Supporting information

A Photochemical Approach to Aromatic Extension of the Corannulene Nucleus

Venkatachalam Rajeshkumar and Mihaiela C. Stuparu*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, and School of Materials Science and Engineering, Nanyang Technological University, Singapore
E-mail: mstuparu@ntu.edu.sg

Experimental Section

General: All commercial reagents were used without further purification. Solvents were purified by standard procedures. All reactions relating to air- and moisturesensitive reagents were performed in vacuum-dried reaction vessels under argon atmosphere. Column chromatography was carried out on silica gel 40-63 mesh as the stationary phase. Reactions were monitored by thin layer chromatography (TLC) with TLC silica gel coated aluminum plates (60 F254, Merck) and visualized by ultraviolet (UV) light ($\lambda=254 \mathrm{~nm}$ and $\lambda=366 \mathrm{~nm}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{NMR}$ (nuclear magnetic resonance) spectra were recorded on a Bruker BBFO-400 instrument at room temperature (unless otherwise stated) by using CDCl_{3} and $\left[d_{6}\right]$ DMSO as solvents. Chemical shifts were recorded in parts per million (ppm) relative to tetramethylsilane ($\delta=0.00 \mathrm{ppm}$), chloroform ($\delta=7.26 \mathrm{ppm}$), or DMSO ($\delta=2.50 \mathrm{ppm}$). ${ }^{1} \mathrm{H}$ NMR splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), m (multiplet), etc. ${ }^{13} \mathrm{C}$ NMR spectral values are reported relative to $\mathrm{CDCl}_{3}(\delta=77.00 \mathrm{ppm})$ and $\left[d_{6}\right] \mathrm{DMSO}(\delta=39.52 \mathrm{ppm})$. Highresolution mass spectras (HRMS) were recorded using JEOL Spiral TOF (JMS-S3000) (MALDI) for all starting materials and final compound. Photocyclization reactions were carried out in a 1.0 L water-cooled immersion well photochemical reactor equipped with a medium-pressure mercury lamp (125 W).
CCDC- 1476770 (3b), CCDC- 1476773 (3e), CCDC- 1476774 (3f), and CCDC- 1476771 (7) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Synthetic Procedures

Multi-gram scale synthesis of corannulene carbaldehyde (1): ${ }^{1}$

To a vacuum dried round bottom flask containing solution of corannulene (15.0 g , $59.9 \mathrm{mmol}, 1$ equiv.) and dichloromethyl methyl ether ($10.3 \mathrm{~g}, 89.9 \mathrm{mmol}, 1.5$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mathrm{~mL})$ was added a solution of $\mathrm{TiCl}_{4}(239.7 \mathrm{~mL}, 4$ equiv. 1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) drop wise for 1 h at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere, and the reaction mixture was stirred for 20 h at room temperature. After completion of reaction, the reaction mixture was poured into ice-water and extracted. The resulting aqueous part was again extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 200 \mathrm{~mL})$. The combined organic layer was washed with saturated aq. NaCl solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The resulting yellow solid was washed with hexane to afford 15.5 g pure corannulene carbaldehyde in 93% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.33(\mathrm{~s}$, 1 H), $8.60(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.00-7.67(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101MHz} \mathrm{}$, $\left.\mathrm{CDCl}_{3}\right): \delta=193.29,139.16,138.09,136.51,135.97,135.19,135.10,134.90,132.39$, 131.16, 130.84, 128.88, 128.79, 128.70, 127.79, 127.68, 127.58, 127.35, 127.24, 127.09, 127.05, 127.04.

To a vacuum-dried round-bottomed flask containing a solution of corannulene methyl bromide ($4.53 \mathrm{~g}, 13.2 \mathrm{mmol}, 1$ equiv.) in 200 mL of dry toluene was added triphenylphosphine ($3.81 \mathrm{~g}, 14.52 \mathrm{mmol}, 1.1$ equiv.) and then this reaction mixture was refluxed for 12 h under N_{2} atmosphere. The reaction mixture was cooled to room temperature and the resulting phosphonium salt precipitated out, which was collected by filtration and dried (8.44 g , yield 92%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.11$ $-7.41(\mathrm{~m}, 24 \mathrm{H}), 7.31-7.03(\mathrm{~m}, 5 \mathrm{H}), 5.86(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 137.25,135.15,135.12,135.07,134.67,134.64,134.43,134.39$, 134.33, 130.98, 130.78, 130.68, 130.37, 130.15, 130.09, 130.02, 129.74, 129.70, 128.82, 128.12, 128.00, 127.83, 127.73, 127.49, 127.36, 127.22, 126.88, 126.39, 126.29, 125.23, 125.14, 118.08, 117.23, 26.76, 26.29, 20.99. ${ }^{31} \mathrm{P}$ NMR (162 MHz , DMSO) δ 23.69. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{26} \mathrm{P}[\mathrm{M}-\mathrm{Br}]^{+}: 525.1767$, found: 525.2070.

Synthesis of acetyl corannulene (5):

To a stirred solution of corannulene ($1.0 \mathrm{~g}, 4.0 \mathrm{mmol}$) in dichloromethane (50 mL) was added aluminium(III) trichloride (AlCl_{3}) ($799.0 \mathrm{mg}, 5.99 \mathrm{mmol}$) and acetyl chloride ($342.1 \mathrm{mmL}, 4.79 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After the reaction mixture is warmed up to rt and stirred for 1-1.5 h , it was quenched with water and the organic layer was collected. The aqueous layer was extracted with additional dichloromethane ($2 \times 30 \mathrm{~mL}$) and the combined organic layers dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The residue was purified using flash column chromatography to yield the 1.05 g of acetyl corannulene as a pale yellow solid (yield $=94 \%) .{ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.45(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.68(\mathrm{~m}, 7 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.62$, $137.45,136.43,136.23,135.74,135.14,134.87,132.18,131.98,130.75,128.68$, $128.40,128.31,128.21,128.10,127.54,127.40,127.09,127.03,126.97,28.48$.

General procedure for synthesis of stilbene-like corannulene derivatives through Wittig reaction

Using corannulene carbaldehyde as a reactant:

To a vacuum-dried round-bottom flask containing a suspension of benzyltriphenylphosphonium bromide ($467.0 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.5$ equiv.) in 20 mL of dry THF was added n-BuLi (2.5 M solution in hexane) ($0.431 \mathrm{~mL}, 1.5$ equiv.) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred for 30 min . Then corannulene carbaldehyde ($200.0 \mathrm{mg}, 0.718 \mathrm{mmol}, 1$ equiv.) in 5 mL of dry THF was added, and the solution was stirred at room temperature for 2-3 h. The progress of the reaction was monitored by TLC. After completion of reaction, the reaction mixture was quenched with water and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography to give the alkenyl corannulenes as mixture of trans/cis isomers.

Using corannulene-based ylide as a reactant:

To a vacuum-dried round-bottom flask containing a suspension of corannulenylmethyl triphenylphosphonium bromide ($350.0 \mathrm{mg}, 0.578 \mathrm{mmol}$, 1equiv.) in 20 mL of dry THF was added n-BuLi (2.5 M solution in hexane) (0.346 mL , 1.5 equiv.) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The resulting reaction mixture was stirred for 30 min . Then aromatic aldehyde of choice (1.1 equiv. in 5 mL of dry THF) was added, and the solution was stirred at room temperature for 2 h . The progress of the reaction was monitored by TLC. After the completion of reaction, the reaction mixture was quenched with water and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography to give the alkenyl corannulenes as mixture of trans/cis isomers.

Using ketone as a reactant:

To a vacuum-dried round-bottomed flask containing a suspension of (4methylbenzyl)triphenylphosphonium bromide ($336.7 \mathrm{mg}, 0.753 \mathrm{mmol}, 1.1$ equiv.) in 20 mL of dry THF was added n-BuLi (2.5 M solution in hexane) ($0.410 \mathrm{~mL}, 1.5$ equiv) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The resulting reaction mixture was stirred for 30 min . Then acetyl corannulene ($200 \mathrm{mg}, 0.684 \mathrm{mmol} 1$ equiv.) in 5 mL of dry THF was added and the solution was stirred at $65{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, it was quenched with water and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography to give the stilbene-like corannulene derivative $2 \mathrm{j}(150 \mathrm{mg})$ in 58% yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-$ 7.79 (m, 8H), $7.47-7.41$ (m, 2H), 7.28 (d, J= $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.01 (s, 1H), 2.58 (d, J=1.4 $\mathrm{Hz}, 3 \mathrm{H}$), $2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 146.01, 136.73, 136.44, 136.41, 136.03, 135.78, 135.61, 135.37, 135.27, 132.63, 131.07, 130.94, 130.77, 129.75, 129.27, 129.19, 127.39, 127.35, 127.32, 127.20, 127.18, 127.00, 126.97, 123.87, 21.42, 20.31. (MALDI-TOF) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{20}[\mathrm{M}]^{+}: 380.1560$, found: 380.1549.

General procedure for oxidative photocyclization of stilbene-like corannulene derivatives:

A solution of the alkenyl corannulenes ($100 \mathrm{mg}, 1$ equiv.), iodine (1.1 equiv.), and propylene oxide (100 equiv.) in 350 mL of toluene was irradiated in a photo-reactor fitted with a water-cooled immersion flask and a medium-pressure Hg lamp (125 W) under N_{2} atmosphere. The progress of the reaction was monitored by disappearance of the iodine color and thin layer chromatography (TLC). After the reaction completion, the reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted. The aqueous solution was extracted again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by column chromatography to give corannulene-based extended polyaromatics.

Photographs in Figure 1 illustrate the reaction set up. On the left, the reaction vessel contains a solution of alkenyl corannulene, iodine, and propylene oxide in toluene. It shows a red color. In the middle, the system is irradiated with light. On the right hand side, the system can be seen after the completion of the reaction. The color changes to a slight yellow one.

Figure 1. Digital photographs showing progress of the aromatic extension reaction. a) Reaction mixture before irradiation looks pink due to presence of iodine; b) irradiation with 125 W medium pressure Hg lamp; and c) after completion of the reaction.

Structural characterization of stilbene-like precursors synthesized via corannulene carbaldehyde:

Note: In cases where separation of the cis/trans mixture was possible, separate characterization is given for the isomeric compounds.

Yield: $239 \mathrm{mg}, 95 \%$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H})$, $7.90-7.73(\mathrm{~m}, 8 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.71,137.61,136.41$, 136.14, 135.85, 135.65, 135.46, 133.07, 131.09, 131.05, 130.87, 129.22, 128.96, 128.13, 127.63, 127.50, 127.42, 127.25, 127.16, 127.09, 127.01, 126.86, 126.66, 125.83, 124.53. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{16}$ [M] ${ }^{+}: 352.1247$, found: 352.1247.

Yield: $152 \mathrm{mg}, 63 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H})$, $7.92-7.80(\mathrm{~m}, 7 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.10$, 137.92, 136.37, 136.12, 135.83, 135.65, 135.35, 134.86, 133.02, 131.10, 131.06, 130.83, 130.79, 129.68, 129.25, 127.56, 127.46, 127.38, 127.23, 127.15, 127.01, 126.99, 126.79, 125.87, 125.65, 124.24, 21.49. HRMS (MALDI-TOF) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{18}[\mathrm{M}]^{+}: 366.1403$, found: 366.1399.

Yield: $53.5 \mathrm{mg}, 22 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.62(\mathrm{~m}, 9 \mathrm{H}), 7.40-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.06-6.80(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.35, 137.11, 136.16, 135.82, 135.74, 135.37, 134.20, 132.70, 131.04, 130.88, 130.84, 130.61, 129.77, 129.57, 129.13, 127.21, 127.14, 127.09, 127.05, 127.03, 126.95, 126.80, 126.37, 21.41. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{18}[\mathrm{M}]^{+}: 366.1403$, found: 366.1424.

Yield: $212 \mathrm{mg}, 80 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H})$, $7.89-7.77(\mathrm{~m}, 7 \mathrm{H}), 7.70-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.56, 136.44, 136.17, 135.88, 135.68, 135.49, $133.85,133.81,131.85,131.14,131.05,130.91,129.16,128.42,128.34,127.68$, $127.56,127.48,127.29,127.16,127.14,127.04,126.47,126.45,125.75,124.52$, 116.04, 115.83. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.59, -113.87. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{~F}[\mathrm{M}]^{+}$: 370.1152, found: 370.1151.

Structural characterization of stilbene-like precursors synthesized via corannulenebased ylide compound:

Yield: $162 \mathrm{mg}, 54 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.93$ $(\mathrm{m}, 2 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 6 \mathrm{H}), 7.77-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.15,136.60,136.58$, 136.47, 136.15, 135.86, 135.77, 135.62, 132.15, 131.13, 131.06, 130.92, 130.85, 130.79, 129.06, 128.56, 128.54, 127.90, 127.66, 127.59, 127.50, 127.30, 127.27, 127.20, 127.06, 126.23 ($q, J=5.6 \mathrm{~Hz}$), 125.62. $\left.{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(376} \mathrm{MHz} \mathrm{CDCl} 3,\right) ~ \delta-59.15$. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{15} \mathrm{~F}_{3}[\mathrm{M}]^{+}$: 420.1120, found: 420.1123.

Yield: $178 \mathrm{mg}, 68 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H})$, $7.88-7.64(\mathrm{~m}, 8 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.0$
$\mathrm{Hz}, 2 \mathrm{H}$), 2.55 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 138.55, 137.71, 136.39, 136.12, 135.83, 135.64, 135.40, 134.54, 132.38, 131.08, 131.05, 130.85, 130.83, 129.17, 127.61, 127.50, 127.42, 127.25, 127.23, 127.13, 127.06, 127.00, 126.88, 126.00, 125.80, 124.37, 15.95. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{~S}[\mathrm{M}]^{+}: 398.1124$, found: 398.1121.

Yield: $63 \mathrm{mg}, 24 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.63(\mathrm{~m}, 10 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{dd}, \mathrm{J}=12.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.42 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.88,136.94,136.26,135.90,135.88$, 135.81, 135.46, 133.81, 132.12, 131.07, 130.99, 130.97, 130.73, 130.03, 129.67, 127.32, 127.24, 127.17, 127.14, 127.11, 127.04, 126.30, 126.15, 15.61. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{~S}[\mathrm{M}]^{+}: 398.1124$, found: 398.1139.

Yield: $178 \mathrm{mg}, 68 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.74$ $(\mathrm{m}, 8 \mathrm{H}), 7.69-7.40(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (150.54, 138.74, 136.36, 136.20, 135.87, 135.75, 135.04, 133.32, 131.36, 131.06, 130.82, 130.60, 129.43, 128.01, 127.39, 127.31, 127.20, 127.17, 126.97, 126.81, 126.10, 126.07, 123.22, 122.18, 112.61, 40.60. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}[\mathrm{M}]^{+}: 395.1669$, found: 395.1657.

Yield: $174 \mathrm{mg}, 70 \%$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H})$, $7.88-7.78(\mathrm{~m}, 8 \mathrm{H}), 7.67(\mathrm{~s}, 4 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 1 \mathrm{H}) . \delta ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 141.95, 136.52, 136.43, 136.07, 135.81, 135.52, 132.69, 131.14, 131.11, 130.91, 130.81, 130.71, 130.39, 128.84, 127.92, 127.69, 127.60, 127.39, 127.34, 127.13, 127.11, 127.05, 125.69, 125.42, 119.14, 111.00. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{15} \mathrm{~N}[\mathrm{M}]^{+}: 377.1199$, found: 377.1192.

Yield: $241 \mathrm{mg}, 85 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14$ ($\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.97-7.66$ ($\mathrm{m}, 10 \mathrm{H}$), $7.64-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.15,136.44,136.34,136.04,135.75,135.54,135.47$, 131.97, 131.55, 130.99, 130.82, 130.76, 128.93, 128.18, 127.60, 127.45, 127.37, 127.33, 127.18, 127.07, 127.01, 126.92, 125.55, 124.72, 121.85. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{Br}[\mathrm{M}]^{+}: 430.0352$, found: 430.0332.

Yield: $27 \mathrm{mg}, 10 \%$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.62(\mathrm{~m}, 9 \mathrm{H}), 7.34(\mathrm{~s}, 4 \mathrm{H}), 7.11$ $-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.32, 136.26, 136.02, 135.87, 135.83, 135.79, 135.53, 131.58, 131.45, 131.17, 131.01, 130.94, $130.74,129.42,128.48,127.39,127.34,127.31,127.20,127.05,127.03,126.07$, 121.45. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{Br}[\mathrm{M}]^{+}: 430.0352$, found: 430.0319.

Yield: $215 \mathrm{mg}, 85 \%$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.65(\mathrm{~m}, 11 \mathrm{H}), 7.48-7.32(\mathrm{~m}$, 2H), $6.94-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.69(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 0 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.03,137.31,136.25,135.91,135.84,135.39,132.30,131.14$, 130.97, 130.91, 130.72, 129.84, 129.69, 127.27, 127.19, 127.14, 127.13, 127.10, 127.07, 127.02, 126.46, 125.81, 113.84, 55.30. HRMS (MALDI-TOF) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+}: 382.1352$, found: 382.1353.

Yield: $198 \mathrm{mg}, 95 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.72$ (m, 16H), $7.70-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.83(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $143.15,139.98,137.25,136.40,136.38,136.21,136.11,135.97,135.83,135.73$, $135.63,135.42,131.09,131.03,131.00,130.88,130.85,130.80,130.05,129.39$, 129.03, 127.92, 127.65, 127.52, 127.51, 127.44, 127.30, 127.26, 127.24, 127.19, 127.12, 127.09, 127.01, 126.84, 126.51, 126.27, 126.16, 125.93, 125.88, 125.72, 125.58, 124.93, 124.31. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{~S}[\mathrm{M}]^{+}: 358.0816$, found: 358.0337.

Yield: $225 \mathrm{mg}, 95 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.75$ $(\mathrm{m}, 30 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{dd}, \mathrm{J}=8.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 3 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=$ $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.10(\mathrm{dd}, J=11.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 140.32,140.17,138.88,136.79,136.24,135.96,135.85,135.59,135.56$, 131.07, 130.97, 130.92, 130.87, 130.85, 130.76, 130.03, 128.82, 127.97, 127.86, 127.72, 127.54, 127.44, 127.32, 127.32, 127.23, 127.17, 127.16, 127.07, 127.00, $126.47,126.38,126.28,125.71,125.59,125.09,124.88,124.72,124.34,124.07$, 123.68, 123.41, 122.37, 122.15. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{16} \mathrm{~S}\left[\mathrm{M}^{+}\right.$: 408.0967, found: 408.0970 .

Structural characterization of the extended corannulenes:

Yield: $95 \mathrm{mg}, 95 \% ; \mathrm{Mp}: 256-257^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.50(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, 1 H), 8.67 (dd, $J=8.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (dd, $J=8.5,3.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.96(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.78(\mathrm{~m}, 6 \mathrm{H}), 7.69(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 137.89,135.60,135.35,135.27,134.89,133.38,131.91,131.29,131.21$, 131.11, 130.79, 130.72, 129.13, 128.93, 128.85, 128.81, 128.58, 127.97, 127.94, 127.88, 127.41, 127.35, 127.10, 126.96, 126.88, 126.40, 124.61, 122.77. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{14}[\mathrm{M}]^{+}: 350.1090$, found: 350.1095.

Yield: $71.8 \mathrm{mg}, 72 \% ; \mathrm{Mp}: 229-230{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 8.69$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, 1 H), $8.02-7.78(\mathrm{~m}, 7 \mathrm{H}), 7.54(\mathrm{dd}, \mathrm{J}=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 137.92, 136.71, 135.67, 135.31, 135.27, 134.92, 132.11, 131.56, 131.34, 131.12, 130.82, 130.80, 130.71, 129.30, 128.99, 128.96, 128.72, 128.45, 127.90, 127.88, 127.85, 127.74, 127.35, 127.06, 126.96, 124.66, 121.89, 22.53. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{16}[\mathrm{M}]^{+}: 364.1247$, found: 364.1254.

Yield: $93 \mathrm{mg}, 94 \% ; \mathrm{Mp}: 250-251{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.14$ (dd, $J=11.7$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.67-8.62(\mathrm{~m}, 2 \mathrm{H}), 8.36(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-7.82(\mathrm{~m}, 8 \mathrm{H}), 7.47$ (ddd, J = 8.8, 7.9, 2.5 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.66(\mathrm{~d}, \mathrm{~J}=246.70 \mathrm{~Hz}$), $137.84,135.52,135.19,134.72,132.76$ (d, $J=9.20 \mathrm{~Hz}$), 131.82, 131.06, 131.01, $130.92,130.81,130.78,130.41$ (d, $J=7.0 \mathrm{~Hz}$), 130.11, 128.80, 128.53, 128.14, 128.04, 127.86, 127.52, 127.38, 127.27, 127.16, 126.90, 124.44, 122.15 (d, J = 2.68 Hz), 116.05 (d, $J=24.87 \mathrm{~Hz}$), 112.47 ($\mathrm{d}, \mathrm{J}=22.50 \mathrm{~Hz}$). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 113.09; HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{13} \mathrm{~F}[\mathrm{M}]^{+}: 368.0996$, found: 368.1005 .

Yield: $75.7 \mathrm{mg}, 76 \%$; Mp: $215-216{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.57(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.73(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.66(\mathrm{~m}, 7 \mathrm{H}) .13 \mathrm{CNMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3)$ $\delta 137.90,135.49,134.75,133.14,132.51,131.49,131.13,130.94,130.82,129.13$, $128.72,128.49,128.23,128.13,127.68,127.44,127.31,126.95,125.03,124.88$ (q, J $=6.0 \mathrm{~Hz}), 124.55,124.43,123.37,123.35 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-58.94 ;$ HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{13} \mathrm{~F}_{3}[\mathrm{M}]^{+}$: 418.0964, found: 418.0946.

Yield: $71 \mathrm{mg}, 71 \% ; \mathrm{Mp}: 250-251{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.31(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.63$ (dd, $J=18.9,8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $8.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-7.77(\mathrm{~m}, 8 \mathrm{H}), 7.60$ (dd, $J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 137.54,135.70$, 135.42, 135.37, 134.91, 132.39, 131.81, 131.20, 131.17, 130.91, 130.83, 130.34, 129.16, 129.08, 128.81, 128.81, 128.40, 128.13, 127.98, 127.68, 127.47, 127.42, 127.20, 127.02, 125.89, 124.79, 124.64, 122.19, 16.40. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{16} \mathrm{~S}[\mathrm{M}]^{+}$: 396.0967, found: 396.0965.

Yield: $72 \mathrm{mg}, 72 \% ; \mathrm{Mp}: 235-236{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.84(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.66(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-$ $7.80(\mathrm{~m}, 8 \mathrm{H}), 7.35(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 149.65, 137.92, 135.80, 135.33, 135.09, 134.96, 133.43, 131.89, 131.14, 130.93, 130.67, 129.92, 129.83, 129.69, 129.34, 128.02, 127.73, 127.70, 127.35, 127.13, 126.98, 126.93, 126.27, 124.80, 118.87, 115.88, 108.47, 41.23. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}]^{+}$: 393.1512, found: 393.1517.

Yield: $70 \mathrm{mg}, 70 \% ; \mathrm{Mp}: 249-250{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.76$ (s, 1H), 8.71 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.92 (dd, $J=8.7,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 4 \mathrm{H}), 7.75(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.85,135.53,135.47,135.42,134.70,134.67,134.25$, 132.13, 131.18, 130.97, 130.95, 130.89, 129.89, 128.75, 128.21, 128.15, 127.92, 127.89, 127.84, 127.49, 127.45, 127.27, 127.09, 127.00, 126.01, 124.29, 119.81, 110.18. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{13} \mathrm{~N}[\mathrm{M}]^{+}: 375.1048$, found: 374.2094 .

Yield: $86 \mathrm{mg}, 86 \% ; \mathrm{Mp}: 269-270{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.67-9.60(\mathrm{~m}, 1 \mathrm{H})$, 8.67 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $8.60(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-7.72(\mathrm{~m}$, $9 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.67-9.60(\mathrm{~m}, 1 \mathrm{H}), 8.67(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-7.72\left(\mathrm{~m}, 9 \mathrm{H}^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}\right.$, $\mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 137.93,135.55,135.48,135.40,134.81,132.96,131.72,131.61,131.04$, $130.79,130.65,130.25,130.14,129.56,128.51,128.30,128.28,127.93,127.47$, 127.44, 127.31, 127.20, 126.96, 124.37, 123.24, 121.44.HRMS (MALDI-TOF) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{13} \mathrm{Br}[\mathrm{M}]^{+}$: 428.0195, found: 428.0192 .

Yield: $86 \mathrm{mg}, 86 \% ; \mathrm{Mp}: 218-219{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.89(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.72$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-$ 7.77 (m, 8H), 7.38 (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.79, 137.95, 135.73, 135.37, 135.23, 134.89, 133.17, 131.79, 131.16, 130.93, $130.76,130.35,130.33,129.38,129.03,128.63,128.05,127.96,127.87,127.71$, 127.40, 127.34, 127.10, 126.96, 124.68, 120.57, 118.00, 108.50, 55.86. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]^{+}: 380.1196$, found: 380.1208.

Yield: $53.3 \mathrm{mg}, 54 \%$; Mp: $208-209{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.26(\mathrm{~s}, 1 \mathrm{H}), 8.63$ (dd, $J=8.8,3.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.93-7.81(\mathrm{~m}, 9 \mathrm{H}), 7.51(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H})$, 2.76 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 138.14, 135.83, 135.64, 135.29, 134.72, 134.50, 133.68, 132.26, 132.12, 131.06, 131.04, 130.77, 130.70, 130.61, 130.58, $129.44,129.34,129.32,128.65,128.64,128.39,127.63,127.55,127.35,127.13$, 126.97, 126.89, 26.82, 22.50. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{18}[\mathrm{M}]^{+}: 378.1403$, found: 378.1397.

Yield: $93.2 \mathrm{mg}, 93 \%$; Mp: $215-216{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.58$ (dd, $J=17.6,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (dd, $J=8.6,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92$ (dd, $J=8.7,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-7.73(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 139.98,137.72,137.29,135.26,134.92,134.88,134.29,130.79,130.60,130.24$, 130.14, 129.05, 128.78, 128.60, 127.71, 127.69, 127.19, 127.17, 126.92, 126.85, 126.76, 124.94, 124.36, 121.55, 121.41. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{12} \mathrm{~S}$ $[\mathrm{M}]^{+}: 356.0654$, found: 356.0651.

Yield: $67 \mathrm{mg}, 67 \% ; \mathrm{Mp}: 289-290{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.59-9.44(\mathrm{~m}, 1 \mathrm{H})$, $8.67(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.04-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CS}_{2}$) $\delta 140.39,139.96$, 138.36, 136.47, 136.07, 135.91, 135.36, 135.33, 133.03, 132.22, 131.09, 130.70, $130.59,130.29,128.52,128.49,128.15,127.59,127.42,127.28,127.02,126.89$, 126.81, 125.79, 125.32, 124.55, 123.86, 123.31, 123.05, 121.80. HRMS (MALDI-TOF) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{14} \mathrm{~S}[\mathrm{M}]^{+}: 406.0811$, found: 406.0816.
(1) Rajeshkumar, V.; Lee, Y. T.; Stuparu, M. C. Eur. J. Org. Chem. 2016, No. 1, 36.

1892

175	165	155	145	135	125	115	105	95	85	75	65	55	45	35	25	15	5

$\begin{gathered} C(m) \\ 8.64 \\ I=2 \end{gathered}$			
A (dd)	B (d)	E (m)	D (ddd)
9.14	8.36	7.96	7.47
$\mathrm{l}=1$	$\mathrm{I}=1$	$\mathrm{I}=8$	$\mathrm{l}=1$

9.69 .49 .29 .08 .88 .68 .48 .28 .07 .87 .6

		(d) 8.43 l=2	$\begin{aligned} & E(d) \\ & 8.04 \\ & I=1 \end{aligned}$
A (d)	B (d)	D (d)	F (d)
9.57	8.73	8.28	7.92
$\mathrm{I}=1$	$\mathrm{l}=1$	$\mathrm{l}=1$	$\mathrm{I}=1$
			G (m)
			7.81
			$\mathrm{l}=7$
\int		[$\iint 1$

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$\begin{array}{lllllllllll}.7 & 9.5 & 9.3 & 9.1 & 8.9 & 8.7 & 8.5 & 8.3 & 8.1 & 7.9 & 7.7\end{array}$

205	190	175	160	145	130	115	100	85	70	55	40	25	10

9.59 .39 .18 .98 .78 .58 .38 .17 .97 .77 .57 .3

