Supporting Information

Exploration of $K_2 Ti_8 O_{17}$ as the Anode Materials for Potassium-ion Batteries

Jin Han^{a,b}, Maowen Xu^{a,b*}, Yubin Niu^{a,b}, Guan-Nan Li,^a Minqiang Wang^{a,b}, Yan Zhang^{a,b}, Min Jia^{a,b} and Chang ming Li^{a,b}

Fig. S1. (a) The XRD pattern of the bulk $K_2Ti_8O_{17}$ prepared by solid state method; (b) The SEM image of the bulk $K_2Ti_8O_{17}$.

Fig. S2. EDS analysis of the heat-treated $K_2Ti_8O_{17}$.

Fig. S3. (a) The 1st, 2nd, 3rd and 10th discharge/charge curves of the bulk $K_2Ti_8O_{17}$ at the current density of 20 mA g⁻¹ in the voltage range of 0.01 ~ 3 V versus K⁺/K; (b) Cycling performance at the current density of 20 mA g⁻¹.

Fig. S4. (a) XPS spectra of Ti 2p after 50 cycles when charged to 3.0 V; (b) XPS spectra of Ti 2p after 50 cycles when discharged to 0.01 V.

Fig. S5. EIS of the $K_2Ti_8O_{17}$ electrodes before cycle and after 3 cycles.