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General method and materials 

Unless specifically mentioned, all chemicals are commercially available and were used as received. 

NMR spectra were taken on a Bruker AV400 at room temperature. The powder X-ray diffraction 

(PXRD) measurements were taken on a Bruker D8 diffractometer using Cu-Kα radiation (λ = 1.5418 

Å) at room temperature. Steady-state fluorescence measurements were carried out using a Hitachi 

4500 spectrophotometer. Thermogravimetric analysis (TGA) was carried out on a TGA-Q500 

thermoanalyzer with a heating rate of 10 °C/min under nitrogen atmosphere. The solid-state emission 

spectra, absolute quantum yield and lifetime data were acquired on Edinburgh FLS920 instrument 

consisting integrating sphere. Electron paramagnetic resonance (EPR) spectra were recorded at room 

temperature using a Bruker ESP-300E spectrometer at 9.8 GHz, X-band, with 100 Hz field 

modulation. ESI-MS experiments were carried out on a ThermoFisher Q-Exactive LC-MS. 

Low-pressure gas sorption measurements were performed by using Quantachrome Instruments 

Autosorb-iQ (Boynton Beach, Florida USA) with the extra-high pure gases. The as-synthesized 

MOF UiO-68-mtpdc/etpdc (50 mg) was immersed in CH3OH (20 mL) for 2 day, during which time 

fresh CH3OH was replaced six times. The samples were then moved into a sample cell and dried 

under vacuum at 80 °C and 120 °C by using the “outgasser” function of the machine for 3 h and 12 h 

before the measurement, respectively. 
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Synthesis and Characterizations 

  

Scheme S1. The synthetic route for H2- etpdc. Reagents and conditions: a) methyl 4-boronobenzoate, Cs2CO3, CsF, 

Pd(dppf)Cl2, Pd(PPh3)4, THF/H2O, 70 °C for 2 d; b) 4-(1,2,2-triphenylvinyl)benzaldehyde, ZrCl4, CHCl3, 50 °C for 

2 d; c) KOH, THF, CH3OH, 90 °C for 2 h; TFA, THF, 1 h, room temperature. 

 

Compound 2: A mixture of Cs2CO3 (7.36 g, 22.5 mmol) and CsF (0.57 g, 3.75 mmol) were 

dissolved in water (2 mL) and added into a 250 mL round bottom flask with a magnetic stir bar. 

Dried and degassed THF (100 mL) was added to the reaction flask and the reaction mixture was 

degassed by sparging with N2 for 2 h. Then, compound 1[S1] (2.0 g, 7.5 mmol), methyl 

4-boronobenzoate (4.04 g, 22.5 mmol), Pd(dppf)Cl2 (0.55 g, 0.75 mmol) and Pd(PPh3)4 (0.26 g, 

0.023 mmol) were added into the mixture. The round bottom flask was vacuumed and pushed into N2 

for 5 times. The reaction was heated at 70 °C for 48 hours under an argon atmosphere. After that, the 

reaction mixture was cooled down to room temperature and extracted by DCM (200 mL x 2). The 

combined organic layer was washed with water (300 mL x 5), and dried over anhydrous Na2SO4 then 

evaporated under reduced pressure. The crude product was further purified using column 

chromatograph (DCM/CH3COOC2H5, 100/6) to give orange solid (1.23 g, 3.27 mmol, yield: 43.6%).  

1H NMR (400 MHz, d6-DMSO) δ 8.04 (d, J = 8.2 Hz, 4H), 7.60 (d, J = 8.2 Hz, 4H), 6.53 (s, 2H), 

4.44 (br, 4H), 3.88 (s, 6H). 

Compound 3: The compound 2 (0.30 g, 0.80 mmol) and 4-(1,2,2-triphenylvinyl)benzaldehyde[S2] 

(0.30 g, 0.81 mmol) were dissolved in CHCl3 (60 mL) and added into a 100mL round bottom flask 

with a magnetic stir bar. Then, ZrCl4 (0.018 g, 0.08 mmol) was added into the mixture. The reaction 

mixture was heated at 50°C for 48h. After that, the reaction mixture was cooled down to room 

temperature and evaporated under reduced pressure. The crude product was further purified using 
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column chromatograph (DCM/petroleum ether 100/33) to give the orange solid (0.41 g, 0.57 mmol, 

yield: 71.5%). 1H NMR (400 MHz, d6-DMSO) δ 12.70 (s, 1H), 8.37 (d, J = 7.9 Hz, 2H), 8.12-8.06 

(m, 6H), 7.88 (d, J = 7.6 Hz, 2H), 7.63 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 7.4 Hz, 1H), 7.19-6.99 (m, 

17H), 3.90 (d, J = 4.5 Hz, 6H). 

Compound H2-etpdc: The compound 3 (0.36 g, 0.50 mmol) was dissolved in THF (50mL) and 

KOH (0.28 g, 5 mmol) was dissolved in CH3OH (5mL). Then, the two solution were added into a 

100ml round bottom flask with a magnetic stir bar. The reaction mixture was heated at 90°C for 2h. 

After cooling down to the room temperature the reaction was separated through the suction filter to 

afford the yellow solid which was washed with THF (50mL x 3). Then the solid was dissolved in 

THF (50mL) and TFA (6mL). The reaction was stirred at room temperature for 1h. Then the solution 

was obtained by centrifugal to get the crude product, which was further washed by THF (50mL x 2), 

then washed by water (50mL x 2). At last, the product was dried to give (0.32 g, 0.47 mmol, yield: 

93.2%). 1H NMR (400 MHz, d6-DMSO) δ 12.98 (s, 2H), 12.68 (s, 1H), 8.33 (d, J = 8.2 Hz, 2H), 

8.14-8.03 (m, 6H), 7.84 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 7.8 Hz, 1H), 7.39 (d, J = 7.8 Hz, 1H), 

7.22-6.96 (m, 17H). 

Preparation for MOF UiO-68-mtpdc/etpdc: Organic ligands H2-etpdc (66 mg, 0.1 mmol), 

H2-mtpdc (33 mg, 0.1 mmol) and ZrCl4 (51 mg, 0.22 mmol) were dissolved in DMF (75 mL), which 

was added into a 250 mL round bottom flask with a magnetic stir bar. Then, 3.1 mL HAc was added 

to the reaction flask and the reaction mixture was heated at 100 °C for 72 hours under an argon 

atmosphere. After cooling to room temperature, the product was separated by centrifugal to afford 

the white solid which was washed with DMF (100 mL x 3) and EtOH (100 mL x 3), respectively. 

The sample was dried in vacuum. The powder X-ray diffraction (PXRD) pattern of product was 

similar to the simulated pattern generated from single crystal data (Fig. S1 and S2), confirming its 

UiO-68 topological framework and the phase purity. The molar ratio of etpdc to mtpdc in MOF 

UiO-68-mtpdc/etpdc was determined to be 1:1.2. In addition, through the varying the feeding ratio of 

H2-etpdc and H2-mtpdc, another two MOF samples with different ratio of linkers were prepared by 

the similar procedure (UiO-68-mtpdc/etpdc’ and UiO-68-mtpdc/etpdc” refer to 1:2.2 and 1:0.57 the 

ratio of H2-etpdc and H2-mtpdc).  
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Fig. S11 Emission spectra of MOF UiO-68-mtpdc/etpdc dispersed in CH3OH (0.02 mg/mL) upon incremental 

addition of DNP (left); and the corresponding Stern-Volmer plot of the quenching fluorescence intensity as a 

function of DNP concentration (right, ksv = 2.3 × 104 M-1).  

 

 

Fig. S12 Emission spectra of MOF UiO-68-mtpdc/etpdc dispersed in CH3OH (0.02 mg/mL) upon incremental 

addition of p-NP (left); and the corresponding Stern-Volmer plot of the quenching fluorescence intensity as a 

function of p-NP concentration (right, ksv = 7.2 × 103 M-1). 
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General procedure for Aerobic CDC reactions of tetrahydroisoquinolines 1 with indoles 2 

catalyzed by UiO-68-mtpdc/etpdc: The weighed photocatalyst UiO-68-mtpdc/etpdc (2 mg), 1 (0.1 

mmol) and 2 (0.3mmol) were added into 2 mL CH3OH. The reaction mixture with stirring was 

irradiated by blue LEDs for 12 hours under air at room temperature. 1H NMR spectroscopy was 

employed to determine the yield; and 1H NMR spectra of products 3 are in agreement with reported 

literature.[S4] The catalyst for cyclic reaction was recycled by centrifugation at 10 000 rpm and 

washed by fresh CH3OH two times.  

Table S2 Screening of the model CDC reaction conditionsa 

 

Entry Conditions Solvent Time (h) Yield (%)b 

1 UiO-68-mtpdc/etpdc, 1 mg CH3OH 8 41 

2 UiO-68-mtpdc/etpdc, 1 mg CH3OH 12 68 

3 UiO-68-mtpdc/etpdc, 2 mg CH3OH 8 72 

4 

5 

6 

UiO-68-mtpdc/etpdc, 2 mg 

UiO-68-mtpdc/etpdc’, 2mg 

UiO-68-mtpdc/etpdc”, 2mg 

CH3OH 

CH3OH 

CH3OH 

12 

12 

7 

93 

79 

92 

7 UiO-68-mtpdc/etpdc, 2 mg CH3CN 12 87 

8 UiO-68-mtpdc/etpdc, 2 mg DMF 12 83 

9 No catalyst  CH3OH 12 trace 

10 In dark CH3OH 12 trace 

11 

12 

In N2 atmosphere 

In O2 atmosphere 

CH3OH 

CH3OH 

12 

7 

trace 

90 

13c UiO-68-mtpdc, 2 mg CH3OH 12 trace 

14d UiO-68-mtpdc/etpdc, 2 mg CH3OH - 61 

aReaction conditions: 1a (0.1 mmol) and 2a (0.3 mmol), blue LEDs (λmax = 450 nm), solvent (2 

mL). The reaction with stirring was conducted in air at room temperature. bDetermined by 1H NMR. 
cMOF UiO-68-mtpdc only contains ligand H2-mtpdc.[S1] dAfter 5 h reaction the MOF was filtered 

out (yield: 58%) and the filtrate went on for another 8 hours. 
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Table S3 The aerobic CDC reactions of tetrahydroisoquinolines 1 with indoles 2 photocatalyzed by 

UiO-68-mtpdc/etpdc a  

   

 

aReaction conditions: 1 (0.1 mmol), 2 (0.3 mmol) and UiO-68-mtpdc/etpdc (2 mg) in CH3OH (2 

mL) under air at room temperature with 12 h blue LEDs (λmax = 450 nm) irradiation. Yields were 

determined by 1H NMR.   
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Table S4 The aerobic CDC reactions of tetrahydroisoquinolines 1 with nitroalkanes 4 photocatalyzed by 

UiO-68-mtpdc/etpdc a 

   

 

aReaction conditions: 1 (0.1 mmol) and 4 (1 mL), blue LEDs (λmax = 450 nm). The reaction with 

stirring was conducted in air at room temperature. Yields were determined by 1H NMR.  

 

   

Fig. S15 Recycling experiments of UiO-68-mtpdc/etpdc for the reaction of N-phenyltetrahydroisoquinoline and 

indole. 
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Fig. S16 PXRD patterns of MOF UiO-68-mtpdc/etpdc after photocatalysis.  

 

Fig. S17 EPR measurements of a solution in CH3OH of UiO-68-mtpdc/etpdc without 1a (a) and with 1a (b) in the 

presence of TEMP upon the irradiation of blue LEDs for 30 s; a solution in CH3OH of UiO-68-mtpdc/etpdc without 

1a (c) and with 1a (d) in the presence of DMPO upon the irradiation of blue LEDs for 30 s. In O2 atmosphere. 

 

Scheme S3 Proposed mechanism for the photocatalytic aerobic CDC reaction of N-phenyltetrahydroisoquinoline 

and indole by MOF UiO-68-mtpdc/etpdc (photocatalyst, PC). ESI-MS was used to capture the intermediate of 

imine cation and peroxide species. Also, the main product and by-product were observed in ESI-MS spectra.  
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