Anti-Markovnikov Rearrangement in Sulfur Mediated Allyllic

C-H Amination of Olefins

Zhong Zhang, Hongguang Du*, Jiaxi Xu* and Pingfan Li*

State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China Email: dhg@mail.buct.edu.cn, jxxu@mail.buct.edu.cn, lipf@mail.buct.edu.cn

Supporting Information

Table of Contents

I. General Information	
II. Compounds Chart	S3
III. Experimental Procedures and Characterization Data	
Preparation of alkene substrates	
Sulfur mediated allylic amination reactions	
Characterization data of new compounds	S7
IV. Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S19
the ¹ H and ¹³ C NMR spectra of 3aa	S19
the ¹ H and ¹³ C NMR spectra of 4aa	S20
the ¹ H and ¹³ C NMR spectra of 3ab	
the ¹ H and ¹³ C NMR spectra of 4ab	
the ¹ H and ¹³ C NMR spectra of 3ac	S23
the ¹ H and ¹³ C NMR spectra of 4ac	S24
the ¹ H and ¹³ C NMR spectra of 3ad	
the ¹ H and ¹³ C NMR spectra of 4ad	
the ¹ H and ¹³ C NMR spectra of mixture 5ad and 3ad	S27
the ¹ H and ¹³ C NMR spectra of 3ae	S28
the ¹ H and ¹³ C NMR spectra of 4ae	S29
the ¹ H and ¹³ C NMR spectra of 5ae	S30
the ¹ H and ¹³ C NMR spectra of 3af	S31
the ¹ H and ¹³ C NMR spectra of 4af	
the ¹ H and ¹³ C NMR spectra of 5af	
the ¹ H and ¹³ C NMR spectra of mixture 5ag and 3ag	
the ¹ H and ¹³ C NMR spectra of 4ag	S35
the ¹ H and ¹³ C NMR spectra of 3ba	
the ¹ H and ¹³ C NMR spectra of 4ba	S37
the ¹ H, ¹³ C and ¹⁹ F NMR spectra of 3ca	S38
the ¹ H, ¹³ C and ¹⁹ F NMR spectra of 4ca	S40

the ¹ H and ¹³ C NMR spectra of 3da	
the ¹ H and ¹³ C NMR spectra of 4da	
the ¹ H and ¹³ C NMR spectra of 3ea	S44
the ¹ H and ¹³ C NMR spectra of 4ea	S45
the ¹ H and ¹³ C NMR spectra of 3fa	
the ¹ H and ¹³ C NMR spectra of 4fa	
the ¹ H, ¹³ C and ¹⁹ F NMR spectra of 3ga	S48
the ¹ H, ¹³ C and ¹⁹ F NMR spectra of 4ga	S50
the ¹ H and ¹³ C NMR spectra of 3ha	
the ¹ H and ¹³ C NMR spectra of 4ha	
the ¹ H and ¹³ C NMR spectra of 3ia	S54
the ¹ H and ¹³ C NMR spectra of 4ia	S55
the ¹ H and ¹³ C NMR spectra of 3ja	
the ¹ H and ¹³ C NMR spectra of 4ja	
the ¹ H NMR spectra of crude mixture to determine the ratio of 3kg and 3kg'	S58
the ¹ H and ¹³ C NMR spectra of mixture 3kg and 3kg'	S59
the ¹ H and ¹³ C NMR spectra of 4la	S60
the ¹ H and ¹³ C NMR spectra of <i>E</i> -4ld	
the ¹ H and ¹³ C NMR spectra of Z-4ld	
the ¹ H and ¹³ C NMR spectra of 4ld'	
V. Copies of crude ¹ H NMR spectra for determination of the product ratio (3: 4) i	n Table 2
	S64

I. General Information

Unless otherwise noted, all materials were purchased from commercial suppliers. Dichloromethane was refluxed over CaH₂, and freshly distilled prior to use. Tetrahydrofuran (THF) was refluxed with sodium/benzophenone, and freshly distilled prior to use. Flash column chromatography was performed using silica gel (normal phase, 200-300 mesh) from Branch of Qingdao Haiyang Chemical. Petroleum ether used for column chromatography were 60-90 °C fraction, and the removal of residue solvent was accomplished under rotovap with repeated azeotrope with chloroform, and then evaporation under vacuum (< 1 mmHg pressure). Reactions were monitored by thin-layer chromatography on silica gel 60-F254 coated 0.2 mm plates from Yantai Chemical Industry Research Institute. The plates were visualized under UV light, as well as other TLC stains (phosphomolybdic acid: 10% in ethanol; potassium permanganate: 1% in water; iodine: 10 g iodine absorbed on 30g silica gel). ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer, usually in CDCl₃ with TMS as an internal standard, and the chemical shifts (δ) were reported in parts per million (ppm). The IR spectra (KBr pellets, $v [cm^{-1}]$) were taken on a Nicolet 5700 FTIR spectrometer. HRMS measurements were carried out on an Agilent LC/MSD TOF mass spectrometer. The thin layer chromatography silica gel preparative plates were brought from Anhui LiangChen Silicon Material Co. Ltd.

II. Compounds Chart

^a commerically available, used as received

3ja

H N

H N

4ae

4da

4ba

∼Ņ∽*i-*Pr

4ga

4fa

4ld

N^{-t-Bu}

4ld'

5ad

5ae

/_Ņ́[−]Bn

5af

5ag

III. Experimental Procedures and Characterization Data

Preparation of alkene substrates

(1) General Procedure 1 for preparation of alkenes **1b** – **1e**, **1g** – **1h**: ^[1]

Under a N₂ atmosphere, a dry 100 mL three-necked flask, fitted with a reflux condenser, and pressure-equalizing dropping funnel, was charged with a magnetic stirring bar and magnesium turnings (1.2 equiv.). Aryl bromide (1 equiv.) and an iodide grain were dissolved in Et₂O (1.6 M, for **1b**, **1d**) or THF (1.6 M, for **1c**, **1e**, **1g-1h**) in the funnel. Part of the solution (~2 mL) was added to the flask and stirred. After the color of the mixture suddenly faded, the rest solution was added dropwise *via* the dropping funnel. Then the mixture was refluxed for 2h. The reaction solution was decanted into another dry flask and allylbromide (1.5 equiv.) was added at ice bath temperature. When the mixture had reached room temperature, it was carefully hydrolyzed with aqueous saturated NH₄Cl solution. The aqueous phase was removed and extracted with Et₂O. The combined organic phases were dried with MgSO₄ and concentrated under reduced pressure. The crude product was applied to flash column chromatography afford pure allyl arene.

[1] Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 12901.

(2) General Procedure 2 for preparation of alkenes 1f and 1i: ^[2]

The arylamine (3.0 mmol) was added during 20 min to a solution of *tert*-butyl nitrite (535 μ L, 4.5 mmol) and allyl bromide (1.9 mL, 22.5 mmol) in dry and degassed CH₃CN (3 mL) under argon atmosphere while maintaining the specified temperature (**1f** in 50 °C and **1i** in 30 °C). At the end of the addition of arylamine, extra *tert*-butyl nitrite (180 μ L, 1.5 mmol) was added. The reaction mixture was then stirred at a temperature specified in Table 1 for 1 h. The volatile material in the reaction mixture was then removed at reduced pressure. The crude product was applied to flash column chromatography afford pure allyl arene.

[2] Ek, F.; Axelsson, O.; Wistrand, L-G.; Frejd, T. J. Org. Chem. 2002, 67, 6376.

(3) General Procedure 3 for preparation of alkene 1j: ^[3]

To a solution of tetrakis(triphenylphosphine)palladium (11.6 mg, 0.01 mmol), sodium carbonate (252 mg, 3 mmol), and *o*-methylphenylboronic acid (136 mg, 1 mmol) in a mixed solvent (dimethoxyethane/H₂O = 1/1, 5 mL), allyl bromide (260 mL, 3 mmol) was added. The resultant mixture was heated under reflux for 6 hours. The mixture was dissolved into dichloromethane (30 mL), and washed with water (20 mL). Furthermore, the aqueous layer was extracted with dichloromethane (30 mL x 3). The combined organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel) using petroleum ether.

[3] Nishiwaki, N.; Kamimura, R.; Shono, K.; Kawakami, T.; Nakayama, K.; Nishino, K.; Nakayama, T.; Takahashi, K.; Nakamura, A.; Hosokawa, T. *Tetrahedron Letters*. **2010**, *51*, 3590.

Sulfur mediated allylic amination reactions

General Procedure

To a flame-dried Schlenk tube, 1 eq alkene (1a) (47 mg, 0.4 mmol) and 1.2 eq diphenyl sulfoxide (97 mg, 0.48 mmol) were added, and then dissolved with dichloromethane (2 mL) before cooling down to -78 °C (liquid nitrogen/ethyl acetate bath). 1.2 eq Tf₂O (81 μ L, 0.48 mmol) were added dropwise, and then gradually warmed up to 0 °C. And a solution of 5 eq diisopropylamine (2a) (202 mg, 2.0 mmol) in 1 mL CH₂Cl₂ was added. After 12 hours of reaction at room temperature, the solution was quenched by 10 mL 0.1 M aqueous solution of sodium hydroxide. The aqueous phase extracted with CH₂Cl₂ (10 mL×3). The combined organic phases were dried with Na₂SO₄ and concentrated under reduced pressure to give the crude amine products. Crude ¹H NMR was taken for determination of isomer ratio. The crude product was then purified by repeated flash column chromatography and preparative thin layer chromatography to give pure isolated pruducts.

Characterization data of new compounds

N,*N*-diisopropyl-2-phenylprop-2-en-1-amine (**4aa**) and (*E*)-*N*,*N*-diisopropyl-3-phenylprop-2-en-1amine (**3aa**) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/5/1, to give 61 mg product **4aa** as a yellow oil in 70% yield and 10 mg product **3aa** as a yellow oil in 12% yield.

3aa: $R_f = 0.39$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 7.2 Hz, 1H), 7.29 (t, J = 7.6 Hz, 2H), 7.19 (t, J = 7.2 Hz, 2H), 6.50 (d, J = 15.6 Hz, 1H), 6.24 (dt, J = 15.6, 6.0 Hz, 1H), 3.29 (d, J = 6.0 Hz, 2H), 3.10 (hept, J = 6.8, 2H), 1.04 (d, J = 6.6 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 137.6, 131.7, 130.0, 128.5, 127.0, 126.1, 48.4, 47.7, 20.7.

IR (KBr) v (cm⁻¹) 2962, 2924, 1495, 1382, 1362, 1178, 965, 748, 691.

HRMS (ESI) calcd for C₁₅H₂₄N⁺ (M+H)⁺ *m/z*: 218.1903, found: 218.1908.

4aa: $R_f = 0.38$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.44 (m, 2H), 7.32 – 7.22 (m, 3H), 5.42 (d, *J* = 2.0 Hz, 1H), 5.36 (d, *J* = 1.2 Hz, 1H), 3.43 (s, 2H), 3.07 (hept, *J* = 6.4 Hz, 2H), 0.99 (d, *J* = 6.4 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 141.3, 127.9, 127.1, 126.4, 113.5, 49.3, 47.7, 20.6. IR (KBr) v (cm⁻¹) 2963, 2927, 1629, 1600, 1464, 1179, 1026, 902, 778, 700. HRMS (ESI) calcd for C₁₅H₂₄N⁺ (M+H)⁺ *m/z*: 218.1903, found: 218.1903.

N,*N*-diethyl-2-phenylprop-2-en-1-amine (**4ab**) and (*E*/*Z*)-*N*,*N*-diethyl-3-phenylprop-2-en-1-amine (**3ab**) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/5/1, to give 36 mg product **4ab** as a yellow oil in 47% yield and 12 mg product **3ab** as a yellow oil in 16% yield (*E*/*Z* = 95:5 according to the NMR). **3ab**: $R_f = 0.39$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.6 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 6.52 (d, J = 16.0 Hz, 1H), 6.29 (dt, J = 16.0, 6.8 Hz, 1H, major), 5.81 (dt, J = 12.4, 6.4 Hz, 1H, ninor), 3.39 (dd, J = 6.4, 1.9 Hz, 2H, ninor), 3.26 (dd, J = 6.8, 1.2 Hz, 2H, major), 2.59 (q, J = 7.2 Hz, 4H), 1.07 (t, J = 7.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 137.2, 132.2, 128.5, 127.6, 127.3, 126.2, 55.6, 46.7, 11.7.

IR (KBr) v (cm⁻¹) 2965, 2920, 1659, 1623, 1469, 1383, 965. 735, 691.

HRMS (ESI) calcd for $C_{13}H_{20}N^+$ (M+H)⁺ m/z: 190.1590, found: 190.1591.

4ab: $R_f = 0.20$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.48 (m, 2H), 7.33 – 7.24 (m, 3H), 5.41 (d, *J* = 1.6 Hz, 1H), 5.27 (d, *J* = 1.6 Hz, 1H), 3.41 (s, 2H), 2.53 (q, *J* = 7.0 Hz, 4H), 1.00 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 140.8, 128.1, 127.3, 126.4, 114.7, 57.7, 46.8, 11.5. IR (KBr) v (cm⁻¹) 2968, 2930, 1628, 1494, 1384, 1169, 1061, 904, 777, 705. HRMS (ESI) calcd for C₁₃H₂₀N⁺ (M⁺H)⁺ *m/z*: 190.1590, found: 190.1593.

2-phenyl-*N*,*N*-dipropylprop-2-en-1-amine (4ac) and (*E*/*Z*)-3-phenyl-*N*,*N*-dipropylprop-2-en-1-amine (3ac) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/5/1, to give 49 mg product 4ac as a yellow oil in 56% yield and 26 mg product 3ac as a yellow oil in 18% yield (*E*/*Z* = 95:5 according to the NMR). 3ac: $R_f = 0.43$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.6 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 6.50 (d, J = 15.9 Hz, 1H), 6.29 (dt, J = 15.9, 6.6 Hz, 1H, major), 5.81 (dt, J = 15.7, 6.4 Hz, 1H, minor), 3.38 (d, J = 6.4 Hz, 2H, minor), 3.25 (d, J = 6.6 Hz, 2H, major), 2.43 (t, J = 7.6 Hz, 4H), 1.50 (sext, J = 7.6 Hz, 4H), 0.88 (t, J = 7.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 137.3, 131.9, 128.5, 128.1, 127.2, 126.2, 56.7, 56.0, 20.2, 12.0. IR (KBr) v (cm⁻¹) 2956, 2920, 1658, 1632, 1469, 1380, 1180, 1141, 1075, 967. HRMS (ESI) calcd for $C_{15}H_{24}N^+$ (M+H)⁺ *m/z*: 218.1903, found: 218.1896.

4ac: $R_f = 0.22$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.6 Hz, 2H), 7.30 (t, J = 7.4 Hz, 2H), 7.24 (t, J = 7.2 Hz, 1H), 5.40 (s, 1H), 5.27 (s, 1H), 3.39 (s, 2H), 2.38 (t, J = 7.2 Hz, 4H), 1.44 (sext, J = 7.2 Hz, 4H), 0.80 (t, J = 7.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 146.3, 140.8, 128.0, 127.2, 126.5, 114.5, 59.2, 55.9, 20.0, 11.9. IR (KBr) v (cm⁻¹) 2958, 2925, 1725, 1510, 1407, 1384, 1295, 1259, 1180, 1075, 829. HRMS (ESI) calcd for $C_{15}H_{24}N^+$ (M+H)⁺ *m/z*: 218.1903, found: 218.1900.

N-isopropyl-2-phenylprop-2-en-1-amine (4ad), (*E/Z*)-*N*-isopropyl-3-phenylprop-2-en-1-amine (3ad) and 1-isopropyl-3-phenylazetidine (5ad) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 10/1 to petroleum ether/ethyl acetate/triethylamine = 100/30/1, to give 35 mg product 4ad as a yellow oil in 50% yield and 18 mg product 3ad/5ad as a colorless oil in 26% mixture yield (NMR yield for 3ad is 8%, its *E/Z* ratio is 92:8, NMR yield for 5ad is 18%). Then the mixture was purified by preparative TLC. Only the pure 3ad were got and 5ad were mixed with 3ad. 3ad: $R_f = 0.27$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 7.2 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 6.53 (d, J = 15.6 Hz, 1H), 6.32 (dt, J = 12.4, 6.4 Hz, 1H, major), 5.77 (dt, J = 12.4, 6.4 Hz, 1H,

minor), 3.55 (d, J = 6.4 Hz, 2H, minor), 3.43 (d, J = 6.4 Hz, 2H, major), 2.91 (hept, J = 6.2 Hz, 1H), 1.11 (d, J = 6.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 137.1, 131.4, 128.5, 128.3, 127.4, 126.3, 49.3, 48.2, 22.7. IR (KBr) ν (cm⁻¹) 3360, 2956, 2921, 1660, 1632, 1470, 1383, 1138, 1074, 748. HRMS (ESI) calcd for $C_{12}H_{18}N^+$ (M+H)⁺ *m/z*: 176.1434, found: 176.1431.

4ad: $R_f = 0.27$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.29 (d, J = 6.8 Hz, 1H), 5.39 (s, 1H), 5.39 (s, 1H), 5.24 (d, J = 0.8 Hz, 1H), 3.66 (s, 2H), 2.85 (hept, J = 6.2 Hz, 1H), 1.60 (br, 1H), 1.06 (d, J = 6.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 146.7, 140.0, 128.5, 127.6, 126.2, 113.2, 51.0, 47. 9, 22.8.

IR (KBr) v (cm⁻¹) 3354, 2957, 2921, 1659, 1632, 1469, 1383, 1180, 1141, 1075, 901, 777, 703, 617. HRMS (ESI) calcd for $C_{12}H_{18}N^+$ (M+H)⁺ m/z: 176.1434, found: 176.1434.

5ad: $R_f = 0.27$ (CHCl₃/MeOH = 10:1). (Mixed with **3ad**)

¹H NMR (400 MHz, CDCl₃) δ 7.38-7.19 (m, 5H), 3.81 – 3.77 (m, 2H), 3.70 (quint, *J* = 15.6 Hz, 1H), 3.10 – 3.06(m, 2H), 2.36 (hept, *J* = 6.2 Hz, 1H), 0.97 (d, *J* = 6.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) mixture δ 137.1, 131.2, 128.7, 128.5, 128.3, 128.2, 127.3, 127.0, 126.3, 126.2, 60.1, 58.6, 49.4, 48.1, 34.4, 23.5, 22.8, 19.5.

HRMS (ESI) calcd for $C_{12}H_{18}N^+$ (M+H)⁺ m/z: 176.1434, mixture found: 176.1432.

N-benzyl-2-phenylprop-2-en-1-amine (4ae), (*E*)-*N*-benzyl-3-phenylprop-2-en-1-amine (3ae) and 1-benzyl-3-phenylazetidine (5ae) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 10/1 to petroleum ether/ethyl acetate/triethylamine = 100/30/1, to give product 4ae/5ae mixture and 8 mg product 3ae as a yellow oil in 9% yield. The mixture of 4ae/5ae was purified by preparative TLC to give 23 mg 4ae as a yellow oil in 26% yield and 29 mg 5ae as a yellow oil in 32% yield (*E*/*Z* = 92:8 according to the NMR).

3ae: $R_f = 0.34$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.19 (m, 10H), 6.55 (d, J = 15.9 Hz, 1H), 6.32 (dt, J = 15.9, 6.0 Hz, 1H, major), 5.81 (dt, J = 12.4, 6.6 Hz, 1H, minor), 3.85 (s, 2H, major), 3.79 (s, 1H, minor), 3.57 (dd, J = 6.6, 1.4 Hz, 1H, minor), 3.45 (d, J = 6.0 Hz, 2H, major), 2.19 (br, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 139.9, 137.1, 131.7, 128.53, 128.46, 128.3, 128.1, 127.4, 127.1, 126.3, 53.2, 51.1.

IR (KBr) v (cm⁻¹) 3356, 2921, 2850, 1659, 1494, 1452, 1383, 1141, 966, 736, 696.

HRMS (ESI) calcd for C₁₆H₁₈N⁺ (M+H)⁺ *m/z*: 224.1434, found: 224.1438.

4ae: $R_f = 0.34$ (CHCl₃/MeOH = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.45 - 7.41 (m, 2H), 7.36 - 7.22 (m, 8H), 5.42 (s, 1H), 5.26 (d, J = 1.2 Hz, 1H), 3.80 (s, 2H), 3.67 (s, 2H), 1.55 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 140.2, 139.9, 128.4, 128.3, 128.2, 127.6, 126.9, 126.2, 113.5, 53.0, 52.7.

IR (KBr) v (cm⁻¹) 3359, 2953, 2920, 1632, 1494, 1453, 1180, 1027, 903, 778, 698. HRMS (ESI) calcd for $C_{16}H_{18}N^+$ (M+H)⁺ m/z: 224.1434, found: 224.1433.

5ae: $R_f = 0.34$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 7.32– 7.19 (m, 10H), 3.78 – 3.72 (m, 3H), 3.67 (s, 2H), 3.23 – 3.16 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.6, 138.2, 128.5, 128.4, 128.3, 126.98, 126.93, 126.3, 63.8, 61.5, 35.8.

IR (KBr) v (cm⁻¹) 2957, 2920, 1725, 1462, 1408, 1383, 1259, 1180, 1074, 806.

HRMS (ESI) calcd for $C_{16}H_{18}N^+$ (M+H)⁺ m/z: 224.1434, found: 224.1437.

2-phenyl-N-propylprop-2-en-1-amine (4af), (E/Z)-3-phenyl-N-propylprop-2-en-1-amine (3af) and 3-phenyl-1-propylazetidine (5af) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 10/1 to petroleum ether/ethyl acetate/triethylamine = 100/30/1, to give 35 mg product 4af as a yellow oil in 50% yield and mixture 3af/5af. The mixture of 3af/5af was purified by preparative TLC to give 6 mg 3af as a yellow oil in 9% yield (E/Z = 93:7 according to the NMR) and 25 mg 5af as a yellow oil in 35% yield.

3af: $R_f = 0.29$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.22 (t, *J* = 7.6 Hz, 1H), 6.53 (d, *J* = 15.9 Hz, 1H), 6.31 (dt, *J* = 15.9, 6.4 Hz, 1H, major), 5.78 (dt, *J* = 12.0, 6.4 Hz, 1H, minor), 3.55 (d, *J* = 6.4 Hz, 2H, minor), 3.43 (d, *J* = 6.4 Hz, 2H, major), 2.64 (t, *J* = 7.2 Hz, 2H, major), 2.59 (t, *J* = 7.2 Hz, 2H, minor), 1.55 (sext, *J* = 7.2 Hz, 2H), 0.94 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 131.6, 128.5, 128.0, 127.4, 126.3, 51.7, 51.2, 23.0, 11.8. IR (KBr) v (cm⁻¹) 3345, 2956, 2853, 1460, 1377, 1260, 1029, 801, 693.

HRMS (ESI) calcd for $C_{12}H_{18}N^+$ (M+H)⁺ m/z: 176.1434, found: 176.1429.

4af: $R_f = 0.29$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 7.5 Hz, 2H), 7.37 – 7.27 (m, 3H), 5.40 (s, 1H), 5.25 (s, 1H), 3.68 (s, 2H), 2.60 (t, *J* = 7.4 Hz, 2H), 1.50 (sext, *J* = 7.4 Hz, 2H), 0.89 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 139.9, 128.4, 127.6, 126.2, 113.3, 53.3, 51.0, 23.0, 11.7. IR (KBr) v (cm⁻¹) 3357, 2957, 2928, 1723, 1632, 1460, 1295, 1075, 1046. HRMS (ESI) calcd for C₁₂H₁₈N⁺ (M+H)⁺ *m/z*: 176.1434, found: 176.1435.

5af: $R_f = 0.29$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.19 (m, 5H), 3.85 – 3.73 (m, 3H), 3.18 – 3.09 (m, 2H), 2.48 (t, *J* = 7.4 Hz, 2H), 1.42 (sext, *J* = 7.4 Hz, 2H), 0.93 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 128.4, 127.0, 126.4, 61.7, 61.6, 35.8, 20.8, 11.8.

IR (KBr) v (cm⁻¹) 2955, 2923, 1631, 1462, 1383, 1141, 1075, 699.

N-tert-butyl-2-phenylprop-2-en-1-amine (**4ag**), (*E*)-*N*-tert-butyl-3-phenylprop-2-en-1-amine (**3ag**) and 1-tert-butyl-3-phenylazetidine(**5ag**) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 10/1 to petroleum ether/ethyl acetate/triethylamine = 100/30/1, to give 36 mg product **4ag** as a yellow oil in 48% yield and 26 mg product **3ag/5ag** as a yellow oil in 34% mixture yield (NMR yield for **3ag** is 14%, NMR yield for **5ag** is 20%).

Mixture of **3ag** and **5ag**: $R_f = 0.32$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ **3ag**: 7.37 (d, J = 7.6 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 6.53 (d, J = 15.8 Hz, 1H), 6.34 (dt, J = 15.8, 6.4 Hz, 1H), 3.38 (d, J = 6.4 Hz, 2H), 1.17 (s, 9H). **5ag**: 7.33 – 7.18 (m, J = 7.3 Hz, 5H), 3.70 (quint, J = 7.6 Hz, 1H), 3.60 (t, J = 7.6 Hz, 2H), 3.33 (t, J = 7.6 Hz, 2H), 1.02 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 142.8, 137.2, 130.7, 129.4, 128.5, 128.3, 127.2, 127.0, 126.3, 126.2, 53.6, 52.0, 50.4, 45.2, 33.7, 29.1, 24.2.

HRMS (ESI) calcd for $C_{13}H_{20}N^+$ (M+H)⁺ m/z: 190.1590, mixture found: 190.1590.

4ag: $R_f = 0.32$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 2H), 7.36 – 7.30 (m, 2H), 7.30 – 7.24 (m, 1H), 5.38 (s, 1H), 5.28 (d, *J* = 1.2 Hz, 1H), 3.62 (s, 2H), 1.15 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 147.2, 140.2, 128.4, 127.6, 126.2, 113.0, 50.5, 46.6, 29.0.

IR (KBr) v (cm⁻¹) 3353, 2959, 2921, 1631, 1469, 1361, 1229, 901, 778, 704.

HRMS (ESI) calcd for $C_{13}H_{20}N^+$ (M+H)⁺ m/z: 190.1590, found: 190.1590.

N,*N*-diisopropyl-2-p-tolylprop-2-en-1-amine (**4ba**) and (*E*)-*N*,*N*-diisopropyl-3-p-tolylprop-2-en-1amine (**3ba**) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/10/1, to give 54 mg product **4ba** as a yellow oil in 58% yield and 8mg product **3ba** as a yellow oil in 9% yield.

3ba: $R_f = 0.39$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.46 (d, *J* = 16.0 Hz, 1H), 6.18 (dt, *J* = 16,0 6.6 Hz, 1H), 3.27 (d, *J* = 6.6 Hz, 2H), 3.09 (hept, *J* = 6.6 Hz, 2H), 2.32 (s, 3H), 1.04 (d, *J* = 6.6 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 136.7, 134.8, 130.8, 129.9, 129.2, 126.0, 48.3, 47.7, 21.1, 20.7.

IR (KBr) v (cm⁻¹) 2960, 2919, 1658, 1632, 1470, 1380, 1174, 967, 793.

HRMS (ESI) calcd for $C_{16}H_{26}N^+$ (M+H)⁺ m/z: 232.2060, found: 232.2063.

4ba: $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 5.38 (d, J = 2.0 Hz, 1H), 5.33 (d, J = 2.0 Hz, 1H), 3.41 (s, 2H), 3.07 (hept, J = 6.6 Hz, 2H), 2.34 (s, 3H), 0.99 (d, J = 6.6 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 147.8, 138.4, 136.8, 128.6, 126.2, 112.8, 49.3, 47.8, 21.1, 20.6. IR (KBr) ν (cm⁻¹) 2963, 2925, 1630, 1513, 1463, 1362, 1179, 1118, 900, 823, 740.

HRMS (ESI) calcd for $C_{16}H_{26}N^+$ (M+H)⁺ m/z: 232.2060, found: 232.2063.

2-(4-fluorophenyl)-*N*,*N*-diisopropylprop-2-en-1-amine (4ca) and (*E*)-3-(4-fluorophenyl)-*N*,*N*-diisopropylprop-2-en-1-amine (3ca) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/10/1, to give 35 mg product 4ca as a yellow oil in 38% yield and 16 mg product 3ca as a yellow oil in 17% yield. 3ca: $R_f = 0.39$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 6.98 (t, *J* = 8.8 Hz, 2H), 6.46 (d, *J* = 15.8 Hz, 1H), 6.15 (dt, *J* = 15.8, 5.8 Hz, 1H), 3.27 (d, *J* = 5.8 Hz, 2H), 3.09 (hept, *J* = 6.6 Hz, 2H), 1.04 (d, *J* = 6.6 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, *J* = 243 Hz, 1C), 133.8 (d, *J* = 3 Hz, 1C), 131.6, 128.8, 127.5 (d, *J* = 2 Hz, 1C), 115.3 (d, *J* = 22 Hz, 1C), 48.3, 47.5, 20.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -115.65.

IR (KBr) v (cm⁻¹) 2962, 2925, 1601, 1508, 1461, 1380, 1231, 1156, 966, 845, 774.

HRMS (ESI) calcd for C₁₅H₂₃FN⁺ (M+H)⁺ *m/z*: 236.1809, found: 236.1811.

4ca: $R_f = 0.42$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 2H), 7.01 – 6.94 (m, 2H), 5.37 (s, 1H), 5.30 (s, 1H), 3.41 (s, 2H), 3.05 (hept, *J* = 6.6 Hz, 2H), 0.98 (d, *J* = 6.6 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, *J* = 244 Hz, 12H), 147.11, 137.2 (d, *J* = 3, 1C), 128.0 (d, *J* = 7 Hz, 1C), 114.6 (d, *J* = 21 Hz, 1C), 113.7, 49.5, 47.5, 20.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -115.78.

IR (KBr) v (cm⁻¹) 2962, 2925, 1633, 1603, 1509, 1463, 1383, 1117, 837, 618.

HRMS (ESI) calcd for $C_{15}H_{23}FN^+$ (M+H)⁺ m/z: 236.1809, found: 236.1811.

2-(4-bromophenyl)-*N*,*N*-diisopropylprop-2-en-1-amine (4da) and (*E*/*Z*)-3-(4-bromophenyl)-*N*,*N*-diisopropylprop-2-en-1-amine (3da) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/10/1, to give 79 mg product 4da as a yellow oil in 67% yield and 24 mg product 3da as a yellow oil in 20% yield (*E*/*Z* = 89:11 according to the NMR).

3da: $R_f = 0.39$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7. 62 (m, 2H, minor), 7.46 – 7.44 (m, 2H, minor), 7.41 – 7.36 (m, 2H, major) 7.24 – 7.20 (m, 2H, major), 6.81 (d, *J* = 15.8 Hz, 1H, minor), 6.44 (d, *J* = 15.8 Hz, 1H, major), 6.23 (dt, *J* = 15.8, 6.4 Hz, 1H), 3.30 (dd, *J* = 6.4, 1.6 Hz, 2H, minor), 3.26 (dd, *J* = 6.4, 1.6 Hz, 2H, major), 3.08 (hept, *J* = 6.6, 1H), 1.04 (d, *J* = 6.6, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 136.5, 134.0, 132.8, 131.5, 131.0, 130.9, 129.8, 129.3, 128.8, 127.7, 124.8, 120.6, 48.6, 48.4, 47.5, 47.3, 20.8, 20.7.

IR (KBr) v (cm⁻¹) 2963, 2923, 1632, 1487, 1463, 1382, 1175, 1072, 1008, 967.

HRMS (ESI) calcd for C₁₅H₂₃BrN⁺ (M+H)⁺ *m/z*: 296.1008, found: 296.1014.

4da: $R_f = 0.36$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.38 (m, 2H), 7.36 – 7.27 (m, 2H), 5.40 (d, *J* = 1.1 Hz, 1H), 5.35 (d, *J* = 1.1 Hz, 1H), 3.41 (s, 1H), 3.05 (hept, *J* = 6.6 Hz, 2H), 0.98 (d, *J* = 6.6 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 140.0, 131.0, 128.2, 121.0, 114.5, 49.3, 47.6, 20.5. IR (KBr) v (cm⁻¹) 2963, 2926, 1728, 1588, 1488, 1383, 1179, 1072, 1009, 905, 829. HRMS (ESI) calcd for C₁₅H₂₃BrN⁺ (M+H)⁺ *m/z*: 296.1008, found: 296.1016.

acetate/triethylamine = 100/10/1, to give 50 mg product **4ea** as a yellow oil in 50% yield and 22 mg product **3ea** as a yellow oil in 22% yield.

3ea: $R_f = 0.39$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.22 (m, 4H), 6.46 (d, J = 15.8 Hz, 1H), 6.21 (dt, J = 15.8, 5.8 Hz, 1H), 3.27 (d, J = 5.8 Hz, 2H), 3.14 – 3.02 (hept, J = 6.4 Hz, 2H), 1.04 (d, J = 6.4 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 136.1, 132.7, 132.5, 128.7, 128.6, 127.3, 48.4, 47.5, 20.7. IR (KBr) v (cm⁻¹) 2962, 2924, 1491, 1384, 1180, 1091, 1012, 967. HRMS (ESI) calcd for C₁₅H₂₃ClN⁺ (M+H)⁺ *m/z*: 252.1514, found: 252.1514.

4ea: $R_f = 0.45$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 5.40 (s, 1H), 5.34 (s, 1H), 3.41 (s, 2H), 3.05 (hept, J = 6.7 Hz, 2H), 0.98 (d, J = 6.7 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 147.0, 139.5, 132.9, 128.0, 127.8, 114.3, 77.3, 47.5, 20.5.

IR (KBr) v (cm⁻¹) 2963, 2926, 1676, 1592, 1491, 1381, 1208, 1179, 1140, 1092, 1013, 832.

HRMS (ESI) calcd for $C_{15}H_{23}CIN^+$ (M+H)⁺ m/z: 252.1514, found: 252.1513.

N,*N*-diisopropyl-2-(4-nitrophenyl)prop-2-en-1-amine (**4fa**) and (*E*)-*N*,*N*-diisopropyl-3-(4-nitro phenyl)prop-2-en-1-amine (**3fa**) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/10/1, to give 25 mg product **4fa** as a bright yellow oil in 24% yield and 21 mg product **3fa** as a bright yellow oil in 20% yield.

3fa: $R_f = 0.38$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.8 Hz, 2H), 6.61 (d, J = 15.6 Hz, 1H), 6.46 (dt, J = 15.6, 5.4 Hz, 1H), 3.32 (d, J = 5.4 Hz, 2H), 3.08 (hept, J = 12.9, 6.4 Hz, 2H), 1.05 (d, J = 6.4 Hz, 12H).

 ^{13}C NMR (100 MHz, CDCl₃) δ 146.5, 144.2, 137.9, 127.8, 126.5, 123.9, 48.6, 47.5, 20.8.

IR (KBr) v (cm⁻¹) 2964, 2927, 1596, 1517, 1383, 1342, 1180, 1109, 859.

HRMS (ESI) calcd for C₁₅H₂₃N₂O₂⁺ (M+H)⁺ *m/z*: 263.1754, found: 263.1754.

4fa: $R_f = 0.42$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 8.8 Hz, 2H), 5.54 (d, J = 1.2 Hz, 1H), 5.49 (s, 2H), 3.48 (s, 2H), 3.04 (hept, J = 6.6 Hz, 2H), 0.98 (d, J = 6.6 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 147.7, 146.9, 146.6, 127.3, 123.2, 117.3, 49.3, 47.4, 20.4.

IR (KBr) v (cm⁻¹) 2965, 2927, 1596, 1518, 1343, 1178, 1110, 856, 712.

HRMS (ESI) calcd for C₁₅H₂₃N₂O₂⁺ (M+H)⁺ *m/z*: 263.1754, found: 263.1754.

N,*N*-diisopropyl-2-(4-(trifluoromethyl)phenyl)prop-2-en-1-amine (**4ga**) and (*E*)-*N*,*N*-diisopropyl-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-amine (**3ga**) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/10/1, to give 25 mg product **4ga** as a yellow oil in 22% yield and 46 mg product **3ga** as a yellow oil in 40% yield.

3ga: $R_f = 0.39$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H), 6.55 (d, J = 15.8 Hz, 1H), 6.34 (dt, J = 15.8, 5.6 Hz, 1H), 3.29 (dd, J = 5.6, 0.8 Hz, 2H), 3.08 (hept, J = 6.6 Hz, 2H), 1.04 (d, J = 6.6 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 141.1, 135.1, 128.7 (q, *J* = 32 Hz, 1C), 128.5, 126.2, 125.4 (q, *J* = 4 Hz, 1C), 124.3 (q, *J* = 270 Hz, 1C), 48.49, 47.49, 20.71.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.42.

IR (KBr) v (cm⁻¹) 2962, 2923, 1616, 1467, 1382, 1326, 1165, 1126, 1068, 1017, 969, 856.

HRMS (ESI) calcd for C₁₆H₂₃F₃N⁺ (M+H)⁺ *m/z*: 286.1777, found: 236.1784.

4ga: $R_f = 0.42$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.49 (m, 4H), 5.48 (d, J = 1.3 Hz, 1H), 5.41 (s, 1H), 3.45 (s, 2H), 3.05 (hept, J = 6.6 Hz, 2H), 0.98 (d, J = 6.6 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 147.2, 144.8, 129.1 (q, *J* = 32 Hz, 1C), 124.4 (q, *J* = 270 Hz, 1C), 126.8, 124.8 (q, *J* = 4 Hz, 1C), 115.7, 49.3, 47.5, 20.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.42. IR (KBr) ν (cm⁻¹) 2965, 2927, 1617, 1383, 1364, 1165, 1126, 1067, 1016, 847, 617. HRMS (ESI) calcd for C₁₆H₂₃F₃N⁺ (M+H)⁺ *m/z*: 286.1777, found: 236.1781.

2-(3-chlorophenyl)-*N*,*N*-diisopropylprop-2-en-1-amine (**4ha**) and (*E*)-3-(3-chlorophenyl)-*N*,*N*-diisopropylprop-2-en-1-amine (**3ha**) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/10/1, to give 43 mg product **4ha** as a yellow oil in 43% yield and 26 mg product **3ha** as a yellow oil in 26% yield. **3ha**: $R_f = 0.44$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 7.22 – 7.18 (m, 2H), 7.18 – 7.12 (m, 1H), 6.45 (d, *J* = 16.0 Hz, 1H), 6.25 (dt, *J* = 16.0, 6.0 Hz, 1H), 3.27 (dd, *J* = 6.0, 0.4 Hz, 2H), 3.08 (hept, *J* = 6.6 Hz, 2H), 1.04 (d, *J* = 6.6 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 139.5, 134.4, 133.7, 129.6, 128.6, 126.8, 126.1, 124.3, 48.4, 47.4, 20.7. IR (KBr) v (cm⁻¹) 2963, 2920, 1658, 1632, 1470, 1384, 1180, 1141, 1076, 1049.

HRMS (ESI) calcd for $C_{15}H_{23}CIN^+$ (M+H)⁺ m/z: 252.1514, found: 252.1514.

4ha: $R_f = 0.48$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.33 (t, *J* = 4.2 Hz, 1H), 7.23 (d, *J* = 4.2 Hz, 2H), 5.44 (s, 1H), 5.38 (s, 1H), 3.41 (s, 2H), 3.06 (hept, *J* = 6.6 Hz, 2H), 0.99 (d, *J* = 6.6 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 133.8, 129.10, 127.1, 126.7, 124.6, 114.9, 49.3, 47.6, 20.5. IR (KBr) v (cm⁻¹) 2963, 2926, 1593, 1562, 1465, 1383, 1207, 1180, 1141, 787.

HRMS (ESI) calcd for $C_{15}H_{23}CIN^+$ (M+H)⁺ m/z: 252.1514, found: 252.1514.

2-(3,5-dichlorophenyl)-*N*,*N*-diisopropylprop-2-en-1-amine (**4ia**) and (*E*)-3-(3,5-dichlorophenyl)-*N*,*N*diisopropylprop-2-en-1-amine (**3ia**) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/10/1, to give 27 mg product **4ia** as a yellow oil in 24% yield and 53 mg product **3ia** as a yellow oil in 46% yield. **3ia**: $R_f = 0.27$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 7.22 (s, 1H), 7.21 (s, 1H), 7.17 (m, 1H), 6.41 (d, *J* = 15.8 Hz, 1H), 6.27 (dt, *J* = 15.8, 5.7 Hz, 1H), 3.26 (d, *J* = 5.7 Hz, 2H), 3.06 (hept, *J* = 6.6 Hz, 2H), 1.03 (d, *J* = 6.6 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 140.7, 135.5, 135.0, 127.3, 126.6, 124.5, 48.5, 47.3, 20.7. IR (KBr) ν (cm⁻¹) 2960, 2922, 1585, 1560, 1416, 1205, 1141, 1179, 1116, 1075, 799. HRMS (ESI) calcd for $C_{15}H_{22}Cl_2N^+$ (M+H)⁺ *m/z*: 286.1124, found: 286.1118.

4ia: $R_f = 0.55$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 2H), 7.24 (s, 1H), 5.44 (s, 1H), 5.39 (s, 1H), 3.38 (s, 2H), 3.05 (hept, J = 6.4 Hz, 2H), 0.99 (d, J = 6.4 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 145.8, 144.0, 134.4, 126.9, 125.1, 116.0, 77.3, 47.5, 20.4.

IR (KBr) v (cm⁻¹) 2963, 2925, 1583, 1558, 1383, 1363, 1207, 1180, 1141, 1095, 801.

HRMS (ESI) calcd for C₁₅H₂₂Cl₂N⁺ (M+H)⁺ *m/z*: 286.1124, found: 286.1118.

2-(2-chlorophenyl)-*N*,*N*-diisopropylprop-2-en-1-amine (**4ja**) and (*E*)-3-(2-chlorophenyl)-*N*,*N*-diisopropylprop-2-en-1-amine (**3ja**) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/10/1, to give 4 mg product **4ja** as a yellow oil in 4% yield and 44 mg product **3ja** as a yellow oil in 44% yield. **3ja**: $R_f = 0.33$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 15.6 Hz, 1H), 6.22 (dt, J = 15.6, 6.0 Hz, 1H), 3.32 (d, J = 6.0 Hz, 2H), 3.16 - 3.04 (hept, J = 6.4 Hz, 2H), 1.05 (d, J = 6.4 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 135.7, 135.0, 132.7, 129.5, 127.9, 126.8, 126.7, 126.1, 48.5, 47.7, 20.8. IR (KBr) v (cm⁻¹) 2962, 2923, 1469, 1440, 1382, 1204, 1180, 1075, 1033, 749.

HRMS (ESI) calcd for $C_{15}H_{23}ClN^+$ (M+H)⁺ m/z: 252.1514, found: 252.1519.

4ja: $R_f = 0.50$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.32 (m, 1H), 7.21 – 7.13 (m, 3H), 5.55 (s, 1H), 5.05 (s, 1H), 3.31 (s, 2H), 3.07 (hept, J = 6.6 Hz, 2H), 0.95 (d, J = 6.6 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 148.8, 141.6, 132.1, 130.9, 129.2, 128.0, 126.2, 115.3, 50.1, 47.6, 20.7. IR (KBr) ν (cm⁻¹) 2962, 2924, 1456, 1363, 1331, 1207, 1179, 1147, 1046, 160.

HRMS (ESI) calcd for $C_{15}H_{23}ClN^+$ (M+H)⁺ m/z: 252.1514, found: 252.1514.

(E/Z)-*N*-tert-butyl-2-methyl-3-phenylprop-2-en-1-amine (**3kg**) and 2-benzyl-*N*-tert-butylprop-2-en-1amine (**3kg'**) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to give 30 mg mixture product **3kg** and **3kg'** as a yellow oil in 37 % yield (**3kg**: **3kg'** = 1:0.3 according to the NMR, for **3kg**, the *E/Z* ratio is 89:11).

Mixture of 3kg and 3kg': R_f= 0.29 (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ (**3kg**) 7.34 – 7.16 (m, 5H), 6.45 (s, 1H, major), 6.38 (s, 1H, minor), 3.28 (s, 2H, major), 3.26 (s, 2H, major), 1.96 (d, *J* = 1.6 Hz, 3H, minor), 1.91 (s, 3H, major), 1.16 (s, 9H, major), 1.08 (s, 9H, major); (**3kg'**) 7.34 – 7.16 (m, 5H), 5.02 (s, 1H), 4.82 (s, 1H), 3.42 (s, 2H), 3.08 (s, 2H), 1.06 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 148.4, 139. 7, 138.3, 138.0, 131.0, 129.3, 129.0, 128.9, 128.5, 128.2, 128.02, 127.97, 127.4, 126.2, 126.03, 126.00, 125.1, 124.8, 111.5, 51.3, 50.5, 50.4, 46.8, 44.0, 41.6, 29.7, 29.3, 29.1, 29.0, 23.4, 17.1.

HRMS (ESI) calcd for $C_{14}H_{22}N^+$ (M+H)⁺ m/z: 204.1747, mixture found: 204.1747.

(E/Z)-*N*,*N*-diisopropyl-2-phenylbut-2-en-1-amine (**4la**) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/ triethylamine = 100/10/1, to give 49 mg product **4la** as a yellow oil in 53% yield (E/Z = 3:1 according to the NMR).

4la: $R_f = 0.27$ (CHCl₃/MeOH = 10:1).

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.20 (m, 5H), 5.87 (q, *J* = 7.0 Hz, 1H, major), 5.82 (q, *J* = 6.8 Hz, 1H, minor), 3.55 (s, 2H, major), 3.29 (s, 2H, minor), 3.20 – 2.96 (m, 2H), 1.91 (d, *J* = 7.0 Hz, 3H, major, *E* product), 1.64 (dd, *J* = 6.8, 1.2 Hz, 3H, minor, *Z* product), 1.02 – 0.97 (m, *J* = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 141.0, 140.0, 128.8, 127.6, 127.4, 127.1, 126.2, 126.1, 126.0, 122.1, 52.2, 47.1, 46.1, 42.7, 20.5, 14.5, 14.0.

IR (KBr) ν (cm⁻¹) 2962, 2925, 1463, 1380, 1361, 1179, 1116, 1029, 698.

HRMS (ESI) calcd for $C_{16}H_{26}N^+$ (M+H)⁺ m/z: 232.2060, found: 232.2060.

(E/Z)-*N*-isopropyl-2-phenyl-*N*-((E/Z)-2-phenylbut-2-enyl)but-2-en-1-amine (4ld') and (E/Z)-*N*-isopropyl-2-phenylbut-2-en-1-amine (E/Z-4ld) were synthesized according to General Procedure, eluted by petroleum ether/ethyl acetate = 50/1 to petroleum ether/ethyl acetate/triethylamine = 100/10/1, to give 18 mg product 4ld' as a yellow oil in 28 % yield and 54 mg product E/Z-4ld as a yellow oil in 71% yield (E/Z = 3:1 according to the NMR). The mixture E/Z-4ld was purified by preparative TLC.

E-4ld: $R_f = 0.29$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 7.39 (m, 2H), 7.31 (m, 2H), 7.23 (m, 1H), 5.87 (q, *J* = 7.0 Hz, 1H), 3.67 (s, 2H), 2.79 (hept, *J* = 6.2 Hz, 1H), 1.86 (d, *J* = 7.0 Hz, 3H), 1.03 (d, *J* = 6.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 142.0, 139.1, 128.4, 126.7, 126.2, 125.2, 48.1, 45.0, 22.9, 14.1.

IR (KBr) v (cm⁻¹) 3361, 2960, 2926, 2854, 1725, 1599, 1462, 1378, 1179, 1074, 760, 698.

HRMS (ESI) calcd for $C_{13}H_{20}N^+$ (M+H)⁺ m/z: 190.1590, found: 190.1590.

Z-4ld: $R_f = 0.29$ (CHCl₃/MeOH = 10:1)

¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 2H), 7.26 (m, 1H), 7.20 (m, 2H), 5.72 (q, *J* = 6.8 Hz, 1H), 3.48 (s, 2H), 2.80 (hept, *J* = 6.2 Hz, 1H), 1.59 (d, *J* = 6.8 Hz, 3H), 1.00 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 139.7, 139.4, 128.6, 128.2, 126.8, 123.0, 54.2, 47.3, 22.7, 14.5. IR (KBr) v (cm⁻¹) 2956, 2925, 1494, 1463, 1378, 1179, 1074, 768, 701. HRMS (ESI) calcd for $C_{13}H_{20}N^+$ (M+H)⁺ m/z: 190.1590, found: 190.1594.

4ld': $R_f = 0.43$ (petroleum ether/ethyl acetate = 5:1)

¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.00 (m, 10H), 5.94 (q, *J* = 7.0 Hz, 0.8H), 5.85 (q, *J* = 7.0 Hz, 0.5H), 5.60 (q, *J* = 7.0 Hz, 0.5H), 5.54 (q, *J* = 7.0 Hz, 0.2H), 3.43 (s, 1.6H), 3.41 (s, 1H), 3.21 (s, 1H), 3.18 (s, 0.4H), 3.13 – 2.89 (m, 1H), 1.83 (d, *J* = 7.0 Hz, 2.4H), 1.79 (d, *J* = 7.0 Hz, 1.5H), 1.59 (d, *J* = 7.0 Hz, 1.5H), 1.53 (d, *J* = 7.0 Hz, 0.6H), 0.93 (d, *J* = 6.7 Hz, 2.4H), 0.87 (d, *J* = 6.7 Hz, 3.0H), 0.83 (d, *J* = 6.7 Hz, 0.6H).

¹³C NMR (100 MHz, CDCl₃) δ 143.4, 142.9, 140.1, 139.4, 138.8, 138.4, 128.83, 128.81, 127.6, 127.50, 127.48, 126.9, 126.8, 126.6, 126.5, 126.1, 126.04, 126.00, 123.8, 123.3, 56.4, 47.5, 47.4, 47.0, 46.5, 17.2, 17.1, 14.65, 14.23, 14.15.

IR (KBr) v (cm⁻¹) 2959, 2924, 1494, 1462, 1383, 1260, 1166, 1098, 1021, 750, 698. HRMS (ESI) calcd for $C_{23}H_{30}N^+$ (M+H)⁺ *m/z*: 320.2373, found: 320.2375.

IV. Copies of ¹H, ¹³C and ¹⁹F NMR Spectra

the ¹H and ¹³C NMR spectra of **3aa**

the ¹H and ¹³C NMR spectra of 4aa

the ¹H and ¹³C NMR spectra of **3ab**

the ¹H and ¹³C NMR spectra of **4ab**

the ¹H and ¹³C NMR spectra of **3ac**

the ¹H and ¹³C NMR spectra of 4ac

190 180 170 160 150 140 130 120 110 100 Ó

the ¹H and ¹³C NMR spectra of **3ad**

the ¹H and ¹³C NMR spectra of 4ad

the ¹H and ¹³C NMR spectra of mixture **5ad** and **3ad**

the ¹H and ¹³C NMR spectra of **4ae**

the ¹H and ¹³C NMR spectra of **5ae**

the ¹H and ¹³C NMR spectra of **3af**

the ¹H and ¹³C NMR spectra of 4af

the ¹H and ¹³C NMR spectra of **5af**

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

the ¹H and ¹³C NMR spectra of **3ba**

the ¹H and ¹³C NMR spectra of **4ba**

the ¹H, ¹³C and ¹⁹F NMR spectra of **4ca**

the ¹H and ¹³C NMR spectra of **3da**

the ¹H and ¹³C NMR spectra of 4da

the ¹H and ¹³C NMR spectra of **3ea**

the ¹H and ¹³C NMR spectra of **4ea**

the ¹H and ¹³C NMR spectra of **3fa**

the ¹H and ¹³C NMR spectra of 4fa

the ¹H, ¹³C and ¹⁹F NMR spectra of 4ga

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -110 -120 -130	-140
---	------

the ¹H and ¹³C NMR spectra of **3ha**

the ¹H and ¹³C NMR spectra of **4ha**

the ¹H and ¹³C NMR spectra of **3ia**

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

the ¹H and ¹³C NMR spectra of 4ia

the ¹H and ¹³C NMR spectra of **3ja**

the ¹H and ¹³C NMR spectra of **4ja**

the ¹H NMR spectra of crude mixture to determine the ratio of **3kg** and **3kg'**

Mixture product **3kg: 3kg'** = 3: 1

the ¹H and ¹³C NMR spectra of mixture 3kg and 3kg'

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

the ¹H and ¹³C NMR spectra of *E*-4ld

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

the ¹H and ¹³C NMR spectra of **Z-4ld**

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

the ¹H and ¹³C NMR spectra of **4ld'**

V. Copies of crude ¹H NMR spectra for determination of the product ratio
(3: 4) in Table 2

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

4ja: 3ja

