Electronic Supporting Information (ESI)

An Efficient and Sustainable Synthesis of NHC Gold Complexes

Alice Johnson, and M. Concepción Gimeno*

Departamento de Química Inorgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza. E-50009 Zaragoza, Spain.

E-mail: gimeno@unizar.es

Table of Contents

1. Experimental Section	2
1.1. General Procedures	2
1.2. Synthesis of the compounds	2
1.3. Crystallography	4
1.4. References	5
1.5. NMR spectra for complex 7.	6
1.6. NMR spectra for complex 9.	9
1.7. NMR spectra for complex 10.	12
1.8. NMR spectra for complex 11.	15
1.9. NMR spectra for complex 12.	18
1.10. NMR spectra for complex 13.	21
1.11. NMR spectra for complex 14.	24
1.12. NMR spectra for complex 15.	27
1.13. NMR spectra for complex 16.	30

1. Experimental Section

1.1. General Procedures

All reactions were performed under air atmosphere and solvents were used as received without purification or drying. $[AuCl(tht)]^1$ and $[Au(C_6F_5)(tht)]^2$ were prepared according to published procedures. Imidazolium salts were commercially available from Sigma-Aldrich or TCI Chemicals.

¹H, ¹³C{¹H}, and ¹⁹F{¹H} NMR, including 2D experiments, were recorded at room temperature on a BRUKER AVANCE 400 spectrometer (¹H 400 MHz; ¹³C, 100.6 MHz; ¹⁹F 377 MHz) or on a BRUKER AVANCE II 300 spectrometer (¹H 300 MHz; ¹³C 75.5 MHz; ¹⁹F 282 MHz) with chemical shifts (δ , ppm) reported relative to the solvent peaks of the deuterated solvent.

1.2. Synthesis of the compounds

NBu₄(acac): To a solution of tetrabutylammonium hydroxide 30-hydrate (1.600 g, 2.0 mmol) in ethanol (10 ml) was added acetylacetone (0.2 ml, 2 mmol) and the solution stirred for 8 h. Solvent was removed *in vacuo* to leave a pale yellow residue which was dissolved in CH_2Cl_2 (10 ml) and dried over Na₂SO₄. The solution was concentrated to minimum volume and diethyl ether (10 ml) was added to precipitate an off-white solid which was collected and vacuum dried to give the product (0.649 g, 95%). Spectral data is in agreement with that previously reported.

7: 1-octyl-3-methylimidazolium chloride (0.0692 g, 0.3 mmol) and [AuCl(tht)] (0.0962 g, 0.3 mmol) were mixed in CH₂Cl₂ (10 ml) until a colourless solution formed (5 min). NBu₄(acac) (0.1025 g, 0.3 mmol) was added and the mixture stirred for 1 h. The solution was filtered through a plug of silica and the colourless filtrate evaporated to minimum volume. Pentane was added to precipitate a white solid which was collected and vacuum dried to give the product (0.1112 g, 87%). ¹H NMR (400 MHz, CDCl₃) δ 6.93 (d, J = 1.9 Hz, 1H, C<u>H</u> imidazole), 6.92 (d, J = 1.9 Hz, 1H, C<u>H</u> imidazole), 4.13 (t, J = 7.3 Hz, 2H, C<u>H₂CH₂(CH₂)₅CH₃), 3.82 (s, 3H, Me), 1.88 – 1.74 (m, 2H, CH₂C<u>H₂(CH₂)₅CH₃), 1.27 (m, 10H, CH₂CH₂(C<u>H₂)₅CH₃), 0.86 (t, J = 6.9 Hz, 3H, CH₂CH₂(CH₂)₅C<u>H₃). ¹B NMR (101 MHz, CDCl₃) δ 170.88 (s, N-<u>C</u>-N), 121.81 (s, <u>C</u>H imidazole), 120.56 (s, <u>C</u>H imidazole), 51.53 (s, <u>CH₂CH₂(CH₂)₅CH₃), 38.37 (s, Me), 31.78 (s, CH₂CH₂(<u>CH₂)₅CH₃), 31.18 (s, CH₂CH₂(CH₂)₅CH₃), 29.15 (s, CH₂CH₂(<u>CH₂)₅CH₃), 26.48 (s, CH₂CH₂(<u>CH₂)₅CH₃), 22.67 (s, CH₂CH₂(<u>CH₂)₅CH₃), 14.15 (s, CH₂CH₂(CH₂)₅<u>C</u>H₃).</u></u></u></u></u></u></u></u></u>

9: 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride (0.0850 g, 0.2 mmol) and [Au(C₆F₅)(tht)] (0.0904 g, 0.2 mmol) were mixed in CH₂Cl₂ (10 ml) until a colourless solution formed (5 min). The solution was concentrated to dryness under reduced pressure to give a white solid which was washed several times with hexane. The solid was dissolved in CH₂Cl₂ (10 ml), NBu₄(acac) (0.0683 g, 0.2 mmol) was added and the mixture stirred for 1 h. The solution was filtered through a plug of silica and the colourless filtrate evaporated to minimum volume. Pentane was added to precipitate a white solid which was collected and vacuum dried to give the product (0.1098 g, 73%). ¹H NMR (300 MHz, CDCl₃) δ 7.49 (t, *J* = 7.8 Hz, 2H, *p*-C₆H₃), 7.29 (d, *J* = 7.8 Hz, 4H, m-C6H3), 7.20 (s, 2H, C<u>H</u> imidazole), 2.62 (sept, *J* = 6.9 Hz, 4H, C<u>H</u>Me₂), 1.36 (d, *J* = 6.9 Hz, 6H, CH<u>Me₂), 1.24 (d, *J* = 6.9 Hz, 6H, CH<u>Me₂). ¹⁹F NMR (377 MHz, CDCl₃) δ -115.28 – -116.84 (m, *o*-C₆F₅), -161.20 (t, *J* = 20.0 Hz, *p*-C₆F₅), -162.46 – -165.76 (m, *m*-C₆F₅). ¹³C NMR (75 MHz, CDCl₃) δ 192.15 (s, *N*-<u>C</u>-N, (observed by HMBC)), 145.93 (s, *i*-C₆H₃), 134.25 (s, *o*-C₆H₃), 130.61 (s, *p*-C₆H₃), 124.16 (s, *m*-C₆H₃), 123.14 (s, <u>CH</u> imidazole), 29.02 (s, <u>CHMe₂), 24.48 (s, Me), 24.17 (s, Me).</u></u></u>

10: 1,3-Bis(2,4,6-trimethylphenyl)imidazolinium chloride (0.1023 g, 0.3 mmol) and [Au(C₆F₅)(tht)] (0.1357 g, 0.3 mmol) were mixed in CH₂Cl₂ (10 ml) until a colourless solution formed (5 min). The solution was concentrated to dryness under reduced pressure to give a white solid which was washed several times with hexane. The solid was dissolved in CH₂Cl₂ (10 ml), NBu₄(acac) (0.1025 g, 0.3 mmol) was added and the mixture stirred for 1 h. The solution was filtered through a plug of silica and the colourless filtrate evaporated to minimum volume. Pentane was added to precipitate a white solid which was collected and vacuum dried to give the product (0.1604 g, 80%). ¹H NMR (300 MHz, CDCl₃) δ 7.12 (s, 2H, C<u>H</u> imidazole), 7.02 (s, 4H, C₆<u>H</u>₂), 2.35 (s, 6H, *p*-Me), 2.17 (s, 12H, *o*-Me). ¹⁹F NMR (377 MHz, CDCl₃) δ -115.94 – -116.11 (m, *o*-C₆F₅), -160.84 (t, *J* = 20.0 Hz, *p*-C₆F₅), -163.56 – -163.83 (m, *m*-C₆F₅). ¹³C NMR (75 MHz, CDCl₃) δ 190.50 (s, N-<u>C</u>-N, (observed by HMBC)) 139.63 (s, <u>C</u>H aromatic), 134.97 (s, <u>C</u>H aromatic), 134.88 (s, <u>C</u>H aromatic), 129.44 (s, <u>C</u>H aromatic), 122.30 (s, <u>C</u>H imidazole), 21.31 (s, <u>C</u>H₃), 18.00 (s, <u>C</u>H₃).

11: 1,3-dimethylimidazolium chloride (0.0397 g, 0.3 mmol) and $[Au(C_6F_5)(tht)]$ (0.1357 g, 0.3 mmol) were mixed in CH₂Cl₂ (10 ml) until a colourless solution formed (5 min). The solution was concentrated to dryness under reduced pressure to give a white solid which was washed several times with hexane. The solid was dissolved in CH₂Cl₂ (10 ml), NBu₄(acac) (0.1025 g, 0.3 mmol) was added and the mixture stirred for 1 h. The solution was filtered through a plug of silica and the colourless filtrate evaporated to minimum volume. Pentane was added to precipitate a white solid which was collected and vacuum dried to give the product (0.1184 g, 86%). ¹H NMR (300 MHz, CDCl₃) δ 6.92 (s, 2H, C<u>H</u> imidazole), 3.90 (s, 6H, Me). ¹⁹F NMR (282 MHz, CDCl₃) δ -115.96 – -117.07 (m, *o*-C₆F₅), -159.98 (t, *J* = 20.0 Hz, *p*-C₆F₅), -162.13 – -164.49 (m, *m*-C₆F₅). ¹³C NMR (75 MHz, CDCl₃) δ 188.59 (s, N-<u>C</u>-N, (observed by HMBC)), 121.86 (s, <u>C</u>H imidazole), 37.91 (s, Me).

12: 1-ethyl-3-methylimidazolium chloride (0.0440 g, 0.3 mmol) and $[Au(C_6F_5)(tht)]$ (0.1357 g, 0.3 mmol) were mixed in CH₂Cl₂ (10 ml) until a colourless solution formed (5 min). The solution was concentrated to dryness under reduced pressure to give a white solid which was washed several times with hexane. The solid was dissolved in CH₂Cl₂ (10 ml), NBu₄(acac) (0.1025 g, 0.3 mmol) was added and the mixture stirred for 1 h. The solution was filtered through a plug of silica and the colourless filtrate evaporated to minimum volume. Pentane was added to precipitate a white solid which was collected and vacuum dried to give the product (0.0797 g, 56%). ¹H NMR (300 MHz, CDCl₃) δ 6.96 (d, *J* = 1.9 Hz, 1H, C<u>H</u> imidazole), 6.92 (d, *J* = 1.9 Hz, 1H, <u>CH</u> imidazole), 4.28 (q, *J* = 7.3 Hz, 2H, CH₂), 3.91 (s, 3H, Me), 1.53 (t, *J* = 7.3 Hz, 3H, CH₂CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ -115.07 - 117.62 (m, *o*-C₆F₅), -159.97 (t, *J* = 19.9 Hz, *p*-C₆F₅), -161.74 - -165.12 (m, *m*-C₆F₅). ¹³C NMR (75 MHz, CDCl₃) δ 187.85 (s, N-<u>C</u>-N, (observed by HMBC)), 121.77 (s, <u>C</u>H imidazole), 120.09 (s, <u>C</u>H imidazole), 46.24 (s, <u>C</u>H₂), 38.05 (s, Me), 16.83 (s, <u>C</u>H₃).

13: 1,3-diisopropyl imidazolium chloride (0.0566 g, 0.3 mmol) and $[Au(C_6F_5)(tht)]$ (0.1357 g, 0.3 mmol) were mixed in CH₂Cl₂ (10 ml) until a colourless solution formed (5 min). The solution was concentrated to dryness under reduced pressure to give a white solid which was washed several times with hexane. The solid was dissolved in CH₂Cl₂ (10 ml), NBu₄(acac) (0.1025 g, 0.3 mmol) was added and the mixture stirred for 1 h. The solution was filtered through a plug of silica and the colourless filtrate evaporated to minimum volume. Pentane was added to precipitate a white solid which was collected and vacuum dried to give the product (0.0940 g, 61%). ¹H NMR (300 MHz, CDCl₃) δ 6.99 (s, 2H, C<u>H</u> imidazole), 5.06 (hept, J = 6.8 Hz, 2H, C<u>H</u>Me₂), 1.54 (d, J = 6.8 Hz, 12H, CH<u>Me₂</u>). ¹⁹F NMR (282 MHz, CDCl₃) δ -115.88 – -116.74 (m, *o*-C₆F₅), -160.10 (t, J = 19.9 Hz, *p*-C₆F₅), -162.78 – -163.64 (m, *m*-C₆F₅). ¹³C NMR (75 MHz, CDCl₃) δ 185.72(s, n N-<u>C</u>-N, (observed by HMBC)) 116.88 (s, <u>C</u>H imidazole), 53.47 (s, <u>C</u>HMe₂), 23.72 (s, Me).

14: 1,3-dicyclohexyl imidazolium chloride (0.0537 g, 0.2 mmol) and $[Au(C_6F_5)(tht)]$ (0.0904 g, 0.2 mmol) were mixed in CH₂Cl₂ (10 ml) until a colourless solution formed (5 min). The solution was concentrated to dryness under reduced pressure to give a white solid which was washed several times with hexane. The solid was dissolved in CH₂Cl₂ (10 ml), NBu₄(acac) (0.0683 g, 0.2 mmol) was added and the mixture stirred for 1 h. The solution was filtered through a plug of silica and the colourless filtrate evaporated to minimum volume. Pentane was added to precipitate a white solid which was collected and vacuum dried to give the product (0.1083 g, 91%). ¹H NMR (300 MHz, CDCl₃) δ 6.95 (s, 2H, C<u>H</u> imidazole), 4.58 (tt, *J* = 12.2, 3.6 Hz, 2H, C<u>H</u> (Cy)), 2.27 – 2.11 (m, 4H, Cy), 1.98 – 1.85 (m, 4H, Cy), 1.74 (ddd, *J* = 24.4, 12.2, 3.6 Hz, 6H, Cy), 1.60 – 1.39 (m, 4H, Cy), 1.24 (qt, *J* = 12.2, 3.6 Hz, 2H, Cy). ¹⁹F NMR (282 MHz, CDCl₃) δ -115.08 – -117.34 (m, *o*-C₆F₅), -160.20 (t, *J* = 20.0 Hz, *p*-C₆F₅), -162.06 – -166.57 (m, *m*-C₆F₅). ¹³C NMR (75 MHz, CDCl₃) δ 185.99 (s, N-<u>C</u>-N, (observed by HMBC)), 117.26 (s, <u>C</u>H imidazole), 61.21 (s, <u>C</u>H (Cy)), 34.54 (s, Cy), 25.69 (s, Cy), 25.32 (s, Cy).

15: 1-octyl-3-methylimidazolium chloride (0.0462 g, 0.2 mmol) and [Au(C₆F₅)(tht)] (0.0904 g, 0.2 mmol) were mixed in CH₂Cl₂ (10 ml) until a colourless solution formed (5 min). The solution was concentrated to dryness under reduced pressure to give a white solid which was washed several times with hexane. The solid was dissolved in CH₂Cl₂ (10 ml), NBu₄(acac) (0.0683 g, 0.2 mmol) was added and the mixture stirred for 1 h. The solution was filtered through a plug of silica and the colourless filtrate evaporated to minimum volume. Pentane was added to precipitate a white solid which was collected and vacuum dried to give the product (0.0854 g, 76%). ¹H NMR (300 MHz, CDCl₃) δ 6.94 (d, *J* = 1.9 Hz, 1H, C<u>H</u> imidazole), 6.91 (d, *J* = 1.8 Hz, 1H, C<u>H</u> imidazole), 4.21 (t, *J* = 7.2 Hz, 2H, C<u>H₂</u>CH₂(CH₂)₅CH₃), 3.91 (s, 3H, Me), 1.98 – 1.79 (m, 2H, CH₂C<u>H₂(CH₂)₅CH₃), 1.38 – 1.21 (m, 10H, CH₂CH₂(CH₂)₅CH₃), 0.86 (t, *J* = 6.8 Hz, 3H, CH₂CH₂(CH₂)₅C<u>H₃), 1.38 – 1.21 (m, 10H, CH₂CH₂(C<u>H₂)₅CH₃), 0.86 (t, *J* = 6.8 Hz, 3H, CH₂CH₂(CH₂)₅C<u>H₃), 1.21.63 (s, CH imidazole), 120.63 (s, <u>C</u>H imidazole), 51.26 (s, <u>C</u>H₂CH₂(CH₂)₅CH₃), 38.04 (s, Me), 31.86 (s, CH₂CH₂(<u>C</u>H₂)₅CH₃), 29.22 (s, CH₂CH₂(<u>C</u>H₂)₅CH₃), 29.14 (s, CH₂CH₂(<u>C</u>H₂)₅CH₃), 26.52 (s, CH₂CH₂(<u>C</u>H₂)₅CH₃), 22.74 (s, CH₂CH₂(<u>C</u>H₂)₅CH₃), 14.19 (s, CH₂CH₂(CH₂)₅<u>C</u>H₃).</u></u></u></u>

16: 1,3-bis(1-adamantyl)imidazolium chloride (0.0746 g, 0.2 mmol) and [Au(C₆F₅)(tht)] (0.0904 g, 0.2 mmol) were mixed in CH₂Cl₂ (10 ml) until a colourless solution formed (5 min). The solution was concentrated to dryness under reduced pressure to give a white solid which was washed several times with hexane. The solid was dissolved in CH₂Cl₂ (10 ml), NBu₄(acac) (0.0683 g, 0.2 mmol) was added and the mixture stirred for 1 h. The solution was filtered through a plug of silica and the colourless filtrate evaporated to minimum volume. Pentane was added to precipitate a white solid which was collected and vacuum dried to give the product (0.0728 g, 52%). ¹H NMR (300 MHz, CDCl₃) δ 7.11 (s, 2H, C<u>H</u> imidazole), 2.61 (m, 12H, C<u>H₂</u> adamantyl), 2.29 (s, 6H, C<u>H</u> adamantyl), 1.80 (m, 12H, C<u>H₂</u> adamantyl). ¹⁹F NMR (282 MHz, CDCl₃) δ -114.12 – -115.46 (m, *o*-C₆F₅), -160.46 (t, *J* = 20.0 Hz, *p*-C₆F₅), -162.64 – -164.07 (m, *m*-C₆F₅). ¹³C NMR (75 MHz, CDCl₃) δ 185.48 (s, N-<u>C</u>-N, (observed by HMBC)), 115.52 (s, <u>C</u>H imidazole), 59.37 (s, N-<u>C</u> adamantyl), 44.58 (s, <u>C</u>H₂ adamantyl), 35.94 (s, <u>C</u>H₂ adamantyl), 30.20 (s, <u>C</u>H adamantyl).

1.3. Crystallography

Crystals were mounted in inert oil on glass fibers and transferred to the cold gas stream of a Xcalibur Oxford Diffraction diffractometer equipped with a low-temperature attachment. Data were collected using monochromated Mo K α radiation (λ = 0.71073 Å). Scan type ω . Absorption correction based on

multiple scans were applied using spherical harmonics implemented in SCALE3 ABSPACK³ scaling algorithm (15). The structures were solved by direct methods and refined on F^2 using the program SHELXL-97.⁴ All non-hydrogen atoms were refined anisotropically. In all cases, hydrogen atoms were included in calculated positions and refined using a riding model. Refinements were carried out by full-matrix least-squares on F^2 for all data.

1.4. References

- 1. R. Usón and Laguna, Inorg. Synth., 1982, 21, 71.
- 2. R. Usón, A. Laguna, M. Laguna, Inorg. Synth., 1989, 26, 85.

3. CrysAlisPro, Version 1.171.35.11; Agilent Technologies. *Multiscan absorption correction with SCALE3 ABSPACK scaling algorithm*.

4. G. M. Sheldrick, SHELXL-97, *Program for Crystal Structure Refinement; University of Göttingen:* Göttingen, Germany, 1997.

1.5. NMR spectra for complex 7.

1.6. NMR spectra for complex 9.

1.7. NMR spectra for complex 10.

HMBC (CDCl₃):

HMBC (CDCl₃):

17

HMBC (CDCl₃):

1.10. NMR spectra for complex 13.

HMBC (CDCl₃):

1.11. NMR spectra for complex 14.

HMBC (CDCl₃):

1.12. NMR spectra for complex 15.

HMBC (CDCl₃):

1.13. NMR spectra for complex 16.

HMBC (CDCl₃):

