\right)_{3}\left({ }^{1} \mathrm{H}\right.$ NMR, DOSY, DLS, UV-vis \& Fluorescence spectra)
- Molecular modeling of $(\mathbf{2})_{4} \supset(\mathbf{3})_{3}$.

Materials and methods

NMR: Bruker AVANCE-500 (500 MHz), MALDI-TOF MS: Shimadzu AXIMA-CFR Plus, ESI-TOF MS: Bruker micrOTOF II, Size Analysis (DLS): Wyatt Technology DynaPro NanoStar, FT IR: JASCO FT/IR-4200, UV-vis: JASCO V-670DS, Fluorescence: HITACHI F-7000, Absolute PL quantum yield: Hamamatsu Quantaurus-QY C11347-01, Elemental analysis: LECO CHNS-932 VTF-900.

Solvents and reagents: TCI Co., Ltd., Wako Pure Chemical Industries Ltd., Kanto Chemical Co., Inc., Sigma-Aldrich Co., and Cambridge Isotope Laboratories, Inc.

References

[S1] D. Bruns, H. Miura, K. P. C. Vollhardt, Org. Lett. 2003, 5, 549-552.
[S2] A. Suzuki, K. Kondo, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 2013, 52, 8120-8123.

Scheme S1. Synthetic route of tribranched scaffold 2.

Bromine ($25.0 \mathrm{~mL}, 0.485 \mathrm{~mol}$) and iron powder ($1.477 \mathrm{~g}, 26.45 \mathrm{mmol}$) were added to a 2-necked 200 mL glass flask. 1,3,5-Trimethylbenzene ($10.011 \mathrm{~g}, 83.29 \mathrm{mmol}$) was then added dropwise to the flask for 30 min at r.t. The reaction mixture was stirred at r.t. for 1 week. After addition of an aqueous NaHSO_{3} solution, the resultant mixture was extracted with CHCl_{3} and the resultant organic layer was dried over MgSO_{4}, filtered, and concentrated. The crude product was crystallized from CHCl_{3} to afford 1,3,5-tribromo-2,4,6-trimethylbenzene ${ }^{[51]}(8.936 \mathrm{~g}, 25.04 \mathrm{mmol}, 30 \%)$ as colorless fine crystals. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $\delta 2.66(\mathrm{~s}, 9 \mathrm{H})$. GC MS: m / z Calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Br}$ 356, Found $356[M]^{+}$.

Synthesis of 1

 1) n-BuLi, THF,
$\begin{aligned} & \text { 3) }{ }^{\circ} \mathrm{C} \\ & \text { 3) } \mathrm{PaCl}_{2}(\mathrm{PhCN})_{2} \\ & \mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H} \cdot \mathrm{BF}_{4}\end{aligned}$
2nCl, THF

1-Bromo-2,4-dimethoxybenzene ($3.716 \mathrm{~g}, 17.12 \mathrm{mmol}$) and dry THF (100 mL) were added to a 2-necked 300 mL glass flask filled with N_{2}. A hexane solution (2.6 M) of n-butyllithium ($6.5 \mathrm{~mL}, 17 \mathrm{mmol}$) was then added dropwise to this flask at $-80^{\circ} \mathrm{C}$ under N_{2}. After the mixture was stirred at $-80^{\circ} \mathrm{C}$ for 1 h , a dry THF solution (40 mL) of ZnCl_{2} $(3.774 \mathrm{~g}, 27.70 \mathrm{mmol})$ was added to the solution. The resultant mixture was further stirred at $-80{ }^{\circ} \mathrm{C}$ and then the solution was warmed to r.t. for 1 h to obtain 2,4-dimethoxyphenylzinc chloride. 1,3,5-Tribromo-2,4,6-trimethylbenzene ($1.000 \mathrm{~g}, 2.803$ $\mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(0.055 \mathrm{~g}, 0.14 \mathrm{mmol}), \mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H} \bullet \mathrm{BF}_{4}(0.124 \mathrm{~g}, 0.428 \mathrm{mmol})$, and dry THF (50 mL) were added to a 50 mL glass flask filled with N_{2}. After stirring at r.t. for

30 min , the mixture was added to the 300 mL flask. The resulted solution was further stirred at $70{ }^{\circ} \mathrm{C}$ for 1 d . The crude product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then combined organic extracts were dried over MgSO_{4}, filtered, and concentrated under reduce pressure. The crude product was purified by gel permeation chromatography $\left(\mathrm{CHCl}_{3}\right)$ to afford isomeric mixture of 1,3,5-tris(2,4-dimethoxyphenyl)-2,4,6-trimethylbenzene ($\mathbf{1}$ and $\mathbf{1}$ '; $1.370 \mathrm{~g}, 2.592 \mathrm{mmol}, 92 \%$). The solid was heated under neat condition at $180^{\circ} \mathrm{C}$ for 5 h , and then the resultant product was washed with $\mathrm{CH}_{3} \mathrm{OH}$ to afford single isomer 1 (all-syn) $(1.124 \mathrm{~g}, 2.126 \mathrm{mmol}, 76 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $\delta 1.71$ (s, $9 \mathrm{H}), 3.70(\mathrm{~s}, 9 \mathrm{H}), 3.84(\mathrm{~s}, 9 \mathrm{H}), 6.55-6.56(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $\delta 18.7(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 55.7\left(\mathrm{CH}_{3}\right), 99.3(\mathrm{CH}), 104.5(\mathrm{CH}), 123.9\left(\mathrm{C}_{q}\right)$, $131.6(\mathrm{CH}), 135.0\left(\mathrm{C}_{q}\right), 135.3\left(\mathrm{C}_{q}\right), 157.9\left(\mathrm{C}_{q}\right), 159.7\left(\mathrm{C}_{q}\right)$. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2931, 2362, 1609, 1579, 1465, 1415, 1300, 1207, 1157, 1042, 961, 833. MALDI-TOF MS (dithranol): m / z Calcd. for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{6}: 528.25$, Found 527.61 [M] ${ }^{+}$. HR MS (ESI): Calcd. For $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Na} 551.2404$, Found $551.2404[\mathrm{M}+\mathrm{Na}]^{+}$.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of a mixture of $\mathbf{1}$ and $\mathbf{1}^{\prime}$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) of $\mathbf{1}$.

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) of $\mathbf{1}$.

Figure S4. HSQC spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of $\mathbf{1}$.

Figure S5. Optimized structure of $\mathbf{1}$ (all-syn) and 1' (syn-anti).

Figure S6. Optimized structure of $(\mathbf{1})_{2}, \mathbf{1} \cdot \mathbf{1}^{\prime}$, and $\left(\mathbf{1}^{\prime}\right)_{2}$.

Synthesis of $\mathbf{1}_{\mathrm{Br}}$

1,3,5-Tris(2,4-dimethoxyphenyl)-2,4,6-trimethylbenzene (1; $1.702 \mathrm{~g}, 3.220 \mathrm{mmol}$) and THF (30 mL) were added to a 50 mL glass flask. A THF solution (20 mL) of 1,3-dibromo-5,5-dimethylhydantoin ($\mathrm{DBH} ; 1.572 \mathrm{~g}, 5.496 \mathrm{mmol}$) was added to the solution at r.t. and the resultant mixture was stirred at r.t. for 1 d . After addition of $\mathrm{H}_{2} \mathrm{O}$, the resultant mixture was extracted with CHCl_{3} and the obtained organic layer was dried over MgSO_{4}, filtered, and concentrated. The crude product was washed with $\mathrm{CH}_{3} \mathrm{OH}$ to afford $\mathbf{1}_{\mathrm{Br}}(2.212 \mathrm{~g}, 2.890 \mathrm{mmol}, 90 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $\delta 1.70$ (s, 9H), 3.73 (s, 9H), 3.94 (s, 9H), 6.57 (s, 3H), $7.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}, r.t.): $\delta 18.7\left(\mathrm{CH}_{3}\right), 56.1\left(\mathrm{CH}_{3}\right), 56.3\left(\mathrm{CH}_{3}\right), 97.5$ $(\mathrm{CH}), 102.1\left(\mathrm{C}_{q}\right), 124.6\left(\mathrm{C}_{q}\right), 134.4\left(\mathrm{C}_{q}\right), 134.9\left(\mathrm{C}_{q}\right), 135.0(\mathrm{CH}), 155.6\left(\mathrm{C}_{q}\right), 157.1\left(\mathrm{C}_{q}\right)$. FT-IR (KBr, cm^{-1}): 2941, 2844, 2362, 1600, 1502, 1464, 1383, 1286, 1206, 1033, 893, 817, 669, 608. MALDI-TOF MS (dithranol): m / z Calcd. for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{Br}_{3} \mathrm{O}_{6} 762.98$, Found 763.17 $[\mathrm{M}+\mathrm{H}]^{+}$. HR MS (ESI): Calcd. For $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{Br}_{3} \mathrm{Na} 784.9719$, Found 784.9714 [M+Na] ${ }^{+}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of $\mathbf{1}_{\mathbf{B r}}$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) of $\mathbf{1}_{\mathrm{Br}}$.

Figure S9. HSQC spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of $\mathbf{1}_{\mathbf{B r}}$.

Synthesis of anthracene trimer ${ }^{2}$ ome

9-Bromoanthracene ($3.430 \mathrm{~g}, 13.34 \mathrm{mmol}$) and dry THF (200 mL) were added to a 2-necked 300 mL glass flask filled with N_{2}. A hexane solution (2.6 M) of n-butyllithium $(5.0 \mathrm{~mL}, 13 \mathrm{mmol})$ was then added dropwise to this flask at $-80^{\circ} \mathrm{C}$ under N_{2}. After the mixture was stirred at $-80^{\circ} \mathrm{C}$ for 1 h , a dry THF solution (40 mL) of $\mathrm{ZnCl}_{2}(2.573 \mathrm{~g}, 18.88$ mmol) was added to the solution. The resultant mixture was further stirred at $-80^{\circ} \mathrm{C}$ and
then the solution was warmed to r.t. for 1.5 h to obtain 9 -anthrylzinc chloride. Compound $\mathbf{1}_{\text {Br }}(1.708 \mathrm{~g}, 2.232 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(0.062 \mathrm{~g}, 0.16 \mathrm{mmol}), \mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H} \bullet \mathrm{BF}_{4}(0.188 \mathrm{~g}$, $0.647 \mathrm{mmol})$, and dry THF (50 mL) were added to a 100 mL glass flask filled with N_{2}. After stirring at r.t. for 1 h , the mixture was added to the 300 mL flask. The resulted solution was further stirred at $70^{\circ} \mathrm{C}$ for 2 d . After addition of $\mathrm{H}_{2} \mathrm{O}$, the resultant precipitate was collected and washed with CHCl_{3} and hexane to afford anthracene trimer $\mathbf{2}_{\text {OMe }}$ (1.734 $\mathrm{g}, 1.640 \mathrm{mmol}, 74 \%$) as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $\delta 2.00$ (s, 9H), 3.65 (s, 9H), 3.97 (s, 9H), 6.79 (s, 3H), 6.82 (s, 3H), 7.21-7.24 (m, 6H), 7.30-7.33 (m, 6H), 7.65 (d, $J=9.0 \mathrm{~Hz}, 6 \mathrm{H}), 7.90$ (d, $J=$ $8.5 \mathrm{~Hz}, 6 \mathrm{H}$), $8.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $\delta 19.1\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{CH}_{3}\right), 56.0$ $\left(\mathrm{CH}_{3}\right), 96.6(\mathrm{CH}), 119.2\left(\mathrm{C}_{q}\right), 123.3\left(\mathrm{C}_{q}\right), 124.7(\mathrm{CH}), 125.0(\mathrm{CH}), 126.2(\mathrm{CH}), 126.8(\mathrm{CH})$, $128.3(\mathrm{CH}), 130.7\left(\mathrm{C}_{q}\right), 131.4\left(\mathrm{C}_{q}\right), 133.5\left(\mathrm{C}_{q}\right), 134.7\left(\mathrm{C}_{q}\right), 135.2\left(\mathrm{C}_{q}\right), 135.5(\mathrm{CH}), 157.6$ $\left(\mathrm{C}_{q}\right), 157.7\left(\mathrm{C}_{q}\right)$. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2931, 2838, 2363, 1605, 1504, 1463, 1348, 1258, 1204, 1110, 1034, 882, 843, 793, 735. MALDI-TOF MS (dithranol): m / z Calcd. for $\mathrm{C}_{75} \mathrm{H}_{60} \mathrm{O}_{6}$ 1056.44, Found 1056.41 [M] ${ }^{+}$. HR MS (ESI): Calcd. For $\mathrm{C}_{75} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{Na} 1079.4282$, Found $1079.4272[\mathrm{M}+\mathrm{Na}]^{+}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of $\mathbf{2}_{\mathbf{O M e}}$.

Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of $\mathbf{2}_{\mathrm{OMe}}$.

Figure S12. HH-COSY spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of $\boldsymbol{2}_{\mathbf{O M e}}$.

Figure S13a. HSQC spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of $\mathbf{2}_{\mathbf{o M e}}$.

Figure S13b. HSQC spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of $\mathbf{2}_{\text {ome }}$.

Synthesis of anthracene trimer $\mathbf{2 O H}^{\mathrm{OH}}$

Anthracene trimer $\mathbf{1}_{\text {Oме }}(0.501 \mathrm{~g}, 0.474 \mathrm{mmol})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were added to a 100 mL glass flask. $\mathrm{A}_{2} \mathrm{Cl}_{2}$ solution $(1.0 \mathrm{M})$ of $\mathrm{BBr}_{3}(15 \mathrm{~mL}, 15 \mathrm{mmol})$ was added dropwise to this flask under N_{2}. The reaction mixture was stirred at r.t. for 1 d . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The product was extracted with EtOAc and the resultant organic layer was dried over MgSO_{4}, filtered, and concentrated. The crude product was washed with CHCl_{3} and hexane to afford anthracene trimer $\mathbf{2}_{\mathbf{O H}}(0.400 \mathrm{~g}$, $0.411 \mathrm{mmol}, 87 \%$) as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz , Acetone- d_{6}, r.t.): $\delta 2.19$ (s, 9H), 5.75 (s, 2H), 6.71 (s, 3H), 6.83 (s, $3 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.80(\mathrm{~m}, 8 \mathrm{H}), 7.89(\mathrm{~s}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $6 \mathrm{H}), 8.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , Acetone- d_{6}, r.t.): $\delta 19.3\left(\mathrm{CH}_{3}\right), 103.9(\mathrm{CH}), 117.4$ $\left(\mathrm{C}_{q}\right), 120.8\left(\mathrm{C}_{q}\right), 125.8(\mathrm{CH}), 126.0(\mathrm{CH}), 127.1(\mathrm{CH}), 127.6(\mathrm{CH}), 129.1(\mathrm{CH}), 131.9\left(\mathrm{C}_{q}\right)$, $132.5\left(\mathrm{C}_{q}\right), 134.2\left(\mathrm{C}_{q}\right), 135.0(\mathrm{CH}), 136.0\left(\mathrm{C}_{q}\right), 137.7\left(\mathrm{C}_{q}\right), 155.9\left(\mathrm{C}_{q}\right), 156.6\left(\mathrm{C}_{q}\right)$. FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2362,1624,1503,1406,1258,1146,1102,1014,888,849,795,737,607$, 540. MALDI-TOF MS (dithranol): m / z Calcd. for $\mathrm{C}_{69} \mathrm{H}_{48} \mathrm{O}_{6} 972.35$, Found 971.52 [M] ${ }^{+}$. HR MS (ESI): Calcd. For $\mathrm{C}_{69} \mathrm{H}_{48} \mathrm{O}_{6} \mathrm{Na} 995.3343$, Found 995.3319 [M+Na] ${ }^{+}$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz , Acetone- d_{6}, r.t.) of $\mathbf{2}_{\mathbf{O H}}$.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum (125 MHz , Acetone- d_{6}, r.t.) of $\boldsymbol{2}_{\mathbf{O H}}$.

Figure S16. HH-COSY spectrum (500 MHz , Acetone- d_{6}, r.t.) of $\mathbf{2}_{\mathbf{O H}}$.

Figure $\mathbf{S 1 7 a}$. HSQC spectrum (400 MHz , Acetone $-d_{6}$, r.t.) of $\mathbf{2}_{\mathbf{O H}}$.

Figure S17b. HSQC spectrum (400 MHz , Acetone- d_{6}, r.t.) of $\mathbf{2}_{\mathbf{O H}}$.

Anthracene trimer $\mathbf{2}_{\mathbf{O H}}(0.310 \mathrm{~g}, 0.318 \mathrm{mmol}), \mathrm{NaOH}(0.801 \mathrm{~g}, 20.0 \mathrm{mmol})$, and dry THF (20 mL) were added to a 2-necked 50 mL glass flask filled with N_{2}. The resultant mixture was stirred at $70^{\circ} \mathrm{C}$ for 1 h . A THF (10 mL) solution of 1,3-propanesultone (1.170 $\mathrm{g}, 9.582 \mathrm{mmol}$) was added to the reaction mixture and then the solution was further stirred at $70^{\circ} \mathrm{C}$ for 2 d . After the evaporation, the crude product was dissolved in water (20 mL) and neutralized by an aqueous HCl solution. After evaporation, the crude product was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ and then precipitated NaCl was removed by centrifugation. The
resultant solution was evaporated and the resultant solid was washed with small amount of cold $\mathrm{CH}_{3} \mathrm{OH}$ to afford tribranched scaffold $2(0.264 \mathrm{~g}, 0.143 \mathrm{mmol}, 45 \%)$ as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): $\delta 1.77-1.82(\mathrm{~m}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 9 \mathrm{H}), 2.21-2.24(\mathrm{~m}, 6 \mathrm{H})$, $2.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 3.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 4.07(\mathrm{t}, J=6.0 \mathrm{~Hz}, 9 \mathrm{H}), 4.37(\mathrm{t}, J=7.0$ $9 \mathrm{H}), 6.73(\mathrm{~s}, 3 \mathrm{H}), 7.07(\mathrm{~s}, 3 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $6 \mathrm{H}), 7.92(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 6 \mathrm{H}), 8.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): $\delta 19.8$ $\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 48.5-49.5\left(\mathrm{CH}_{2} \times 2\right), 68.5\left(\mathrm{CH}_{2}\right), 68.9\left(\mathrm{CH}_{2}\right), 100.8(\mathrm{CH})$, $120.8\left(\mathrm{C}_{q}\right), 125.4\left(\mathrm{C}_{q}\right), 125.9(\mathrm{CH}), 126.1(\mathrm{CH}), 127.1(\mathrm{CH}), 127.8(\mathrm{CH}), 129.3(\mathrm{CH})$, $131.9\left(\mathrm{C}_{q}\right), 132.9\left(\mathrm{C}_{q}\right), 135.0\left(\mathrm{C}_{q}\right), 135.5\left(\mathrm{C}_{q}\right), 135.9(\mathrm{CH}), 136.9\left(\mathrm{C}_{q}\right), 158.4\left(\mathrm{C}_{q} \times 2\right) .{ }^{1} \mathrm{H}$ DOSY NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 2.0 \mathrm{mM}, 300 \mathrm{~K}$): $D=1.35 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. FT-IR (KBr, cm^{-1}): 3052, 2949, 2362, 1606, 1502, 1348, 1194, 1109, 1048, 795, 738, 608, 528. ESI-TOF MS $\left(\mathrm{CH}_{3} \mathrm{OH}\right): m / z 344.4\left[\mathrm{M}-5 \cdot \mathrm{Na}^{+}\right]^{5-}, 436.3\left[\mathrm{M}-4 \cdot \mathrm{Na}^{+}\right]^{4-}, 589.4\left[\mathrm{M}-3 \cdot \mathrm{Na}^{+}\right]^{3-}$, $895.6\left[\mathrm{M}-2 \cdot \mathrm{Na}^{+}\right]^{2-}$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.) of $\mathbf{2}$.

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.) of $\mathbf{2}$.

Figure S20. HH-COSY spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.) of $\mathbf{2}$.

Figure S21a. HSQC spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.) of 2 .

Figure S21b. HSQC spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.) of $\mathbf{2}$.

Figure S22. ESI-TOF MS spectrum $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ of 2.

Formation of molecular capsule (2) ${ }_{2}$

AS523

Tribranched scaffold $2(1.9 \mathrm{mg}, 1.0 \mu \mathrm{~mol})$ was added to water $(0.5 \mathrm{~mL})$ and then the solution was stirred at r.t. for 1 min . The formation of molecular capsule (2) was confirmed by NMR, DLS, and spectroscopic analyses.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , r.t., TMS as an external standard) of $2(2.0 \mathrm{mM}$) in $\mathrm{CD}_{3} \mathrm{OD} / \mathrm{D}_{2} \mathrm{O}$ mixtures.

Figure S24. DOSY NMR spectra (500 MHz , r.t., TMS as an external standard) of $2(2.0 \mathrm{mM}$) in (a) $\mathrm{CD}_{3} \mathrm{OD}$ and (b) $\mathrm{D}_{2} \mathrm{O}$.

Figure S25. Particle size distribution of assembly (2) $)_{2}$ by DLS analysis $\left(\mathrm{H}_{2} \mathrm{O}\right.$, r.t., 1.0 and 5.0 mM based on 2).

Figure S26. (a) UV-vis spectra and (b) normalized fluorescence spectra ($\boldsymbol{\lambda}_{\mathrm{ex}}=370 \mathrm{~nm}$, r.t.) of $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{OH}$ and capsule $(\mathbf{2})_{2}$ in $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{mM}$ based on $\mathbf{2})$.

Figure S27. Concentration-dependent (a) UV-vis spectra ($0.13-2.0 \mathrm{mM}$) and (b) fluorescence spectra (normalized, 0.13-4.0 mM, $\lambda_{\mathrm{ex}}=370 \mathrm{~nm}$, r.t.) of $\mathbf{2}$ in $\mathrm{H}_{2} \mathrm{O}$.

Scheme S2. Synthetic route of tribranched scaffold 4.

Synthesis of 5_{Br}

KK401, 410

1-Bromo-2,4-dimethoxybenzene ($4.136 \mathrm{~g}, 19.05 \mathrm{mmol}$) and dry THF (200 mL) were added to a 2-necked 300 mL glass flask filled with N_{2}. A hexane solution (2.6 M) of n-butyllithium ($7.8 \mathrm{~mL}, 20 \mathrm{mmol}$) was then added dropwise to this flask at $-80^{\circ} \mathrm{C}$ under N_{2}. After the mixture was stirred at $-80^{\circ} \mathrm{C}$ for 30 min , a dry THF solution (50 mL) of $\mathrm{ZnCl}_{2}(3.392 \mathrm{~g}, 24.89 \mathrm{mmol})$ was added to the solution. The resultant mixture was further stirred at $-80{ }^{\circ} \mathrm{C}$ and then the solution was warmed to r.t. for 2 h to obtain 2,4-dimethoxyphenylzinc chloride. 1,3,5-Tribromobenzene ($1.017 \mathrm{~g}, 3.230 \mathrm{mmol}$), $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(0.130 \mathrm{~g}, 0.339 \mathrm{mmol})$, a hexane solution $(0.95 \mathrm{M})$ of $\mathrm{P}(t-\mathrm{Bu})_{3}(0.70 \mathrm{~mL}$, 0.67 mmol), and dry THF (30 mL) were added to a 50 mL glass flask filled with N_{2}. After stirring at r.t. for 2 h , the mixture was added to the 300 mL flask. The resulted solution was further stirred at $80{ }^{\circ} \mathrm{C}$ for 1 d . After evaporation, the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the resultant organic layer was dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by silica-gel column chromatography (hexane/EtOAc $=1 / 1$) to afford 1,3,5-tris(2,4-dimethoxyphenyl)benzene (5; $1.154 \mathrm{~g}, 2.373 \mathrm{mmol}, 73 \%$) as a white solid.

Compound $5(1.558 \mathrm{~g}, 3.203 \mathrm{mmol})$ and THF (30 mL) were added to a 50 mL glass flask. DBH ($2.132 \mathrm{~g}, 7.457 \mathrm{mmol}$) was added to the solution and the resultant mixture was stirred at r.t. for 12 h . After addition of $\mathrm{H}_{2} \mathrm{O}$, resultant precipitate was collected and washed with $\mathrm{H}_{2} \mathrm{O}$ to afford $\mathbf{5}_{\mathrm{Br}}(1.999 \mathrm{~g}, 2.764 \mathrm{mmol}, 86 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}, r.t.): $\delta 3.84(\mathrm{~s}, 9 \mathrm{H}), 3.96(\mathrm{~s}, 9 \mathrm{H}), 6.59(\mathrm{~s}, 3 \mathrm{H}), 7.52(\mathrm{~s}, 3 \mathrm{H}), 7.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $\delta 56.0\left(\mathrm{CH}_{3}\right), 56.5\left(\mathrm{CH}_{3}\right), 97.1(\mathrm{CH}), 102.2\left(\mathrm{C}_{q}\right), 124.6\left(\mathrm{C}_{q}\right), 129.1$ $(\mathrm{CH}), 134.6(\mathrm{CH}), 136.6\left(\mathrm{C}_{q}\right), 156.0\left(\mathrm{C}_{q}\right), 156.9\left(\mathrm{C}_{q}\right)$. FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): 2939,2842,2363$, 1602, 1502, 1464, 1434, 1363, 1295, 1206, 1173, 1030, 876, 815, 716, 632. HR MS (ESI): Calcd. For $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{Br}_{3} \mathrm{O}_{6} \mathrm{Na} 742.9250$, Found $742.9249[\mathrm{M}+\mathrm{Na}]^{+}$.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) of $\mathbf{5}_{\mathrm{Br}}$.

Figure S30. HSQC spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) of $\mathbf{5}_{\mathbf{B r}}$.

Synthesis of anthracene trimer $\mathbf{4 O H}$
KK404, 409

9-Bromoanthracene ($1.551 \mathrm{~g}, 6.030 \mathrm{mmol}$) and dry THF (200 mL) were added to a 2-necked 300 mL glass flask filled with N_{2}. A hexane solution (2.6 M) of n-butyllithium $(2.5 \mathrm{~mL}, 6.5 \mathrm{mmol})$ was then added dropwise to this flask at $-80^{\circ} \mathrm{C}$ under N_{2}. After the mixture was stirred at $-80^{\circ} \mathrm{C}$ for 30 min , a dry THF solution (40 mL) of $\mathrm{ZnCl}_{2}(1.082 \mathrm{~g}$, 7.940 mmol) was added to the solution. The resultant mixture was further stirred at $-80^{\circ} \mathrm{C}$
and then the solution was warmed to r.t. to obtain 9 -anthrylzinc chloride. Compound $\mathbf{5}_{\mathrm{Br}}$ $(0.712 \mathrm{~g}, 0.985 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(0.039 \mathrm{~g}, 0.10 \mathrm{mmol})$, a hexane solution $(0.95 \mathrm{M})$ of $\mathrm{P}(t-\mathrm{Bu})_{3}(0.21 \mathrm{~mL}, 0.20 \mathrm{mmol})$, and dry THF $(30 \mathrm{~mL})$ were added to a 50 mL glass flask filled with N_{2}. After stirring at r.t. for 30 min , the mixture was added to the 300 mL flask. The resulted solution was further stirred at $80^{\circ} \mathrm{C}$ for 1 d . After evaporation, the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the resultant organic layer was dried over MgSO_{4}, filtered, and concentrated. The resultant product was washed with hexane to afford anthracene trimer $\mathbf{4}_{\text {OMe }}(0.961 \mathrm{~g}, 0.946 \mathrm{mmol}, 96 \%)$ as a white solid.

Anthracene trimer $\mathbf{4}_{\text {ome }}(1.008 \mathrm{~g}, 0.993 \mathrm{mmol})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ were added to a 100 mL glass flask. $\mathrm{A}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}$ solution (1.0 M) of $\mathrm{BBr}_{3}(6.0 \mathrm{~mL}, 6.0 \mathrm{mmol})$ was added dropwise to this flask at $0{ }^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was stirred at r.t. for 1 d. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the resultant organic layer was dried over MgSO_{4}, filtered, and concentrated. The crude product was washed with hexane to afford anthracene trimer $\mathbf{4}_{\mathbf{O H}}(0.714 \mathrm{~g}, 0.767$ mmol, 77%) as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}, r.t.): $\delta 6.68$ (s, 3H), 7.02 (s, 3 H), 7.29-7.33 (m, 6H), $7.43-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.58(\mathrm{~s}, 3 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 6 \mathrm{H}), 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 6 \mathrm{H}), 8.55(\mathrm{~s}$, $3 \mathrm{H}), 9.26(\mathrm{~s}, 3 \mathrm{H}), 9.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}, r.t.): $\delta 103.5(\mathrm{CH}), 115.9$ $\left(\mathrm{C}_{q}\right), 119.8\left(\mathrm{C}_{q}\right), 125.2(\mathrm{CH}), 125.4(\mathrm{CH}), 125.9(\mathrm{CH}), 126.8(\mathrm{CH}), 127.5(\mathrm{CH}), 128.4(\mathrm{CH})$, $130.4\left(\mathrm{C}_{q}\right), 131.2\left(\mathrm{C}_{q}\right), 133.6(\mathrm{CH}), 134.3\left(\mathrm{C}_{q}\right), 137.7\left(\mathrm{C}_{q}\right), 155.0\left(\mathrm{C}_{q}\right), 155.7\left(\mathrm{C}_{q}\right)$. FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2362,1623,1507,1358,1261,1220,1157,1062,1014,886,851,738,607$, 576. HR MS (ESI): Calcd. For $\mathrm{C}_{66} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{Na} 953.2874$, Found $953.2874[\mathrm{M}+\mathrm{Na}]^{+}$.

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz , DMSO- d_{6}, r.t.) of $\mathbf{4}_{\mathrm{OH}}$.

Figure S32. ${ }^{13} \mathrm{C}$ NMR spectrum (125 MHz , DMSO- d_{6}, r.t.) of $\mathbf{4}_{\mathbf{o H}}$.

Figure S33a. HSQC spectrum (500 MHz , DMSO- d_{6}, r.t.) of $\mathbf{4}_{\mathbf{O H}}$.

Figure S33b. HSQC spectrum (500 MHz, DMSO- d_{6}, r.t.) of $\mathbf{4}_{\mathrm{OH}}$.

Anthracene trimer $\mathbf{4}_{\mathbf{O H}}(0.160 \mathrm{~g}, 0.254 \mathrm{mmol}), \mathrm{NaOH}(0.683 \mathrm{~g}, 17.1 \mathrm{mmol})$, and dry THF (20 mL) were added to a 2-necked 50 mL glass flask filled with N_{2}. The resultant mixture was stirred at $70^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .1,3$-Propanesultone ($0.986 \mathrm{~g}, 8.07 \mathrm{mmol}$) was added to the reaction mixture and then the solution was further stirred at $70{ }^{\circ} \mathrm{C}$ for 17 h . After the centrifugation, the crude product was dissolved in water (20 mL) and neutralized by an aqueous HCl solution. After evaporation, the crude product was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ and then precipitated NaCl was removed by centrifugation. The resultant solution was evaporated and the resultant solid was washed with cold $\mathrm{CH}_{3} \mathrm{OH}$ to afford tribranched scaffold $4(0.139 \mathrm{~g}, 0.0771 \mathrm{mmol}, 30 \%)$ as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): $\delta 1.77-1.80(\mathrm{~m}, 6 \mathrm{H}), 1.94(\mathrm{t}, J=7.0 \mathrm{~Hz} 6 \mathrm{H}), 2.25-2.28$ $(\mathrm{m}, 6 \mathrm{H}), 2.60(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 4.04(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 4.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 6.98(\mathrm{~s}$, $3 \mathrm{H}), 7.26(\mathrm{~s}, 3 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.75$ $(\mathrm{s}, 3 \mathrm{H}), 8.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 8.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.): $\delta 26.0$ $\left(\mathrm{CH}_{2} \times 2\right), 68.4\left(\mathrm{CH}_{2}\right), 68.6\left(\mathrm{CH}_{2}\right), 100.2(\mathrm{CH}), 120.9\left(\mathrm{C}_{q}\right), 124.7\left(\mathrm{C}_{q}\right), 126.1(\mathrm{CH}), 126.4$ $(\mathrm{CH}), 127.4(\mathrm{CH}), 127.9(\mathrm{CH}), 129.4(\mathrm{CH}), 129.7(\mathrm{CH}), 131.9\left(\mathrm{C}_{q}\right), 133.0\left(\mathrm{C}_{q}\right), 134.8\left(\mathrm{C}_{q}\right)$, $135.7(\mathrm{CH}), 138.8\left(\mathrm{C}_{q}\right), 158.1\left(\mathrm{C}_{q}\right), 158.7\left(\mathrm{C}_{q}\right) .{ }^{1} \mathrm{H}$ DOSY NMR (500 MHz, $\mathrm{CD}_{3} \mathrm{OD}, 2.0$ mM , r.t.): $D=0.95 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. FT-IR (KBr, cm^{-1}): 3052, 2945, 2363, 1605, 1504, 1347, 1192, 1047, 883, 793, 738, 607, 530. ESI-TOF MS $\left(\mathrm{CH}_{3} \mathrm{OH}\right): m / z 335.8\left[\mathrm{M}-5 \cdot \mathrm{Na}^{+}\right]^{5-}$, $425.5\left[\mathrm{M}-4 \cdot \mathrm{Na}^{+}\right]^{4}, 575.0\left[\mathrm{M}-3 \cdot \mathrm{Na}^{+}\right]^{3-}, 874.5\left[\mathrm{M}-2 \cdot \mathrm{Na}^{+}\right]^{2-}$.

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.) of 4 .

Figure S36. HH-COSY spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.) of 4 .

Figure S37a. HSQC spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.) of 4 .

Figure $\mathbf{S 3 7 b}$. HSQC spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, r.t.) of 4 .

Figure S38. ESI-TOF MS spectrum $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ of 4.

Tribranched scaffold $\mathbf{4}(1.8 \mathrm{mg}, 1.0 \mu \mathrm{~mol})$ was dissolved in water $(0.5 \mathrm{~mL})$ and then the solution was stirred at r.t. for 1 min . The formation of assembly (4) ${ }_{n}$ was confirmed by NMR, DLS, and spectroscopic analyses.

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , r.t., TMS as an external standard) of 4 (2 mM) in (a) $\mathrm{CD}_{3} \mathrm{OD}$ and (b) $\mathrm{D}_{2} \mathrm{O}$.

Figure S40. DOSY NMR spectra (500 MHz , r.t., TMS as an external standard) of $\mathbf{4}$ (2 mM) in (a) $\mathrm{CD}_{3} \mathrm{OD}$ and (b) $\mathrm{D}_{2} \mathrm{O}$.

Figure S41. (a) UV-vis spectra and (b) normalized fluorescence spectra ($\lambda_{\text {ex }}=370 \mathrm{~nm}$, r.t.) of 4 in $\mathrm{CH}_{3} \mathrm{OH}$ and $(4)_{n}$ in $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{mM}$ based on 4$)$.

Figure S42. Concentration-dependent (a) UV-vis spectra ($0.13-2.0 \mathrm{mM}$) and (b) fluorescence spectra (normalized, $0.13-4.0 \mathrm{mM}, \lambda_{\mathrm{ex}}=370 \mathrm{~nm}$, r.t.) of $\mathbf{4}$ in $\mathrm{H}_{2} \mathrm{O}$.

Figure S43. Particle size distribution of (4) $)_{n}$ by DLS analysis $\left(\mathrm{H}_{2} \mathrm{O}\right.$, r.t., (a) 2.0 and (b) 5.0 mM based on 4).

General procedure for the synthesis of host-guest complex (2)4 $\supset(3)_{3}$

A mixture of amphiphilic compound $2(2.2 \mathrm{mg}, 1.2 \mu \mathrm{~mol})$ and perylene $(\mathbf{3} ; 1.5 \mathrm{mg}$, $6.0 \mu \mathrm{~mol})$ was ground for 1 min using an agate mortar and pestle. After the addition of $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL})$, the suspend solution was centrifuged ($16000 \mathrm{~g}, \sim 10 \mathrm{~min}$) and then filtrated by a membrane filter (pore size; 200 nm) to give a clear aqueous solution of host-guest complex (2) $\supset \supset(\mathbf{3})_{3}$. Host-guest complexes $(\mathbf{2})_{4} \supset\left(\mathbf{3}^{\prime}\right)_{3}$ and $(\mathbf{4})_{4} \supset\left(\mathbf{3} \text { or } \mathbf{3}^{\prime}\right)_{3}$ were also prepared by the same procedure.

Figure S44a. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , r.t., TMS as an external standard) of (a) $\mathbf{3}$ in CDCl_{3}, (b) (2) $)_{4} \supset(\mathbf{3})_{3}$ in $4: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}$, and (c) DOSY NMR spectrum (500 MHz , r.t., TMS as an external standard) of $(\mathbf{2})_{4} \supset(\mathbf{3})_{3}$ in $4: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}$.
(a) in $\mathrm{D}_{2} \mathrm{O}$

Figure S44b. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz , r.t., TMS as an external standard) of (4) $)_{4} \supset(\mathbf{3})_{3}$ in (a) $\mathrm{D}_{2} \mathrm{O}$ and (b) $4: 1 \mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}$.

Figure S45. Particle size distribution of host-guest complexes (a) (2) $)_{4} \supset(\mathbf{3})_{3}$ and (b) (4) $)_{4} \supset(\mathbf{3})_{3}$ by DLS analysis ($\mathrm{H}_{2} \mathrm{O}$, r.t.).

Figure S46. (a) UV-vis $\left(\mathrm{H}_{2} \mathrm{O}\right.$, r.t., 1.0 mM based on 2) and (b) fluorescence spectra $\left(\mathrm{H}_{2} \mathrm{O}\right.$, r.t., 2.0 mM based on $\mathbf{2}$) of (2) $)_{4} \supset(\mathbf{3})_{3}$.

Figure S47. (a) UV-vis $\left(\mathrm{H}_{2} \mathrm{O}\right.$, r.t., 1.0 mM based on 2) and (b) fluorescence spectra $\left(\mathrm{H}_{2} \mathrm{O}\right.$, r.t., 2.0 mM based on $\mathbf{2}$) of $(\mathbf{2})_{4} \supset\left(\mathbf{3}^{\prime}\right)_{3}$.

Figure S48. (a) UV-vis $\left(\mathrm{H}_{2} \mathrm{O}\right.$, r.t., 1.0 mM based on 4) and (b) fluorescence spectra $\left(\mathrm{H}_{2} \mathrm{O}\right.$, r.t., 2.0 mM based on 4$)$ of $(\mathbf{4})_{4} \supset(\mathbf{3})_{3}$.

Figure S49. (a) UV-vis $\left(\mathrm{H}_{2} \mathrm{O}\right.$, r.t., 1.0 mM based on 4) and (b) fluorescence spectra $\left(\mathrm{H}_{2} \mathrm{O}\right.$, r.t., 2.0 mM based on $\mathbf{4}$) of $(\mathbf{4})_{4} \supset\left(\mathbf{3}^{\prime}\right)_{3}$.

Figure S50. Estimation of host-guest ratios by UV-vis spectra (toluene, r.t., after 2-fold dilution) of the extracted guests from (a) (2) $)_{4} \supset(\mathbf{3})_{3}$ and (b) (2) $)_{4} \supset(\mathbf{3})_{3}$.

Table S1. Host-guest ratios of $(\mathbf{2})_{n} \supset\left(\mathbf{3} \text { or } \mathbf{3}^{\prime}\right)_{m}$ based on the UV-vis analysis.

guest	abs. (λ / nm)	$\varepsilon \times 10^{4} / \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ $(\lambda / \mathrm{nm})^{\mathrm{a}}$	concentraion of guest / mM	$\mathbf{2 : \text { guest }}$
$\mathbf{3}$	$2.66(438)$	$3.40(438)$	1.56	$1: 0.78$
$\mathbf{3}^{\mathbf{\prime}}$	$2.14(444)$	$3.18(444)$	1.35	$1: 0.68$

${ }^{\text {a }}$ Calculated by the absorption spectra of 3 and $\mathbf{3}^{\prime}$ in toluene.

Figure S51. Estimation of host-guest ratios by UV-vis spectra (toluene, r.t., after 2-fold dilution) of the extracted guests from (a) (4) $\supset \supset(\mathbf{3})_{3}$ and (b) (4) $)_{4} \supset(3 ')_{3}$.

Table S2. Host-guest ratios of $(\mathbf{4})_{n} \supset\left(\mathbf{3} \text { or } \mathbf{3}^{\prime}\right)_{m}$ based on the UV-vis analysis.

guest	abs. (λ / nm)	$\varepsilon \times 10^{4} / \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ $(\lambda / \mathrm{nm})^{\mathrm{a}}$	concentraion of guest $/ \mathrm{mM}^{\mathrm{b}}$	$\mathbf{4 : \text { guest }}$
$\mathbf{3}$	$2.16(438)$	$3.40(438)$	1.27	$1: 0.64$
$\mathbf{3}^{\mathbf{\prime}}$	$2.47(444)$	$3.18(444)$	1.55	$1: 0.78$

a Calculated by the absorption spectra of $\mathbf{3}$ and $\mathbf{3}$ ' in toluene.

Figure S52. Concentration-dependent fluorescence spectra ($0.025-2.0 \mathrm{mM}, \mathrm{H}_{2} \mathrm{O}, \lambda_{\mathrm{ex}}=453 \mathrm{~nm}$, r.t.) of (a) (2) $)_{4} \supset(\mathbf{3})_{3}$, and (b) (4) $)_{4} \supset(\mathbf{3})_{3}$.

Figure S53. Fluorescence decays ($\lambda_{\mathrm{ex}}=365 \mathrm{~nm}, 2.0 \mathrm{mM}$, r.t.) of (a) $\mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{OH}$ ($\boldsymbol{\lambda}_{\mathrm{em}}=445 \mathrm{~nm}$), (2) $)_{2}$ in $\mathrm{H}_{2} \mathrm{O}\left(\lambda_{\mathrm{em}}=495 \mathrm{~nm}\right)$, (b) 4 in $\mathrm{CH}_{3} \mathrm{OH}\left(\lambda_{\mathrm{em}}=445 \mathrm{~nm}\right)$, and (4) in $\mathrm{H}_{2} \mathrm{O}\left(\lambda_{\mathrm{em}}=455 \mathrm{~nm}\right)$.

Table S3. Summary of fluorescence lifetimes of $\mathbf{2},(\mathbf{2})_{2}, \mathbf{4}$, and (4) ${ }_{n}$.

	$\tau_{1} / \mathrm{ns}\left(\mathrm{a}_{1} / \%\right)$	$\tau_{2} / \mathrm{ns}\left(\mathrm{a}_{2} / \%\right)$	$\tau_{3} / \mathrm{ns}\left(\mathrm{a}_{3} / \%\right)$	χ^{2}
$\mathbf{2}$	$2.1(3.5)$	$7.7(96.5)$	-	1.1
$(2)_{2}$	$0.75(3.0)$	$11(26.5)$	$29(70.5)$	1.0
$\mathbf{4}$	$0.12(0.6)$	$6.5(99.3)$	-	1.1
$(4)_{n}$	$0.61(0.6)$	$12(3.7)$	$36(95.7)$	1.1

Figure S54. Fluorescence decays (2.0 mM based on the monomer, $\mathrm{H}_{2} \mathrm{O}, \lambda_{\mathrm{ex}}=470 \mathrm{~nm}$, r.t.) of (2) $)_{4} \supset(\mathbf{3})_{3},(\mathbf{4})_{4} \supset(\mathbf{3})_{3}$, and $\mathbf{3}\left(0.10 \mathrm{mM}\right.$, toluene, $\left.\boldsymbol{\lambda}_{\mathrm{ex}}=405 \mathrm{~nm}\right)$.

Table S4. Summary of fluorescence lifetimes of $(\mathbf{2})_{4} \supset(\mathbf{3})_{3},(\mathbf{4})_{4} \supset(\mathbf{3})_{3}$, and $\mathbf{3}$.

complex $\left(\lambda_{\mathrm{ex}} / \mathrm{nm}\right)$	$\tau_{1} / \mathrm{ns}\left(\mathrm{a}_{1} / \%\right)$	$\tau_{2} / \mathrm{ns}\left(\mathrm{a}_{2} / \%\right)$	$\tau_{3} / \mathrm{ns}\left(\mathrm{a}_{3} / \%\right)$	χ^{2}
$(\mathbf{2})_{4} \supset(\mathbf{3})_{3}(470)$	$0.56(0.4)$	$11(5.0)$	$36(94.6)$	1.1
$(4)_{4} \supset(\mathbf{3})_{3}(470)$	$5.5(15.4)$	$19(84.6)$	-	1.0
$3(405)$	$3.9(100)$	-	-	1.1

Figure S55. Fluorescence decays (2.0 mM based on the monomer, $\mathrm{H}_{2} \mathrm{O}, \lambda_{\mathrm{ex}}=365 \mathrm{~nm}$, r.t.) of (a) (2) $)_{2}$ and (2) $\supset(\mathbf{3})_{3}$, (b) (4) $)_{n}$ and (4) $\supset(\mathbf{3})_{3}$

Table S5. Summary of fluorescence lifetimes of $(\mathbf{2})_{2},(\mathbf{2})_{4} \supset(\mathbf{3})_{3},(4)_{n}$ and $(4)_{4} \supset(\mathbf{3})_{3}$.

	$\tau_{1} / \mathrm{ns}\left(\mathrm{a}_{1} / \%\right)$	$\tau_{2} / \mathrm{ns}\left(\mathrm{a}_{2} / \%\right)$	$\tau_{3} / \mathrm{ns}\left(\mathrm{a}_{3} / \%\right)$	χ^{2}
$(2)_{2}$	$0.75(3.0)$	$11(26.5)$	$29(70.5)$	1.0
$(2)_{4} \supset(3)_{3}$	$0.59(11.8)$	$4.5(25.0)$	$27(63.2)$	1.1
$(4)_{n}$	$0.61(0.6)$	$12(3.7)$	$36(95.7)$	1.1
$(4)_{4} \supset(3)_{3}$	$0.46(1.3)$	$34(98.7)$	-	0.99

Figure S56. Excitation spectra (2.0 mM based on the monomer, $\mathrm{H}_{2} \mathrm{O}$, r.t.) of $(\mathbf{2})_{4} \supset(\mathbf{3})_{3}$ and $(4))_{4} \supset(3)_{3}$.

Figure S57. Molecular modeling of $(2)_{4} \supset(\mathbf{3})_{3}\left(\mathrm{R}=-\mathrm{OCH}_{3}\right)$.

