Electric supplementary information for

Hexanuclear tin(II) and mixed valence tin(II,IV) oxide clusters within polyoxometalates

Kosuke Suzuki, Takumi Hanaya, Rinta Sato, Takuo Minato, Kazuya Yamaguchi and Noritaka Mizuno*

Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

General: Cold-spray ionization mass spectra were recorded on JEOL JMS-T100CS. UV-Vis absorption spectra were measured on Jasco V-570 with a quartz cell of 1 cm path length. UV-Vis diffuse reflectance spectra were measured on Jasco V-570DS. Thermogravimetric and differential thermal analyses (TG-DTA) were performed on Rigaku Thermo plus TG 8120. IR spectra were measured on Jasco FT/IR-4100 spectrometer using KBr disks. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses were performed on Shimadzu ICPS-8100. Elemental analyses for C, H, and N were performed on Yanaco MT-6 and Elementar vario MICRO cube at the Elemental Analysis Center of School of Science, the University of Tokyo. GC mass spectra were recorded on Shimadzu GCMS-QP2010 at an ionization voltage of 70 eV .

Reagents: $\mathrm{Sn}(\mathrm{OAc})_{2}$ and $\mathrm{Sn}(\mathrm{OAc})_{4}(\mathrm{OAc}=$ acetate $)$ were obtained from Wako and used as received. TBAOH ($37 \mathrm{wt} \%$ methanol solution) and nitromethane were obtained from TCI and used as received. Acetonitrile, acetonitrile- $d_{3}\left(\mathrm{CD}_{3} \mathrm{CN}\right), 1,2$-dichloroethane, and diethyl ether were obtained from Kanto. $\mathrm{TBA}_{4} \mathrm{H}_{6}\left[\mathrm{~A}-\alpha-\mathrm{SiW}_{9} \mathrm{O}_{34}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathbf{S i W 9}$, TBA $=$ tetra- n-butylammonium $)$ was synthesized according to the reported procedure. ${ }^{\text {S1 }}$

Synthesis of $\mathbf{T B A}_{7} \mathbf{H}\left[\mathbf{S n}^{\mathbf{2 +}}{ }_{6}\left(\mathbf{A}-\mathbf{\alpha}-\mathbf{S i W}_{\mathbf{9}} \mathbf{O}_{\mathbf{3 4}}\right)_{2}\right] \cdot \mathbf{2 H}_{\mathbf{2}} \mathbf{O}(\mathbf{I}): \operatorname{Sn}(\mathrm{OAc})_{2}(0.22 \mathrm{~g}, 0.93 \mathrm{mmol})$ was immersed in 1,2-dichloroethane (20 mL), followed by addition of $\mathbf{S i W 9}(1.0 \mathrm{~g}, 0.31 \mathrm{mmol})$. After
the solution was stirred for 1 day, the solution was poured into diethyl ether (200 mL). The dark orange precipitate formed was filtered off, and dried to afford crude sample of \mathbf{I}. The crude sample of I was recrystallized from a mixed solvent of 1,2-dichloroethane/diethyl ether to afford dark orange crystals of I ($0.16 \mathrm{~g}, 15 \%$ yield based on SiW9). FT-IR (KBr pellet): 2961, 2928, 2874, $2838,1635,1483,1463,1378,996,952,899,793,737,546,458,378,360,302,287,281,273,256$, $251 \mathrm{~cm}^{-1}$; UV-Vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda(\varepsilon) 251 \mathrm{~nm}\left(7.90 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 418 \mathrm{~nm}\left(1.65 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; ${ }^{29} \mathrm{Si}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, \mathrm{TMS}\right): \delta=-85.5 \mathrm{ppm} ;{ }^{29} \mathrm{Si}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, with 1 eq. of TBAOH $37 \mathrm{wt} \%$ in methanol, TMS $): \delta=-86.3 \mathrm{ppm} ;{ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, \mathrm{SnCl}_{4}\right): \delta=-335.8,-348.5,-350.9,-536.7$, $-543.3,-548.7 \mathrm{ppm} ;{ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, with 1 eq. of TBAOH $37 \mathrm{wt} \%$ in methanol, $\left.\mathrm{SnCl}_{4}\right): \delta=-$ 318.4, -528.6 ppm with respective integrated intensity ratio of $1: 1 ;{ }^{183} \mathrm{~W}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, with 1 eq. of TBAOH $37 \mathrm{wt} \%$ in methanol, $\mathrm{Na}_{2} \mathrm{WO}_{4}$): $\delta=-49.1,-78.8,-83.3,-118.2,-120.7,-134.7 \mathrm{ppm}$ with respective integrated intensity ratio of 1:1:1:1:1:1; positive ion MS (CSI, acetonitrile): m / z 7106 (calcd. 7106) $\left[\mathrm{TBA}_{8} \mathrm{HSn}_{6}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{+}, 3674$ (calcd. 3674) $\left[\mathrm{TBA}_{9} \mathrm{HSn}_{6}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{2+}$; elemental analysis calcd. (\%) for $\mathrm{TBA}_{7} \mathrm{H}\left[\mathrm{Sn}_{6}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{112} \mathrm{H}_{257} \mathrm{~N}_{7} \mathrm{O}_{70} \mathrm{Si}_{2} \mathrm{Sn}_{6} \mathrm{~W}_{18}\right)$: C 19.50, H 3.75, N 1.42, Si 0.81 , Sn 10.32, W 47.96; found, C 19.49, H 3.70, N 1.45, Si 0.82, Sn 10.42, W 49.25.

Synthesis of $\mathbf{T B A}_{7} \mathbf{H}\left[\mathrm{Sn}^{2+}{ }_{3} \mathrm{Sn}^{4+}{ }_{3}\left(\mu_{3}-\mathbf{O}\right)_{3}\left(\mathrm{~A}-\alpha-\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot \mathbf{3 H}_{2} \mathrm{O}$ (II): Compound I was dissolved in nitromethane $/ 1,2$-dichloroethane $(12 \mathrm{~mL} / 3 \mathrm{~mL})$. Then, diethyl ether was added to the solution, followed by filtration with PTFE filter. After the solution was kept at 303 K for 2 days, the yellow crystals formed were filtered off to afford $\mathbf{I I}(0.69 \mathrm{~g}, 65 \%$ yield based on I). Single crystals suitable for X-ray analysis were obtained by recrystallization from nitromethane/toluene. FT-IR (KBr pellet): 2961, 2925, 2875, 2838, 1635, 1484, 1461, 1402, 1377, 1165, 1109, 1059, 1016, 998, 954, $902,822,771,734,687,533,378,360,343,328,320,303,290,282,272,256 \mathrm{~cm}^{-1}$; UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda(\varepsilon) 246 \mathrm{~nm}\left(6.39 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 317 \mathrm{~nm}\left(1.77 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) ;{ }^{29} \operatorname{Si}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, with 1 eq. of TBAOH $37 \mathrm{wt} \%$ in methanol, TMS $): \delta=-83.3 \mathrm{ppm}\left(\Delta_{1 / 2}=17.5 \mathrm{~Hz}\right) ;{ }^{119} \mathrm{Sn}$ NMR
$\left(\mathrm{CD}_{3} \mathrm{CN}, \mathrm{SnCl}_{4}\right): \delta=-498.7,-544.4,-605.2,-631.6 \mathrm{ppm}$ with respective integrated intensity ratio of 1:2:1:2; ${ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, with 1 eq. of $\mathrm{TBAOH} 37 \mathrm{wt} \%$ in methanol, $\left.\mathrm{SnCl}_{4}\right): \delta=-500.0$, 633.8 ppm with respective integrated intensity ratio of $1: 1 ;{ }^{183} \mathrm{~W}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, with 1 eq. of TBAOH $37 \mathrm{wt} \%$ in methanol, $\mathrm{Na}_{2} \mathrm{WO}_{4}$): $\delta=-119.6,-145.0 \mathrm{ppm}$ with respective integrated intensity ratio of $2: 1$; positive ion MS (CSI, acetonitrile): m/z 7154 (calcd. 7154) $\left[\mathrm{TBA}_{8} \mathrm{HSn}_{6} \mathrm{O}_{3}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{+}, 3698$ (calcd. 3698) $\left[\mathrm{TBA}_{9} \mathrm{HSn}_{6} \mathrm{O}_{3}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{2+}$; elemental analysis calcd. (\%) for $\mathrm{TBA}_{7} \mathrm{H}\left[\mathrm{Sn}_{6} \mathrm{O}_{3}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{112} \mathrm{H}_{259} \mathrm{~N}_{7} \mathrm{O}_{74} \mathrm{Si}_{2} \mathrm{Sn}_{6} \mathrm{~W}_{18}\right)$: C 19.31, H 3.75, N 1.41, Si 0.81, Sn 10.23, W 47.50; found, C 19.45, H 3.70, N 1.51, Si 0.81, Sn 10.33, W 48.13.

X-ray crystallography: Diffraction measurements were made on a Rigaku MicroMax-007 Saturn 724 CCD detector with graphite monochromated Mo K α radiation $(\lambda=0.71069 \AA$) at -153 K. Data were collected and processed using CrystalClear ${ }^{\mathrm{S} 2}$ and HKL2000. ${ }^{\text {S3 }}$ Neutral scattering factors were obtained from the standard source. In the reduction of data, Lorentz and polarization corrections were made. The structural analysis was performed using CrystalStructure ${ }^{\text {S4 }}$ and Win-GX. ${ }^{\text {S5 }}$ All structures were solved by SHELXS and refined by full-matrix least-squares methods using SHELXL. ${ }^{\text {S6 }}$ The highly disordered solvent molecules of crystallization were omitted by use of SQUEEZE program. ${ }^{\text {S7 }}$ CCDC-1486719 (I) and CCDC-1486720 (II) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; Fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Bond valence sum (BVS) calculations: The BVS values were calculated by the expression for the variation of the length $r_{i j}$ of a bond between two atoms i and j in observed crystal with valence V_{i} :

$$
V_{i}=\sum_{J} \exp \left(\frac{r_{0}^{\prime}-r_{i j}}{B}\right)
$$

where B is constant equal to $0.37 \AA, r^{\prime}{ }_{0}$ is bond valence parameter for a given atom pair. ${ }^{\text {S8 }}$

DFT calculations: The calculations were performed with Gaussian 09 software. ${ }^{\text {S9 }}$ The anionic parts of I, II, and SiW9 were optimized at the B3LYP level theory ${ }^{\text {S10 }}$ with $6-31++\mathrm{G}^{*}$ (for O, H) and 6-31G* (for Si), and LanL2DZ (for $\mathrm{Sn}, \mathrm{W})^{\text {S11 }}$ by using the polarizable continuum model (PCM) using the integral equation formalism variant (IEFPCM) ${ }^{\text {S12 }}$ with the parameters of the United Atom Topological Model (UAHF) for acetonitrile.

Electrochemistry: Cyclic voltammetric measurements were carried out with a Solartron SI 1287 ElectrochemicalInterface. A standard three-electrode arrangement was employed with a BAS glassy carbon disk electrode as the working electrode, a platinum wire as the counter electrode, and a silver wire electrode as the pseudoreference electrode. The voltage scan rate was set at 200 mV s^{-1}, and TBAClO_{4} was used as an electrolyte. The potentials were measured using $\mathrm{Ag} / \mathrm{AgNO}_{3}$ reference electrode ($10 \mathrm{mM} \mathrm{AgNO} 3,100 \mathrm{mM} \mathrm{TBAClO}_{4}$ in acetonitrile, 0.55 V vs NHE)

Additional references

S1 T. Minato, K. Suzuki, K. Kamata and N. Mizuno, Chem. -Eur. J., 2014, 20, 5946.
(a) CrystalClear 1.3.6, Rigaku and Rigaku/MSC, The Woodlands, TX; (b) J. W. Pflugrath, Acta Crystallogr., 1999, D55, 1718.
Z. Otwinowski and W. Minor, Processing of X-ray Diffraction Data Collected in Oscillation Mode. in Methods in Enzymology, C. W. Carter, Jr. and R. M. Sweet, Eds., Macromolecular Crystallography, Part A, Academic press, New York, 1997, vol. 276, pp. 307-326.

CrystalStructure 3.8, Rigaku and Rigaku/MSC, The Woodlands, TX.
L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
(a) G. M. Sheldrick, SHELX97, Programs for Crystal Structure Analysis, Release 97-2, University of Göttingen, Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELX-2014,

Programs for Crystal Structure Analysis, University of Göttingen, Göttingen, Germany, 2014.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2009.
A. D. Becke, J. Chem. Phys., 1993, 98, 1372.
P. van der Sluis and A. L. Spek, Acta Crystallogr., 1990, A46, 194.
(a) I. D. Brown and D. Altermatt, Acta Crystallogr., 1985, B41, 244; (b) A. Trzesowska, R. Kruszynski and T. J. Bartczak, Acta Crystallogr., 2004, B60, 174; (c) A. Trzesowska, R. Kruszynski and T. J. Bartczak, Acta Crystallogr. 2005, B61, 429.
P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270.
J. Tomasi, M. Mennucci and E. J. Cances, Mol. Struct., 1994, 464, 211.

Table S1. Crystallographic data for I and II

	I	II
formula	$\mathrm{C}_{124} \mathrm{Cl}_{12} \mathrm{~N}_{7} \mathrm{O}_{73} \mathrm{Si}_{2} \mathrm{Sn}_{6} \mathrm{~W}_{18}$	$\mathrm{C}_{115} \mathrm{~N}_{10} \mathrm{O}_{77} \mathrm{Si}_{2} \mathrm{Sn}_{6} \mathrm{~W}_{18}$
$\mathrm{Fw}(\mathrm{g} \mathrm{mol}$		
-1 $)$	7258.33	6830.87
crystal system	monoclinic	triclinic
space group	$P 2_{1}(\mathrm{No}. \mathrm{4)}$	$P-1(\mathrm{No.2)}$
$a(\AA)$	$18.75170(10)$	$17.6999(2)$
$b(\AA)$	$28.4384(3)$	$18.7362(2)$
$c(\AA)$	$21.5390(2)$	$29.8744(4)$
$\alpha(\operatorname{deg})$	90	$82.6590(10)$
$\beta(\operatorname{deg})$	$115.1216(3)$	$88.2780(10)$
$\gamma(\operatorname{deg})$	90	$74.2910(10)$
$V\left(\AA^{3}\right)$	$10399.58(16)$	$9458.9(2)$
Z	2	2
temp (K)	$113(2)$	$113(2)$
$\rho_{\text {calcd }}(\mathrm{g} \mathrm{cm}$		
$\mathrm{GOF})$	2.318	2.398
$R_{1}[I>2 \sigma(I)]$	1.038	1.048
	0.0724	0.0767
$w R_{2}$	(for 24462 data)	(for 35730 data)
	0.2046	0.2039

Table S2. Selected BVS values for I and II

I		II	
Sn1	2.26	Sn1	1.93
Sn2	1.87	Sn 2	1.84
Sn3	2.31	Sn3	2.02
Sn4A	1.86	Sn4	3.91
Sn5A	1.85	Sn5	3.91
Sn6A	1.86	Sn6	3.94
Sn4B	2.01		
Sn5B	2.01		
Sn6B	2.01		

Fig. S1 CSI-mass spectra of a) I and b) I + TBAOH (1 equiv) in acetonitrile. Insets: a) spectra in the range of $m / z \quad 3650-3700$ and $7060-7160$, and the calculated patterns for $\left[\mathrm{TBA}_{9} \mathrm{HSn}_{6}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{2+}(\mathrm{m} / \mathrm{z} 3674)$ and $\left[\mathrm{TBA}_{8} \mathrm{HSn}_{6}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{+}(\mathrm{m} / \mathrm{z} 7106)$, b) spectra in the range of $m / z 3675-2725$ and 7110-7210, and the calculated patterns for $\left[\mathrm{TBA}_{10} \mathrm{Sn}_{6}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{2+}$ $(m / z ~ 3795)$ and $\left[\mathrm{TBA}_{9} \mathrm{Sn}_{6}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{+}(m / z 7348)$.

Fig. S2. ${ }^{183} \mathrm{~W}$ NMR spectra of a) \mathbf{I} and b) $\mathbf{I}+\mathrm{TBAOH}\left(1\right.$ equiv with respect to \mathbf{I}) in acetonitrile- d_{3}.
a)

b)

Fig. S3 ${ }^{29}$ Si NMR spectra of a) \mathbf{I} and b) $\mathbf{I}+\mathrm{TBAOH}$ (1 equiv with respect to \mathbf{I}) in acetonitrile- d_{3}.

Fig. $\mathbf{S} 4{ }^{119} \mathrm{Sn}$ NMR spectra of a) \mathbf{I} and b) $\mathbf{I}+\mathrm{TBAOH}\left(1\right.$ equiv with respect to \mathbf{I}) in acetonitrile- d_{3}.

Fig. S5 CSI-mass spectra of \mathbf{I} after addition of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{a}, 5 \mathrm{~min} ; \mathrm{b}, 8 \mathrm{~h})$ and tert-butyl hydroperoxide (c, $5 \mathrm{~min} ; \mathrm{d}, 8 \mathrm{~h}$) (3 equivalents with respect to \mathbf{I}) in acetonitrile. Signal sets centered at $\mathrm{m} / \mathrm{z} 3698$ and 3819 are assignable to $\left[\mathrm{TBA}_{9} \mathrm{HSn}_{6} \mathrm{O}_{3}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{2+}$ and $\left[\mathrm{TBA}_{10} \mathrm{Sn}_{6} \mathrm{O}_{3}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{2+}$, respectively. Signals indicated by asterisks could not be assigned.

Fig. S6 CSI-mass spectra of I treated in the mixed solvent of nitromethane/1,2-dichloroethane (4:1 v / v) for a) $0 \mathrm{~h}, \mathrm{~b}) 2 \mathrm{~h}, \mathrm{c}$) 4 h, d) 6 h , and e) 8 h . Insets: spectra in the range of $\mathrm{m} / \mathrm{z} 3650-3730$ and the calculated patterns for $\left[\mathrm{TBA}_{9} \mathrm{HSn}_{6}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{2+}(\mathrm{m} / \mathrm{z} 3674)$ and $\left[\mathrm{TBA}_{9} \mathrm{HSn}_{6} \mathrm{O}_{3}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{2+}$ ($\mathrm{m} / \mathrm{z} 3698$).

Fig. S7 CSI-mass spectrum of the product by the reaction of $\mathbf{S i W 9}, \mathrm{Sn}(\mathrm{OAc})_{2}$, and $\mathrm{Sn}(\mathrm{OAc})_{4}(2: 3: 3$ molar ratio) in acetonitrile. Insets: spectra in the range of $m / z 3470-3520$ and 3650-3700, and the calculated patterns for $\left[\mathrm{TBA}_{5} \mathrm{SiW}_{9} \mathrm{O}_{30}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right]^{+}(\mathrm{m} / \mathrm{z} 3693)$ and $\left[\mathrm{TBA}_{9} \mathrm{HSn}_{6}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{2+}(\mathrm{m} / \mathrm{z}$ 3674).

Fig. S8 CSI-mass spectra of a) II and b) II + TBAOH (1 equiv) in acetonitrile. Insets: a) spectra in the range of $m / z \quad 3675-3725$ and $7110-7210$, and the calculated patterns for $\left[\mathrm{TBA}_{9} \mathrm{HSn}_{6} \mathrm{O}_{3}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{2+}(\mathrm{m} / \mathrm{z} 3698)$ and $\left[\mathrm{TBA}_{8} \mathrm{HSn}_{6} \mathrm{O}_{3}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{+}(\mathrm{m} / \mathrm{z} 7154)$, b) spectra in the range of m / z 3795-3845 and 7350-7450, and the calculated patterns for $\left[\mathrm{TBA}_{10} \mathrm{Sn}_{6} \mathrm{O}_{3}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{2+}(\mathrm{m} / \mathrm{z} 3819)$ and $\left[\mathrm{TBA}_{9} \mathrm{Sn}_{6} \mathrm{O}_{3}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{+}(\mathrm{m} / \mathrm{z} 7396)$.
a)

b)

Fig. S9 ${ }^{183} \mathrm{~W}$ NMR spectra of a) $\mathbf{I I}$ and b) $\mathbf{I I}+\mathrm{TBAOH}$ (1 equiv with respect to $\mathbf{I I}$) in acetonitrile- d_{3}.
a)

b)

Fig. S10 ${ }^{29}$ Si NMR spectra of a) II and b) II +TBAOH (1 equiv with respect to II) in acetonitrile- d_{3}.
a)

b)

Fig. S11 ${ }^{119} \mathrm{Sn}$ NMR spectra of a) II and b) $\mathbf{I I}+\mathrm{TBAOH}$ (1 equiv with respect to II) in acetonitrile- d_{3}.

Fig. S12 Energy diagram and molecular orbitals of SiW9. Gray, light green, and red spheres represent Si, W, and O atoms, respectively,
a)

Fig. S13 IR spectra of a) I and b) II.

Fig. S14 UV/Vis diffuse reflectance spectra of a) I and b) II.
a)

b)

Fig. S15 Cyclic voltammogram of a) I and b) II (0.5 mM) in acetonitrile.

