Supporting Information

Metal Free Direct Hydroboration of Alkynes with Pinacol Borane via Lewis Acid Catalysis

Mirco Fleige[•], Juri Möbus[•], Thorsten vom Stein, Frank Glorius, Douglas W. Stephan* • *These authors contributed equally to this work*

Table of Content

1	Materials and Methods				
2	Syı	Synthesis and Spectroscopic Data			
	2.1	Preparation of compound 24	4		
	2.2	Preparation of compound 27	5		
	2.3	Preparation of compound 25	7		
	2.4	Preparation of compound 28	8		
3 Stoichiometric studies					
	3.1	Control reactions	11		
	For	rmation of compound 25 from compound 2	11		
	For	rmation of compound 25 from compound 2	12		
	Rea	action between $B(C_6F_5)_3$ and pinacol borane	13		
	Rea	15			
	Rea	16			
	Rea	17			
	No	n-equilibrium nature between compounds 2 and 24	19		
	No	n-equilibrium nature between compounds 6 and 27	20		
	3.2	Cross-over experiments	20		
	Rea	action between compound 25 and p -CF ₃ -C ₆ H ₄ -C=C-H			
	Rea	action between compound 25 and Ph-C≡C-H	21		
	Rea	action between compound 28 and Ph-C≡C-H	22		
	3.3	Reaction of compound 25 with <i>t</i> -butylisocyanide	23		
4	Va	riable temperature NMR studies	25		
	4.1	VT NMR study of compound 25			

	4.2	VT NMR study of the reaction of compound 25 and HBPin	26
	4.3	VT NMR study of the reaction of $B(C_6F_5)_3$ and HBPin	27
	4.4	VT NMR study of the reaction of $HB(C_6F_5)_2$ and $HBPin$	28
5	Ca	talytic Reactions	30
	5.1	Optimization of the reaction conditions and catalyst screening	30
5.2		General procedure	33
	5.3	Product data	33
	(1)	(E)-4,4,5,5-tetramethyl-2-(4-methylstyryl)-1,3,2-dioxaborolane	33
	(2)	(E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane	34
	(3)	(E)-2-(2-([1,1'-biphenyl]-4-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane	35
	(4)	(E)-2-(4-(tert-butyl)styryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane	36
	(5)	(E)-2-(4-methoxystyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane	38
	(6)	(E)-4,4,5,5-tetramethyl-2-(4-(trifluoromethyl)styryl)-1,3,2-dioxaborolane	39
	(7)	Methyl (E)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzoate	40
	(8)	(E)-2-(3,5-difluorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane	41
	(9)	(E)-4,4,5,5-tetramethyl-2-(2,4,6-trimethylstyryl)-1,3,2-dioxaborolane	42
	(10	0) (E)-4,4,5,5-tetramethyl-2-(2-(thiophen-3-yl)vinyl)-1,3,2-dioxaborolane	43
	(11	I) (E)-2-(2-(cyclohex-1-en-1-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane	44
	(12	2) (E)-2-(6-chlorohex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane	45
	(13	3) (1E,7E)-1,8-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,7-diene	46
	(14	(<i>E</i>)-2-(6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-yl)isoindoline-1,3-c	lione
			47
	(15	5) (<i>E</i>)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-ene-nitrile	48
	(16	δ) (<i>E</i>)-trimethyl(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane	49
	(17	7) (Z)-4,4,5,5-tetramethyl-2-(1-phenylhex-1-en-2-yl)-1,3,2-dioxaborolane	50
	(18	3) (Z)-trimethyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(thiophen-2-yl)vinyl) s	ilane 51
	(19	9) (Z)-2-(1,2-diphenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane	52
	(20)) (Z)-2-(1,2-bis(4-bromophenyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane	53
	(21	I) (Z)-4,4,5,5-tetramethyl-2-(1-phenylprop-1-en-2-yl)-1,3,2-dioxaborolane	55
	(22	2) (Z)-4,4,5,5-tetramethyl-2-(oct-4-en-4-yl)-1,3,2-dioxaborolane	56
	(23	B) (Z)-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethene-1,2-diyl)bis(trimethylsilane)	57

1 Materials and Methods

All manipulations were performed in a Glove box MB Unilab produced by MBraun or using standard Schlenk techniques^[S1] under an inert atmosphere of anhydrous N₂. Dry, oxygen-free solvents (CH₂Cl₂, *n*-pentane) were prepared using an Innovative Technologies solvent purification system. Deuterated solvents chloroform (CDCl₃), dichloromethane (CD₂Cl₂), benzene (C₆D₆), toluene (C₇D₈) and bromobenzene (C₆D₅Br) were purchased from Cambridge Isotope Laboratories Inc. and stored over activated molecular sieves (3 Å) for at least two days and filtered over dried, activated Al₂O₃ and/or silica gel (SiO₂) prior to use. If not stated otherwise commercial reagents were used as received without further purification. Liquid alkyne starting materials were dried over molecular sieves (3 Å) and routinely filtered over dried silica gel. Pinacol borane was purchased from Alfa Chemicals and used without additional purification. $[CPh_3][B(C_6F_5)]_4$ was purchased from Boulder Scientific and used without further purification. $B(C_6F_5)_3$ was purchased from Boulder Scientific and purified by sublimation prior to use.

All glassware was oven-dried at temperatures above 180°C prior to use. NMR spectra were measured on a Bruker AVANCE 400 ¹H (400.03 MHz), ¹³C (100.59 MHz), ¹⁹F (376.49 MHz), ³¹P (161.94 MHz), ²⁹Si (79.49 MHz), ¹¹B (128.37 MHz) or on a Agilent DD2 600 ¹H (600.03 MHz), ¹³C (150.90 MHz), ¹⁹F (564.69 MHz), ³¹P (242.94 MHz), ²⁹Si (119.23 MHz), ¹¹B (192.46 MHz) at 26 °C. All ¹³C NMR spectra were exclusively recorded with composite pile decoupling. Assignments of the carbon atoms in the ¹³C spectra were performed via indirect deduction from the cross-peaks in 2D correlation experiments (HMBC; HSQC). Chemical shifts were referenced to δ (TMS) = 0.00 ppm (¹H, ¹³C) and δ H₃PO₄(85%) = 0.00 ppm (³¹P, externally). Chemical shifts (δ) are reported in ppm, multiplicity is reported as follows (s = singlet, d = doublet, t = triplet, quart. = quartet, m = multiplet) and coupling constants (J) are reported in Hz. Assignments of individual resonances were done using 2D techniques (HMBC, HSQC, HH-COSY) when necessary. Yields of products in solution were determined by integration of all resonances observed in the respective NMR spectra if not stated otherwise. High-resolution mass spectra (HRMS) were obtained on a micro mass 70S-250 spectrometer (EI), an ABI/Sciex QStar Mass Spectrometer (DART), or on a JOEL AccuTOF-DART (DART).

 $[FPPh_3][B(C_6F_5)]_4 [S1]_{S2}, [Ph_2PF(C_6H_4BCy_2)][B(C_6F_5)_4], [S1] [MeOC_6H_4CPh_2][B(C_6F_5)_4]^{S3}, MeB(C_6F_5)_2 [S4], CIB(C_6F_5)_2 [S5] and HB(C_6F_5)_2 [S6]_{S7} were prepared according to literature procedures.$

^{S1} J. Möbus, T. vom Stein, D. W. Stephan, *Chem. Commun.* **2016**, *52*, 6387-6390.

^{S2} C. B. Caputo, D. Winkelhaus, R. Dobrovetsky, L. J. Hounjet and D. W. Stephan, *Dalton Trans.* 2015, 44, 12256-12264.

^{S3} M. Horn, H. Mayr, *Chem. Eur. J.* **2010**, *16*, 7469-7477.

 ^{S4} C. Chen, G. Kehr, R. Fröhlich, G. Erker, *J. Am. Chem. Soc.* 2010, *132*, 13594-13595; R. E. v. Spence, W. E. Piers, Y. Sun, M. Parvez, L. R. MacGillivray, M. J. Zaworotko, *Organometallics* 1998, *17*, 2459-2469.

^{S5} I. Peuser, R. C. Neu, X. X. Zhao, M. Ulrich, B. Schirmer, J. A. Tannert, G. Kehr, R. Fröhlich, S. Grimme, G. Erker, D. W. Stephan, *Chem. Eur. J.* **2011**, *17*, 9640-9650; R. D. Chambers, T. Chivers, *J. Chem. Soc.*

2 Synthesis and Spectroscopic Data

2.1 Preparation of compound 24

Compound **24** was prepared according to modified literature procedures.^{[S7],[S8]}

Phenylacetylene (30 mg, 0.29 mmol) was dissolved in CH_2Cl_2 (3 ml), cooled to -35 °C and $HB(C_6F_5)_2$ (91.5 mg, 0.26 mmol) was added in portions. The resulting suspension was stirred for 30 min at -35 °C, then allowed to warm to room temperature and stirred another 2 h at r.t. Trace insolubles were filtered off over Celite and washed with CH_2Cl_2 (1 ml) twice. The combined liquors were evaporated to dryness and the orange residue taken up in pentane (1 ml) and cooled to -35 °C. The supernatant was removed by decantation and the residue washed with pentane (0.5 ml) at -35 °C twice. Compound **24** was obtained as pale yellow solid (105 mg, 0.23 mmol, 89%).

¹**H NMR** (400 MHz, 298 K, CD₂Cl₂): δ¹H: 7.70 (m, 2H, *o*-Ph), 7.62 (m, 2H, =CH-Ph and =CH-B), 7.49 (m, 1H, *p*-Ph)^a, 7.48 (m, 2H, *m*-Ph)^a. ^a from ghsqc

¹³C{¹H} NMR (126 MHz, 298 K, CD₂Cl₂): δ¹³C: 163.7 (=CH-Ph), 136.3 (*i*-Ph)^t, 132.6 (*p*-Ph), 129.8 (*o*-Ph), 129.5 (*m*-Ph). N.o. =CH-B, C₆F₅.

¹H,¹³C GHSQC (500 MHz / 126 MHz, 298 K, CD₂Cl₂): δ¹H / δ¹³C: 7.70 / 129.8 (*o*-Ph), 7.62 / 163.7 (=CH-Ph), 7.49 / 132.6 (*p*-Ph), 7.48 / 129.5 (*m*-Ph). N.o. =CH-B

¹¹**B NMR** (128 MHz, 298 K, CD₂Cl₂): δ¹¹B: 58.5 (ν_{1/2} ≈ 700 Hz).

¹⁹**F NMR** (376 MHz, 298 K, CD₂Cl₂): δ^{19} F: -129.7 (m, 2F, *o*-C₆F₅), -149.8 (t, ³J_{FF} = 19.5 Hz, 1F, *p*-C₆F₅), -162.2 (m, 2F, *m*-C₆F₅).

1965, 3933-3939.

^{S6} D. J. Parks, W. E. Piers, G. P. A. Yap, *Organometallics* **1998**, *17*, 5492-5503.

^{S7} D. J. Parks, R. E. v. Spence, W. E. Piers, *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 809-811.

^{S8} O. Ekkert, O. Tuschewitzki, C. G. Daniliuc, G. Kehr, G. Erker, *Chem. Commun.* **2013**, *49*, 6992-6994.

2.2 Preparation of compound 27

4-Ethynyl- α , α -trifluorotoluene (40 mg, 0.23 mmol) was dissolved in CH₂Cl₂ (2 ml), at r.t and HB(C₆F₅)₂ (73.2 mg, 0.21 mmol, 0.9 eq.) was added in portions. The resulting suspension was stirred for 4 h at r.t. Trace insolubles were filtered off over Celite and washed with CH₂Cl₂ (0.5 ml) twice. The combined liquors were evaporated to dryness and the light yellow residue was taken up

in pentane (2 ml) at r.t. The supernatant was removed by decantation at r.t. and the residue was washed with pentane (1 ml) twice. Compound **27** was obtained as pale yellow solid (70 mg, 0.16 mmol, 74%). A second precipitation at -35 °C yielded another 19 mg (0.04 mmol, 20%) of product of equal purity.

Elemental analysis: Calcd.: C: 48.88, H: 1.17; Found: C: 48.88, H: 0.93.

¹**H NMR** (700 MHz, 300 K, CD₂Cl₂): δ¹H: 7.81 (d, ${}^{3}J_{HH}$ = 8.5 Hz, 2H, *o*-Ar), 7.72 (d, ${}^{3}J_{HH}$ = 8.5 Hz, 2H, *m*-Ar), 7.71 (d, ${}^{3}J_{HH}$ = 17.8 Hz, 1H, =CH(1)), 7.58 (d, ${}^{3}J_{HH}$ = 17.8 Hz, 1H, =CH(2)).

¹³C{¹H} NMR (176 MHz, 300 K, CD₂Cl₂): δ^{13} C: 160.6 (=CH(2)), 148.1 (dm, ¹J_{FC} ≈ 248 Hz, *o*-C₆F₅)^t, 143.8 (dm, ¹J_{FC} ≈ 257 Hz, *p*-C₆F₅)^t, 139.7 (*i*-Ar), 138.0 (dm, ¹J_{FC} ≈ 252 Hz, *m*-C₆F₅)^t, 134.2 (br, =CH(1)), 133.1 (q, ²J_{FC} = 32.4 Hz, *p*-Ar), 129.8 (*o*-Ar), 126.3 (q, ³J_{FC} ≈ 3.8 Hz, *m*-Ar), 124.3 (q, ¹J_{FC} ≈ 272.1 Hz, CF₃), 114.1 (br, *i*-C₆F₅).

¹**H**,¹³**C GHSQC** (700 MHz / 176 MHz, 300 K, CD₂Cl₂): δ¹H / δ¹³C: 7.72 / 129.8 (o-Ar), 7.72 / 126.3 (*m*-Ar), 7.71 / 134.2 (=CH(1)), 7.58 / 160.6 (=CH(2)).

¹¹**B NMR** (128 MHz, 298 K, CD₂Cl₂): δ¹¹B: 59.4 (ν_{1/2} ≈ 800 Hz).

¹⁹**F NMR** (376 MHz, 298 K, CD₂Cl₂): δ¹⁹F: -63.3 (s, 3F, CF₃), -129.2 (m, 4F, *o*-C₆F₅), -148.7 (t, ³*J*_{FF} = 20.4 Hz, 2F, *p*-C₆F₅), -161.8 (m, 4F, *m*-C₆F₅).

¹³C{¹H} NMR (176 MHz, 300 K, CD₂Cl₂) spectrum of compound **27**.

¹¹B{¹H} NMR (128 MHz, 298 K, CD₂Cl₂) and ¹⁹F NMR (470 MHz, 298 K, CD₂Cl₂) NMR spectra of compound **27**.

2.3 Preparation of compound 25

Compound **24** (40 mg, 0.058 mmol, 1 eq.) was suspended in pentane (2 ml) at r.t and pinacol borane (8.2 mg, 0.064 mmol, 1.1 eq.) was added to the stirred suspension. The resulting suspension was stirred for 2 h at r.t., the suspension turned clear after ca. 30 min. Trace insolubles were filtered off over Celite and washed with pentane (0.5 ml) twice. The combined pentane solutions were concentrated to ca. 0.5 ml and cooled to -35 °C for precipitation. The supernatant was removed by decantation at -35 °C and the residue dried in vacuum. Compound **25** was obtained as colorless, crystalline solid (40 mg, 0.048 mmol, 86%).

Elemental analysis: Calcd.: C: 54.21, H: 3.50; Found: C: 54.62, H: 3.58.

¹**H NMR** (700 MHz, 300 K, CD₂Cl₂): δ¹H: 7.17 (m, 2H, *m*-Ph), 7.10 (m, 1H, *p*-Ph), 6.99 (m, 2H, *o*-Ph), 3.26 (dd, ${}^{2}J_{HH} = 15.0$ Hz, ${}^{3}J_{HH} = 5.7$ Hz, 1H, CH_{2,a}), 3.17 (dd, ${}^{3}J_{HH} = 9.2$ Hz, ${}^{3}J_{HH} = 5.7$ Hz, 1H, CH), 3.00 (dd, ${}^{2}J_{HH} = 15.0$ Hz, ${}^{3}J_{HH} = 9.2$ Hz, 1H, CH_{2,b}), 1.20 (s, 6H, CMe_{2,a}), 1.16 (s, 6H, CMe_{2,b}).

¹³C{¹H} NMR (176 MHz, 300 K, CD₂Cl₂): δ¹³C: 146.2 (dm, ${}^{1}J_{FC} \approx 245$ Hz, *o*-C₆F₅)^t, 143.9 (*i*-Ph), 143.1 (dm, ${}^{1}J_{FC} \approx 255$ Hz, *p*-C₆F₅)^t, 137.7 (dm, ${}^{1}J_{FC} \approx 251$ Hz, *m*-C₆F₅)^t, 128.6 (*m*-Ph), 128.2 (*o*-Ph), 126.1 (*p*-Ph), 115.3 (br, *i*-C₆F₅), 84.6 (OCMe₂), 38.3 (br, CH), 33.3 (CH₂), 25.1 (CH_{3,b}), 24.7 (CH_{3,a}).

¹H,¹³C GHSQC (500 MHz / 126 MHz, 298 K, CD₂Cl₂): δ¹H / δ¹³C: 7.17 / 128.6 (*m*-Ph), 7.10 / 126.1 (*p*-Ph), 6.99 / 128.2 (*o*-Ph), 3.26, 3.00 / 33.3 (CH₂), 3.17 / 38.3 (br, CH), 1.20 / 24.7 (CH_{3,a}), 1.16 / 25.1 (CH_{3,b}).

¹¹**B NMR** (128 MHz, 298 K, CD₂Cl₂): δ¹¹B: 75.2 ($v_{1/2} \approx 1000$ Hz), 31.8 ($v_{1/2} \approx 400$ Hz).

¹⁹**F NMR** (376 MHz, 298 K, CD₂Cl₂): δ¹⁹F: -131.2 (m, 2F, *o*-C₆F₅), -150.6 (tt, ${}^{3}J_{FF}$ = 20.3 Hz, ${}^{4}J_{FF}$ = 3.5 Hz, 1F, *p*-C₆F₅), -162.5 (m, 4F, *m*-C₆F₅).

¹H NMR (700 MHz, 300 K, CD_2Cl_2) spectrum of compound **25**.

¹¹B NMR (128 MHz, 298 K, CD₂Cl₂) and ¹⁹F NMR (376 MHz, 298 K, CD₂Cl₂) NMR spectra of compound **25**.

2.4 Preparation of compound 28

Compound **27** (30 mg, 0.058 mmol, 1 eq.) was suspended in pentane (2 ml) at r.t and pinacol borane (8.2 mg, 0.064 mmol, 1.1 eq.) was added to the stirred suspension. The resulting suspension was stirred for 2 h at r.t., the suspension turned clear after ca. 30 min. Trace insolubles were filtered off over Celite and washed with pentane (0.5 ml) twice. The combined pentane solutions were concentrated to ca. 0.5 ml and cooled to -35 °C for precipitation. The supernatant was removed by decantation at r.t. and the residue was washed with pentane (0.5 ml) at -35 °C and dried in vacuum. Compound **28** was obtained as colorless, crystalline solid (31 mg, 0.048 mmol, 92%).

Elemental analysis: Calcd.: C: 50.35, H: 2.97; Found: C: 49.67, H: 2.80.

¹**H NMR** (700 MHz, 300 K, CD_2Cl_2): δ^1 H: 7.46 (d, ${}^3J_{HH}$ = 8.1 Hz, 2H, *m*-Ar), 7.17 (d, ${}^3J_{HH}$ = 8.1 Hz, 2H, *o*-Ar), 3.32 (dd, ${}^2J_{HH}$ = 15.1 Hz, ${}^3J_{HH}$ = 6.1 Hz, 1H, CH_{2,a}), 3.15 (dd, ${}^3J_{HH}$ = 8.6 Hz, ${}^3J_{HH}$ = 6.1 Hz, 1H, CH), 3.07 (dd, ${}^2J_{HH}$ = 15.1 Hz, ${}^3J_{HH}$ = 8.6 Hz, 1H, CH_{2,b}), 1.19 (s, 6H, CMe_{2,a}), 1.15 (s, 6H, CMe_{2,b}).

¹³C{¹H} NMR (176 MHz, 300 K, CD₂Cl₂): δ^{13} C: 148.2 (*i*-Ar), 146.3 (dm, ¹*J*_{FC} ≈ 244 Hz, *o*-C₆F₅)^t, 143.3 (dm, ¹*J*_{FC} ≈ 258 Hz, *p*-C₆F₅)^t, 137.8 (dm, ¹*J*_{FC} ≈ 247 Hz, *m*-C₆F₅)^t, 128.7 (*o*-Ar), 128.4 (q, ²*J*_{FC} = 31.8 Hz, *p*-Ar), 125.5 (q, ³*J*_{FC} = 3.6 Hz, *m*-Ar), 124.8 (q, ¹*J*_{FC} = 272.6 Hz, CF₃), 115.1 (br, *i*-C₆F₅), 84.8 (OCMe₂), 37.8 (br, CH), 33.1 (CH₂), 25.1 (CH_{3,b}), 24.7 (CH_{3,a}).

¹H,¹³C GHSQC (700 MHz / 176 MHz, 300 K, CD₂Cl₂): δ¹H / δ¹³C: 7.46 / 125.5 (*m*-Ar), 7.17 / 128.7 (*o*-Ar),
3.32, 3.07 / 33.1 (CH₂), 3.15 / 37.8 (CH), 1.19 / 24.7 (CH_{3,a}), 1.15 / 25.1 (CH_{3,b}).

¹H,¹³C GHMBC (700 MHz / 176 MHz, 300 K, CD_2CI_2) [selected traces]: $\delta^1H / \delta^{13}C$: 7.46 / 148.2, 125.5 (*m*-Ar / *i*-Ar, *m*-Ar), 7.17 / 128.7, 33.1 (*o*-Ar / *o*-Ar, CH₂), 3.32 / 148.1, 128.7, 37.8 (CH₂ / *i*-Ar, *o*-Ar, CH), 3.15 / 148.1, 115.1, (CH / *i*-Ar, *i*-C₆F₅, CH), 1.19 / 84.8, 25.1 (CH_{3,a} / OCMe₂, CH_{3,b}), 1.15 / 84.8, 24.7 (CH_{3,b} / OCMe₂, CH_{3,a}).

¹¹**B NMR** (128 MHz, 298 K, CD₂Cl₂): δ¹¹B: 74.7 ($v_{1/2} \approx$ 1300 Hz), 31.7 ($v_{1/2} \approx$ 400 Hz).

¹⁹**F NMR** (376 MHz, 298 K, CD₂Cl₂): δ^{19} F: -62.8 (s, 3F, CF₃), -131.2 (m, 4F, *o*-C₆F₅), -150.0 (tt, ³J_{FF} = 20.5 Hz, ⁴J_{FF} = 4.0 Hz, 2F, *p*-C₆F₅), -162.2 (m, 4F, *m*-C₆F₅).

¹H NMR (700 MHz, 300 K, CD₂Cl₂) spectrum of compound **28**.

¹¹B{¹H} NMR (128 MHz, 298 K, CD₂Cl₂) and ¹⁹F NMR (470 MHz, 298 K, CD₂Cl₂) NMR spectra of compound **28**.

¹H,¹³C GHSQC (700 MHz / 176 MHz, 300 K, CD₂Cl₂) spectra of compound **28**.

Excerpt from the ¹H,¹³C GHMBC (700 MHz / 176 MHz, 300 K, CD₂Cl₂) of compound 28.

3 Stoichiometric studies

3.1 Control reactions

Formation of compound 25 from compound 2

Compound **2** (8.0 mg, 0.035 mmol, 1 eq) was taken up in CD_2Cl_2 (0.25 ml) at r.t. in a glovebox and $HB(C_6F_5)_2$ (12.0 mg, 0.035 mmol, 1 eq) added. The resulting solution was transferred to a 3 mm NMR tube and left to stand for 15 min at r.t. before acquisition of the NMR spectra.

¹H NMR (500 MHz, 298 K, CD_2Cl_2) spectra of the isolated compound **25** (top) and the reaction mixture between compound **2** and $HB(C_6F_5)_2$ after 15 min at r.t. (bottom).

¹⁹F (470 MHz, 298 K, CD₂Cl₂) spectra of the isolated compound **25** (top) and the reaction mixture between compound **2** and HB(C₆F₅)₂ after 15 min at r.t. (bottom, ca. 15% residual HB(C₆F₅)₂ as impurity).

Formation of compound 25 from compound 2

Compound **9** (8.0 mg, 0.035 mmol, 1 eq) was taken up in CD_2Cl_2 (0.25 ml) at r.t. in a glovebox and $HB(C_6F_5)_2$ (12.0 mg, 0.035 mmol, 1 eq) added. The resulting solution was transferred to a 3 mm NMR tube and left to stand for 30 min at r.t. before acquisition of the NMR spectra.

¹H NMR (500 MHz, 298 K, CD₂Cl₂) spectrum of reaction between compound **9** and HB(C₆F₅)₂ after 30 min at r.t.

In a glovebox, $B(C_6F_5)_3$ (12.6 mg, 0.025 mmol, 1 eq) and pinacol borane (3.2 mg, 0.025 mmol, 1 eq) were mixed in CD_2Cl_2 (0.25 ml) at r.t. and the resulting solution transferred to a 3 mm NMR tube. The reaction was monitored by ¹H, ¹⁹F and ¹¹B NMR spectroscopy.

¹⁹F NMR (564 MHz, 298 K, CD₂Cl₂) after 18 h at r.t. (bottom).

Reaction between $HB(C_6F_5)_2$ and pinacol borane

$$HB(C_6F_5)_2 + HB_0 - CD_2CI_2$$

In a glovebox, $HB(C_6F_5)_2$ (13.5 mg, 0.039 mmol, 1 eq) and pinacol borane (5.0 mg, 0.039 mmol, 1 eq) were mixed in CD_2Cl_2 (0.25 ml) at r.t. and the resulting solution transferred to a 3 mm NMR tube. The reaction was monitored by ¹H, ¹⁹F and ¹¹B NMR spectroscopy.

¹H NMR (400 MHz, 298 K, CD_2CI_2) spectrum of the reaction of $HB(C_6F_5)_2$ with HBPin after 1 h at r.t. (top) and after 18 h at r.t. (bottom).

Reaction between MeB(C₆F₅)₂ and pinacol borane

In a glovebox, $MeB(C_6F_5)_2$ (7.0 mg, 0.020 mmol, 1 eq) and pinacol borane (2.5 mg, 0.020 mmol, 1 eq) were mixed in CD_2Cl_2 (0.25 ml) at r.t. and the resulting solution transferred to a 3 mm NMR tube. The reaction was monitored by ¹H, ¹⁹F and ¹¹B NMR spectroscopy.

after 18 h at r.t.

Reaction between CIB(C₆F₅)₂ and pinacol borane

In a glovebox, $ClB(C_6F_5)_2$ (7.4 mg, 0.020 mmol, 1 eq) and pinacol borane (2.5 mg, 0.020 mmol, 1 eq) were mixed in CD_2Cl_2 (0.25 ml) at r.t. and the resulting solution transferred to a 3 mm NMR tube. The reaction was monitored by ¹H, ¹⁹F and ¹¹B NMR spectroscopy.

¹H NMR (600 MHz, 298 K, CD_2Cl_2) spectrum of the reaction of $MeB(C_6F_5)_2$ with HBPin after 18 h at r.t.

Non-equilibrium nature between compounds 6 and 27

-50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 ¹H NMR (500 MHz, 298 K, CD₂Cl₂) and ¹⁹F (376 MHz, 298 K, CD₂Cl₂) spectra of the reaction between compounds **6** and **27** after 24 h at r.t.

3.2 Cross-over experiments

Reaction between compound 25 and p-CF₃-C₆H₄-C=C-H

In a glovebox, compound **25** (8.0 mg, 0.014 mmol, 1 eq) and p-CF₃-C₆H₄-C≡C-H (2.4 mg, 0.014 mmol, 1 eq) were mixed in CD₂Cl₂ (0.25 ml) at r.t. and the resulting solution transferred to a 3 mm NMR tube. The reaction was monitored by ¹H, ¹⁹F and ¹¹B NMR spectroscopy.

 CF_3 - C_6H_4 - $C\equiv C$ -H after 10 min at r.t. (middle) and after 18 h at r.t. (bottom).

Reaction between compound 25 and Ph-C≡C-H

In a glovebox, compound **25** (8.0 mg, 0.014 mmol, 1 eq) and Ph-C=C-H (1.4 mg, 0.014 mmol, 1 eq) were mixed in CD_2CI_2 (0.25 ml) at r.t. and the resulting solution transferred to a 3 mm NMR tube. The reaction was monitored by ¹H, ¹⁹F and ¹¹B NMR spectroscopy. After 18 h at r.t. the conversion of **25** was determined to be ca 71% and the product ratio to be 1:1:1.17 (**2/24/SP**) by ¹H NMR integration. The tentative assignment of the side product as the 1,1-carboboration product was based on the broad multiplet resonance at $\delta^{1}H$ 2.55, a set of diastereotopic ¹H NMR resonances of a CH₂ group ($\delta^{1}H$ 3.16) and diastereotopic pinacolate-methyl resonances ($\delta^{1}H$ 1.08).

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

¹H NMR (400 MHz, 298 K, CD_2CI_2) spectra of the reaction between compound **25** and Ph-C=C-H after 1 h at r.t. (top) and after 18 h at r.t. (bottom).

Reaction between compound 28 and Ph-C≡C-H

In a glovebox, compound **28** (5.5 mg, 0.009 mmol, 1 eq) and Ph-C=C-H (1.7 mg, 0.017 mmol, 1 eq) were mixed in CD_2CI_2 (0.25 ml) at r.t. and the resulting solution transferred to a 3 mm NMR tube. The reaction was monitored by ¹H, ¹⁹F and ¹¹B NMR spectroscopy. After 18 h at r.t. the conversion of **28** was determined to be ca. 45% and the product ratio to be 1:1:8.7 (**6**/**24**/**29**) by ¹H NMR integration. With an excess of alkyne (5 eq, 4 h, r.t.) full conversion of **28** was observed. The tentative assignment of **29** was based on the broad multiplet resonance at δ^{1} H 2.59, a multiplet resonances of a CH₂ group (δ^{1} H 3.24) and diastereotopic pinacolate-methyl resonances (δ^{1} H 1.09). The product could not be isolated.

¹H NMR (600 MHz, 298 K, CD₂Cl₂) spectra of the reaction between compound **28** and Ph-C≡C-H after 18 h at r.t. (top) and after addition of 5 eq Ph-C≡C-H after 4 h at r.t. (bottom).

3.3 Reaction of compound 25 with *t*-butylisocyanide

In a glovebox, compound **25** (5.5 mg, 0.010 mmol, 1 eq) and *t*-Bu-NC (1.6 mg, 0.020 mmol, 2 eq) were mixed in CD_2Cl_2 (0.25 ml) at r.t. and the resulting solution transferred to a 3 mm NMR tube. The product was not isolated.

Single crystals of compound **26** were obtained by slow diffusion of a dilute pentane solution of *t*-Bu-NC into a concentrate CD_2Cl_2 solution of compound **25** at -40 °C. See CCDC 1484364.

4 Variable temperature NMR studies

4.1 VT NMR study of compound 25

In a glovebox, compound **25** (11 mg, 0.020 mmol, 1 eq) was dissolved in CD_2Cl_2 (0.25 ml) at r.t. and the resulting solution transferred to a 3 mm NMR tube.

¹H NMR (600 MHz, C₂D₂Cl₄) spectra (top) and ¹H NMR (600 MHz, CD₂Cl₂) spectra (bottom) compound **25** at variable temperatures.

¹⁹F NMR (564 MHz, C₂D₂Cl₄) spectra (top) and ¹⁹F NMR (564 MHz, CD₂Cl₂) spectra (bottom) compound **25** at variable temperatures.

4.2 VT NMR study of the reaction of compound 25 and HBPin

In a glovebox, compound **25** (9.5 mg, 0.016 mmol, 1 eq) and pinacol borane (2.1 mg, 0.016 mmol, 1 eq) were mixed in CD_2Cl_2 (0.25 ml) at r.t. and the resulting solution transferred to a 3 mm NMR tube.

¹H NMR (600 MHz, CD₂Cl₂) spectra of a 1:1 mixture of compound **25** and HBPin at variable temperatures.

4.3 VT NMR study of the reaction of $B(C_6F_5)_3$ and HBPin

In a glovebox, $B(C_6F_5)_3$ (9.5 mg, 0.016 mmol, 1 eq) and pinacol borane (2.1 mg, 0.016 mmol, 1 eq) were mixed in CD_2Cl_2 (0.25 ml) at r.t. and the resulting solution transferred to a 3 mm NMR tube.

¹H NMR (600 MHz, CD_2CI_2) spectra of a 1:1 mixture of $B(C_6F_5)_3$ and HBPin at variable temperatures.

4.4 VT NMR study of the reaction of HB(C₆F₅)₂ and HBPin

In a glovebox, $B(C_6F_5)_3$ (13.5 mg, 0.04 mmol, 1 eq) and pinacol borane (5.0 mg, 0.04 mmol, 1 eq) were dissolved separately in CD_2CI_2 (0.25 ml total) at r.t. and layered in a 3 mm NMR tube. The tube was shaken vigorously just before inserting it into the NMR spectrometer, which was precooled to 0 °C.

¹H NMR (600 MHz, CD_2CI_2) spectra of a 1:1 mixture of $HB(C_6F_5)_2$ and HBPin at variable temperatures.

¹⁹F NMR (564 MHz, CD_2Cl_2) spectra of a 1:1 mixture of $HB(C_6F_5)_2$ and HBPin at variable temperatures.

5 Catalytic Reactions

5.1 Optimization of the reaction conditions and catalyst screening

Reaction were carried out in NMR tubes and the yield was determined by conversion of starting material from the crude spectra. As a model reaction the hydroboration of 4-ethynyltoluene was chosen (Scheme 1). Under the optimized conditions (Entry 21) the scope reactions were performed for 5 h and 1.2 eq. of pinacol borane to ensure full conversion of alkyne.

It is worth noting that the reaction time can be significantly decreased by heating and/or increased catalyst loading (Entry 9). Lowering catalyst to 1 mol% leads to no (Entry 14) or insufficient (Entry 27) conversion, presumably due to trace water content in the reaction mixture.

Representative crude ¹H NMR spectrum of the reaction in CD₂Cl₂ (50% conversion of starting material).

No	Alkyne	HBpin	Catalyst	Solvent	Т	time	Yield
1	0.1 mmol	0.1 mmol	-	CDCl ₃ (0.5 ml)	60°C	15 h	0%
2	0.1 mmol	0.1 mmol	-	CD ₂ Cl ₂ (0.5 ml)	50°C	18 h	0%
3	0.1 mmol	0.1 mmol	-	C ₆ D₅Br (0.5 ml)	60°C	18 h	0%
4	0.1 mmol	0.1 mmol	5 mol% [Ph₃PF]⁺	CD ₂ Cl ₂ (0.5 ml)	50°C	48 h	0%
5	0.1 mmol	0.1 mmol	5 mol% [Ph ₂ PF(C ₆ H ₄ BCy ₂)] ⁺	CDCl₃ (0.5 ml)	60°C	15 h	55%
6	0.1 mmol	0.1 mmol	5 mol% [MeOC ₆ H₄CPh ₂]⁺	CDCl ₃ (0.5 ml)	60°C	15 h	38%
7	0.1 mmol	0.1 mmol	$[Ph_{3}C][B(C_{6}F_{5})_{4}]$	CDCl ₃ (0.5 ml)	60°C	15 h	0%
8	0.1 mmol	0.1 mmol	5 mol% B(C ₆ F ₅) ₃	CDCl ₃ (0.5 ml)	60°C	18 h	86%
9	0.1 mmol	0.1 mmol	10 mol% B(C ₆ F ₅) ₃	CDCl ₃ (0.5 ml)	r.t.	2 h	74%
10	0.1 mmol	0.1 mmol	10 mol% B(C ₆ F ₅) ₃	CD ₂ Cl ₂ (0.5 ml)	r.t.	2 h	98%
11	0.1 mmol	0.1 mmol	10 mol% B(C ₆ F ₅) ₃	C ₆ D₅Br (0.5 ml)	r.t.	2 h	80%
12	0.05 mmol	0.055 mmol	5 mol% B(C ₆ F ₅) ₃	CD ₂ Cl ₂ (0.25 ml)	r.t.	3.5 h	56%
13	0.05 mmol	0.055 mmol	2.5 mol% B(C ₆ F ₅) ₃	CD ₂ Cl ₂ (0.25 ml)	r.t.	3.5 h	35%
14	0.05 mmol	0.055 mmol	1.0 mol% B(C ₆ F ₅) ₃	CD ₂ Cl ₂ (0.25 ml)	r.t.	2 d	1%
15	0.1 mmol	0.11 mmol	5 mol% B(C ₆ F ₅) ₃	CD ₂ Cl ₂ (0.5 ml)	r.t.	3 h	75%
16	0.1 mmol	0.11 mmol	5 mol% B(C ₆ F ₅) ₃	CD ₂ Cl ₂ (0.5 ml)	r.t.	4 h	81%
17	0.1 mmol	0.11 mmol	5 mol% B(C ₆ F ₅) ₃	CD ₂ Cl ₂ (0.5 ml)	r.t.	16 h	99%
18	0.1 mmol	0.1 mmol	5 mol% PhCH=(C ₆ F ₅)(B(C ₆ F ₅) ₂)	CD ₂ Cl ₂ (0.5 ml)	r.t.	2 h	30%
19	0.1 mmol	0.1 mmol	$MeB(C_6F_5)_2$	CD ₂ Cl ₂ (0.5 ml)	r.t.	2 h	57%
20	0.1 mmol	0.1 mmol	$CIB(C_6F_5)_2$	CD ₂ Cl ₂ (0.5 ml)	r.t.	2 h	99%
21	0.05 mmol	0.055 mmol	5 mol% HB(C ₆ F ₅) ₂	CD ₂ Cl ₂ (0.25 ml)	r.t.	30 min	99%
22	0.05 mmol	0.055 mmol	2.5 mol% HB(C ₆ F ₅) ₂	CD ₂ Cl ₂ (0.25 ml)	r.t.	30 min	89%
23	0.05 mmol	0.055 mmol	2.5 mol% HB(C ₆ F ₅) ₂	CD ₂ Cl ₂ (0.25 ml)	r.t.	2 h	96%
24	0.05 mmol	0.055 mmol	1.0 mol% HB(C ₆ F ₅) ₂	CD ₂ Cl ₂ (0.25 ml)	r.t.	30min	34%
25	0.05 mmol	0.055 mmol	1.0 mol% HB(C ₆ F ₅) ₂	CD ₂ Cl ₂ (0.25 ml)	r.t.	2 h	44%
26	0.05 mmol	0.055 mmol	1.0 mol% HB(C ₆ F ₅) ₂	CD ₂ Cl ₂ (0.25 ml)	r.t.	5 h	47%
27	0.05 mmol	0.055 mmol	1.0 mol% HB(C ₆ F ₅) ₂	CD ₂ Cl ₂ (0.25 ml)	r.t.	24 h	51%

Conversion determined by ¹H NMR integration of characteristic resonances.

¹⁹F NMR spectra of selected optimization reactions with different catalysts illustrating the decomposition/transformation of the added catalyst.

Stacked ¹H-NMR (600 MHz, CD_2Cl_2) spectra of the reaction solutions from the catalytic hydroboration of phenylacetylene employing [o-Ph₂PF(Ph)BCy₂][B(C₆F₅)₄] (top) and [Ph₃PF][B(C₆F₅)₄] (bottom).

employing $[(C_6F_5)_3PF][B(C_6F_5)_4].$

5.2 General procedure

General procedure for the synthesis of alkenyl boranes: All work was performed in a glove box with a dry nitrogen atmosphere. CH_2Cl_2 and the respective alkyne were filtered through a short pad of silica before used for catalysis. In a screw cap vial pinacol borane (1.2 eq) and alkyne (1.0 eq.) were dissolved in 2.5 ml of CH_2Cl_2 before addition of a catalytic amount of $HB(C_6F_5)_2$ (5 mol%). After sealing the tube with a screw cap and electrical tape the reaction was standing in the glove box (in case of heating outside of the glove box) without stirring. After the indicated time an aliquot of the reaction was taken by dipping a pipette into the reaction solution. This aliquot was diluted with $CDCl_3$ and subjected to ¹H NMR analysis to determine the ratio of isomers.

The crude reaction mixture was filtered through a short pad of silica and was flushed with CH_2CI_2 and the combined solutions evaporated to dryness. The respective alkenyl boranes were obtained without further purification.

5.3 Product data

(1) (E)-4,4,5,5-tetramethyl-2-(4-methylstyryl)-1,3,2-dioxaborolane

According to the general procedure 4-ethynyltoluene (58 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and HB(C_6F_5)₂ (9 mg, 5 mol%) were dissolved in CH₂Cl₂ (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **1** was isolated in 99% (119 mg, 0.49 mmol) yield as a pale yellow oil. The NMR data was consistent with the literature.^{S9}

 R_f (hexanes/ether; 90/10) = 0.40.

¹**H NMR** (400 MHz, 298 K, CDCl₃): δ¹H: 7.39 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 2H), 7.38 (d, ${}^{3}J_{HH}$ = 18.5 Hz, 1H), 7.14 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 2H), 6.11 (d, ${}^{3}J_{HH}$ = 18.5 Hz, 1H), 2.35 (s, 3H), 1.31 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 149.5, 138.9, 134.8, 129.3, 127.0, 115.1 (br s), 83.3, 24.8, 21.3.

¹¹**B NMR** (128 MHz, CDCl₃): δ¹¹B: 30.1 (v_{1/2} ≈ 380 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₅H₂₂B₁O₂ 245.17128 Da, found: 245.17134 Da.

(2) (E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane

According to the general procedure phenylacetylene (51 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and HBCF (9 mg, 5 mol%) were dissolved in CH_2CI_2 (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **2** was isolated in 90% (104 mg, 0.45 mmol) yield as a pale yellow oil. The ¹H NMR data was consistent with the literature.^[S10]

^{S9} R. Hemelaere, F. Caijo, M. Mauduit, F. Carreaux, B. Carboni, *Eur. J. Org. Chem.* 2014, 2014, 3328-3333.
^{S10} Z. Yang, M. Zhong, X. Ma, K. Nijesh, S. De, P. Parameswaran, H. W. Roesky, *J. Am. Chem. Soc.* 2016, *138*, 2548-

 R_f (hexanes/ether; 90/10) = 0.52.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 7.49 (m, 2H), 7.40 (d, ${}^{3}J_{HH}$ = 18.5 Hz, 1H), 7.33 (m, 2H), 7.31 (m, 1H), 6.17 (d, ${}^{3}J_{HH}$ = 18.4 Hz, 1H), 1.32 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 149.5, 137.4, 128.9, 128.5, 127.0, 116.3, 83.3, 24.8. ¹¹B NMR (128 MHz, CDCl₃): δ¹¹B: 30.2 (ν_{1/2} ≈ 380 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₄H₂₀B₁O₂ 231.15563 *Da*, found: 231.15530 *Da*.

(3) (E)-2-(2-([1,1'-biphenyl]-4-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

According to the general procedure 4-ethynyl-1,1'-biphenyl (89 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2CI_2 (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **3** was isolated in 97% (149 mg, 0.49 mmol) yield as a yellow solid. The NMR data was consistent with the one previously reported.^[1]

 R_f (hexanes/ether; 90/10) = 0.35.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 7.62 – 7.54 (m, 6H), 7.47 – 7.41 (m, 3H), 7.37 – 7.32 (m, 1H), 6.21 (d, ${}^{3}J_{HH}$ = 18.4 Hz, 1H), 1.33 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 149.0, 141.6, 140.6, 136.5, 128.8, 127.5, 127.4, 127.3, 127.0, 116.3 (br, =CH^B), 83.4, 24.8.

¹¹**B NMR** (128 MHz, CDCl₃): δ¹¹B: 30.1 (ν_{1/2} ≈ 400 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₂₀H₂₄B₁O₂ 307.18693 *Da*, found: 307.18622 *Da*.

¹H NMR (500 MHz, 298 K, CDCl₃) and ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectra of compound **3**.

(4) (E)-2-(4-(tert-butyl)styryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

According to the general procedure 1-(*tert*-butyl)-4-ethynylbenzene (79 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2Cl_2 (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **4** was isolated in 87% (129 mg, 0.45 mmol) yield as a yellow solid.

 R_{f} (hexanes/ether; 90/10) = 0.51.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ^{1} H: 7.43 (m, 2H, *o*-Ar), 7.38 (d, ³*J*_{HH} = 18.4 Hz, =CH^{Ar}), 7.36 (m, 2H, *m*-Ar) 6.12 (d, ³*J*_{HH} = 18.4 Hz, 18.4 Hz, 1H, =CH^B), 1.314 (s, 9H, *t*-Bu)^t 1.313 (s, 12H, CH₃)^t. ^t tentatively

assigned.

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 152.1 (*p*-Ar), 149.4 (=CH^{Ar}), 134.8 (*i*-Ar), 126.8 (*o*-Ar), 125.5 (*m*-Ar), 83.3 (OCMe₂), 34.7 (*t*-Bu^C), 31.2 (*t*-Bu^{CH3})^t, 24.8 (CH₃)^t. ^t tentatively assigned. N.o. =CH^B

¹**H**,¹³**C GHSQC** (700 MHz / 176 MHz, 300 K, CDCl₃): δ¹H / δ¹³C: 7.43 / 126.8 (o-Ar), 7.38 / 149.4 (=CH^Ar), 7.36 / 125.5 (*m*-Ar), 1.31 / 31.2, 24.8 (*t*-Bu^{CH3} and CH₃). N. o. =CH^B

¹H,¹³C GHMBC (700 MHz / 176 MHz, 300 K, CDCl₃) [selected traces]: δ¹H / δ¹³C: 7.43 / 152.1, 149.4, 126.8 (o-Ar / *p*-Ar, =CH^{Ar}, *o*-Ar), 7.38 / 126.8 (=CH^{Ar} / *o*-Ar), 7.36 / 134.8, 125.5, 31.2 (*m*-Ar / *i*-Ar, *m*-Ar, *t*-Bu^C).
¹¹B NMR (128 MHz, CDCl₃): δ¹¹B: 29.6 (v_{1/2} ≈ 380 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₈H₂₈B₁O₂ 287.21823 *Da*, found: 287.21879 *Da*.

(5) (E)-2-(4-methoxystyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

According to the general procedure 1-ethynyl-4-methoxybenzene (51 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2Cl_2 (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and

alkenyl borane **5** was isolated in 80% (105 mg, 0.47 mmol) yield as light purple solid. The obtained NMR data is consistent with the values reported in the literature.^[S11]

 R_f (hexanes/ether; 90/10) = 0.27.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ^{1} H: 7.43 (m, 2H), 7.35 (d, ${}^{3}J_{HH}$ = 18.4 Hz, 1H), 6.86 (m, 2H), 6.01 (d, ${}^{3}J_{HH}$ = 18.4 Hz, 1H), 3.81 (s, 3H), 1.31 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ^{13} C: 160.3, 149.0, 130.4, 128.5, 114.0, 113.6 (br, =CH^B), 83.2, 55.3, 24.6.

¹¹**B NMR** (128 MHz, 298 K, CDCl₃): δ¹¹B: 30.1 ($v_{1/2} \approx 380$ Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₅H₂₂B₁O₃ 261.16620 *Da*, found: 261.16643 *Da*.

 1H NMR (500 MHz, 298 K, CDCl_3) and ^{11}B NMR (128 MHz, 298 K, CDCl_3) spectra of compound 5.

(6) (E)-4,4,5,5-tetramethyl-2-(4-(trifluoromethyl)styryl)-1,3,2-dioxaborolane

According to the general procedure 4-ethynyltrifluorotoluene (51 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and HBCF (9 mg, 5 mol%) were dissolved in CH₂Cl₂ (2.5 ml)

^{S11} W. B. Reid, J. J. Spillane, S. B. Krause, D. A. Watson, J. Am. Chem. Soc. **2016**, 138, 5539-5542.

and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **6** was isolated in 94% (139 mg, 0.47 mmol) yield as a yellow solid. The NMR data was consistent with the literature.^[S12]

 R_f (hexanes/ether; 90/10) = 0.36.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ^{1} H: 7.58 (m, 4H), 7.40 (d, ${}^{3}J_{HH}$ = 18.4 Hz, 1H), 6.26 (d, ${}^{3}J_{HH}$ = 18.4 Hz, 1H), 1.32 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ^{13} C: 147.6, 140.8, 130.4 (q, ²J_{FC} = 32.4 Hz), 127.1, 125.5 (q, ³J_{FC} = 3.8 Hz), 124.1 (q, ¹J_{FC} = 272.0 Hz), 119.4 (br), 83.6, 24.8.

¹¹**B NMR** (128 MHz, CDCl₃): δ¹¹B: 30.0 (v_{1/2} ≈ 300 Hz).

¹⁹**F NMR** (377 MHz, CDCl₃): δ¹⁹F: -62.6.

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₅H₁₉B₁F₃O₂ 299.14302 *Da*, found: 299.14273 *Da*.

¹H NMR (500 MHz, 298 K, CDCl₃), ¹¹B (128 MHz, 298 K, CDCl₃) and ¹⁹F (376 MHz, 298 K, CDCl₃) spectra of compound **6**.

^{S12} H. Jang, A. R. Zhugralin, Y. Lee, A. H. Hoveyda, J. Am. Chem. Soc. **2011**, 133, 7859-7871.

According to the general procedure methyl 4-ethynylbenzoate (80 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2CI_2 (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and the alkenyl borane **7** was isolated in 86% (125 mg, 0.43 mmol) yield as a pale yellow solid. The NMR data was consistent with the one previously reported.^[S13]

 R_f (hexanes/ether; 90/10) = 0.15.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 8.00 (m, 2H), 7.53 (m, 2H), 7.41 (d, ${}^{3}J_{HH}$ = 18.4 Hz, 1H), 6.27 (d, ${}^{3}J_{HH}$ = 18.4 Hz, 1H), 3.91 (s, 3H), 1.32 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 166.8, 148.1, 141.7, 130.1, 129.9, 126.9, 83.6, 52.1, 24.8. N.o. =C^B

¹¹**B NMR** (128 MHz, CDCl₃): δ¹¹B: 30.2 (ν_{1/2} ≈ 380 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₆H₂₂B₁O₄ 289.16111 *Da*, found: 289.16079 *Da*.

 1H NMR (500 MHz, 298 K, CDCl_3) and ^{11}B (128 MHz, 298 K, CDCl_3) spectra of compound 7.

^{S13} H. E. Ho, N. Asao, Y. Yamamoto, T. Jin, *Org. Lett.* **2014**, *16*, 4670-4673.

According to the general procedure 1-ethynyl-3,5-difluorobenzene (69 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2Cl_2 (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **8** was isolated in 96% (127 mg, 0.48 mmol) yield as a colorless oil.

 R_f (hexanes/ether; 90/10) = 0.62.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 7.26 (d, ${}^{3}J_{HH}$ = 18.3 Hz, 1H, =CH^{Ar}), 6.97 (m, 2H, *o*-Ar), 6.73 (tt, ${}^{3}J_{FH}$ = 8.8 Hz, ${}^{4}J_{HH}$ = 2.3 Hz, 1H, *p*-Ar), 6.15 (d, ${}^{3}J_{HH}$ = 18.3 Hz, 1H, =CH^B), 1.31 (s, 12H, CH₃).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): $δ^{13}$ C: 163.1 (dd, ¹*J*_{FC} = 248.1 Hz, ³*J*_{FC} = 12.9 Hz, *m*-Ar), 146.8 (t, ⁴*J*_{FC} = 2.7 Hz, =CH^{Ar}), 140.9 (t, ³*J*_{FC} = 9.2 Hz, *i*-Ar), 119.3 (br, =CH^B), 109.6 (dd, ²*J*_{FC} = 19.4 Hz, ⁴*J*_{FC} = 5.8 Hz, *o*-Ar), 103.9 (t, ²*J*_{FC} = 25.7 Hz, *p*-Ar), 83.6 (s, OCMe₂), 24.8 (s, CH₃).

¹**H**,¹³**C GHSQC** (700 MHz / 176 MHz, 300 K, CDCl₃): δ¹H / δ¹³C: 7.26 / 146.8 (=CH^{Ar}), 6.97 / 109.6 (*o*-Ar), 6.73 / 103.9 (*p*-Ar), 1.31 / 24.8 (CH₃). N. o. =CH^B

¹H,¹³C GHMBC (700 MHz / 176 MHz, 300 K, CDCl₃) [selected traces]: δ^{1} H / δ^{13} C: 7.26 / 140.9, 109.6 (=CH^{Ar} / *i*-Ar, *o*-Ar), 6.97 / 163.1, 146.8, 109.6 (*o*-Ar / *m*-Ar, =CH^{Ar}, *o*-Ar), 6.15 / 146.8, 140.9 (=CH^B / =CH^{Ar}, *i*-Ar). ¹⁹F NMR (377 MHz, CDCl₃): δ^{19} F: -110.1 (t, ³J_{FH} = 8.8 Hz).

¹¹**B NMR** (128 MHz, CDCl₃): δ¹¹B: 29.9 (ν_{1/2} ≈ 340 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₄H₁₈B₁F₂O₂ 267.13679 *Da*, found: 267.13714 *Da*.

¹H NMR (500 MHz, 298 K, CDCl₃), ¹¹B (128 MHz, 298 K, CDCl₃) and ¹⁹F (376 MHz, 298 K, CDCl₃) spectra of compound **8**.

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃) spectrum of compound **8**.

(9) (E)-4,4,5,5-tetramethyl-2-(2,4,6-trimethylstyryl)-1,3,2-dioxaborolane

According to the general procedure 2-ethynyl-1,3,5-trimethylbenzene (72 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2Cl_2 (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **9** was isolated in 94% (128 mg, 0.47 mmol) yield as orange solid.

 R_f (hexanes/ether; 90/10) = 0.54.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 7.44 (d, *J* = 18.8 Hz, 1H), 6.86 (s, 2H), 5.68 (d, *J* = 18.8 Hz, 1H), 2.30 (s, 6H), 2.27 (s, 3H), 1.32 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 148.5, 136.7, 135.9, 135.1, 128.7, 83.2, 24.8, 21.0, 20.9. N.o. =CH^B

¹¹**B NMR** (128 MHz, CDCl₃): δ¹¹B: 29.8 (ν_{1/2} ≈ 390 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₇H₂₆B₁O₂ 273.20258 *Da*, found: 273.20334 *Da*.

¹H NMR (500 MHz, 298 K, CDCl₃) and ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectra of compound **9**.

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃) spectrum of compound **9**.

(10) (E)-4,4,5,5-tetramethyl-2-(2-(thiophen-3-yl)vinyl)-1,3,2-dioxaborolane

According to the general procedure 3-ethynylthiophene (54 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2CI_2 (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **10** was isolated in 98% (117 mg, 0.49 mmol) yield as a pale yellow oil. The NMR data was consistent with the values reported in the literature.^[S14]

 R_f (hexanes/ether; 90/10) = 0.43.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ^{1} H: 7.38 (d, ³*J*_{HH} = 18.3 Hz, 1H), 7.31 (m, 1H), 7.29 (m, 1H), 7.26 (m, 1H), 5.94 (d, ³*J*_{HH} = 18.3 Hz, 1H), 1.30 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 143.1, 141.2, 126.1, 125.0, 124.8, 116.1 (br, =CH^B), 83.3, 24.8.

¹¹**B NMR** (128 MHz, 298 K, CDCl₃): δ¹¹B: 30.2 (v_{1/2} ≈ 300 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₂H₁₈B₁O₂S₁ 237.11206 *Da*, found: 237.11190 *Da*.

^{S14} J. Zhao, Z. Niu, H. Fu, Y. Li, *Chem. Commun.* **2014**, *50*, 2058-2060.

¹H NMR (500 MHz, 298 K, CDCl₃) and ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectra of compound **10**.

(11) (E)-2-(2-(cyclohex-1-en-1-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

According to the general procedure 1-ethynylcyclohex-1-ene (53 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2CI_2 (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **11** was isolated in 94% (109 mg, 0.49 mmol) yield as a yellow oil. The NMR data was consistent with the values reported in the literature.^[S12]

 R_f (hexanes/ether; 90/10) = 0.62.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 7.02 (d, ${}^{3}J_{HH}$ = 18.3 Hz, 1H), 5.95 (m, 1H), 5.42 (dd, ${}^{3}J_{HH}$ = 18.3, ${}^{4}J_{HH}$ = 0.6 Hz, 1H), 2.14 (m, 4H), 1.65 (m, 2H), 1.59 (m, 2H), 1.27 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 153.2, 137.1, 134.3, 111.9 (br, =CH^B), 83.0, 26.2, 24.8, 23.7, 22.4, 22.3.

¹¹**B NMR** (128 MHz, 298 K, CDCl₃): δ¹¹B: 30.3 ($v_{1/2}$ ≈ 300 Hz).

HRMS (EI-TOF+): mass [M+H] calcd. for C₁₄H₂₃B₁O₂ 234.1791 Da, found: 234.1797 Da.

¹H NMR (500 MHz, 298 K, CDCl₃) and ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectra of compound **11**.

(12) (E)-2-(6-chlorohex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

According to the general procedure 6-chlorohex-1-yne (58 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2CI_2 (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **12** was isolated in 90% (109 mg, 0.45 mmol) yield as a colorless oil. The NMR data was consistent with literature reported values.^[S15]

 R_f (hexanes/ether; 90/10) = 0.38.

¹H NMR (500 MHz, 298 K, CDCl₃): δ¹H: 6.60 (dt, *J* = 18.0, 6.4 Hz, 1H), 5.44 (dt, *J* = 18.0, 1.6 Hz, 1H), 3.52 (t, *J* = 6.7 Hz, 2H), 2.21 – 2.16 (m, 2H), 1.82 – 1.75 (m, 2H), 1.61 – 1.53 (m, 2H), 1.26 (s, 12H). ¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 153.4, 83.1, 44.8, 34.8, 32.0, 25.4, 24.8. N.o. =CH^B ¹¹B NMR (128 MHz, CDCl₃): δ¹¹B: 29.7 ($v_{1/2} \approx 300$ Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₂H₂₃B₁Cl₁O₂ 245.14796 *Da*, found: 245.114759 *Da*.

^{S15} Z.-J. Yao, S. Hong, W. Zhang, M. Liu, W. Deng, *Tetrahedron Lett.* **2016**, *57*, 910-913.

¹H NMR (500 MHz, 298 K, CDCl₃) and ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectra of compound **12**.

(13) (1E,7E)-1,8-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,7-diene

According to the general procedure octa-1,7-diyne (53 mg, 0.50 mmol, 1.0 eq.), pinacol borane (154 mg, 1.20 mmol, 2.4 eq.) and $HB(C_6F_5)_2$ (17 mg, 10 mol%) were dissolved in CH_2CI_2 (2.5 ml) and reacted for 18 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl boronic ester **13** was isolated in 99% (180 mg, 0.50 mmol) yield as a colorless solid. The NMR data was consistent with the values reported in the literature.^[S15]

 R_f (*n*-pentane/ether; 97/3) = 0.12.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ^{1} H: 6.60 (dt, ³*J*_{HH} = 17.9 Hz, ³*J*_{HH} = 6.5 Hz, 1H), 5.41 (dt, ³*J*_{HH} = 17.9 Hz, ⁴*J*_{HH} = 1.6 Hz, 1H), 2.15 (m, 2H), 1.43 (m, 2H), 1.26 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 154.4, 118.6 (br, =CH^B), 83.0, 35.6, 27.8, 24.8.

¹¹**B NMR** (128 MHz, 298 K, CDCl₃): δ¹¹B: 29.5 (ν_{1/2} ≈ 380 Hz).

HRMS (DART-TOF+): mass [M+NH₄] calcd. for C₂₀H₃₆B₂N₁O₄ 380.31434 *Da*, found: 380.31542 *Da*.

¹H NMR (500 MHz, 298 K, CDCl₃) and ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectra of compound **13**.

(14) (E)-2-(6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-yl)isoindoline-1,3-dione

According to the general procedure 2-(hex-5-yn-1-yl)isoindoline-1,3-dione (114 mg, 0.50 mmol, 1.0 eq.), pinacolborane (77 mg, 0.55 mmol, 1.2 eq.) and HBCF (9 mg, 5 mol%) were dissolved in CH_2Cl_2 (2.5 ml) and reacted for 18h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **14** was isolated in 96% (170 mg, 0.48 mmol) yield as a colorless oil.

 R_f (hexanes/ether; 80/20) = 0.14.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ^{1} H: 7.83 (m, 2H), 7.71 (m, 2H), 6.58 (dt, ${}^{3}J_{HH} = 17.9$ Hz, ${}^{3}J_{HH} = 6.5$ Hz, 1H), 5.42 (dt, ${}^{3}J_{HH} = 17.9$ Hz, ${}^{4}J_{HH} = 1.6$ Hz, 1H), 3.68 (t, ${}^{3}J_{HH} = 7.2$ Hz, 2H), 2.19 (m, 2H), 1.69 (m, 2H), 1.47 (m, 2H), 1.25 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 168.4, 153.6, 133.8, 132.1, 123.2, 119.0 (br, =CH^B), 83.0, 37.8, 35.3, 28.2, 25.5, 24.8.

¹¹**B NMR** (128 MHz, 298 K, CDCl₃): δ¹¹B: 29.5 (v_{1/2} ≈ 400 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₂₀H₂₇B₁N₁O₄ 356.20331 *Da*, found: 356.20346 *Da*.

¹H NMR (500 MHz, 298 K, CDCl₃) and ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectra of compound 14.

(15) (E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-ene-nitrile

According to the general procedure hex-5-ynenitrile (47 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and HB(C_6F_5)₂ (17 mg, 10 mol%) were dissolved in CH₂Cl₂ (2.5 ml) and reacted for 18 h at 50 °C. Crude NMR studies showed greater 99% conversion and alkenyl boronic ester **15** was isolated in 99% (110 mg, 0.50 mmol) yield as a yellow oil. The NMR data was consistent with the values reported in the literature.^[S16]

 R_f (*n*-pentane/ether; 85/15) = 0.19.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 6.53 (dt, ${}^{3}J_{HH}$ = 18.0 Hz, ${}^{3}J_{HH}$ = 6.5 Hz, 1H), 5.49 (dt, ${}^{3}J_{HH}$ = 18.0 Hz, ${}^{4}J_{HH}$ = 1.6 Hz, 1H), 2.34 (t, ${}^{3}J_{HH}$ = 7.2 Hz, 2H), 2.30 (m, 2H), 1.79 (p, ${}^{3}J_{HH}$ = 7.3 Hz, 2H), 1.26 (s, 12H). ¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 150.8, 120.8 (br, =CH^B), 119.4, 83.2, 34.2, 24.7, 23.9, 16.5. ¹¹B NMR (128 MHz, 298 K, CDCl₃): δ¹¹B: 29.5 (v_{1/2} ≈ 330 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₂H₂₁B₁N₁O₂ 222.16653 *Da*, found: 222.16641 *Da*.

^{S16} C. E. Tucker, J. Davidson, P. Knochel, *J. Org.Chem.* **1992**, *57*, 3482-3485.

¹H NMR (500 MHz, 298 K, CDCl₃) and ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectra of compound **15**.

(16) (E)-trimethyl(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane

According to the general procedure ethynyltrimethylsilane (49 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2CI_2 (2.5 ml) and reacted for 18 h at rt. Crude NMR studies showed greater 79% conversion and alkenyl borane **16** was isolated in 76% (86 mg, 0.38 mmol) yield as a pale yellow oil. The NMR data was consistent values reported in the literature.^[S17]

 R_f (*n*-pentane/ether; 97/3) = 0.67.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ^{1} H: 7.11 (d, ${}^{3}J_{HH}$ = 21.8 Hz, 1H), 6.24 (d, ${}^{3}J_{HH}$ = 21.8 Hz, 1H), 1.27 (s, 12H), 0.07 (s, 9H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 157.9, 136.7 (br, =CH^B), 83.4, 24.8, -1.9.

¹¹**B NMR** (128 MHz, 298 K, CDCl₃): δ¹¹B: 28.9 (ν_{1/2} ≈ 300 Hz).

²⁹Si-dept (80 MHz, 298 K, CDCl₃): δ²⁹Si: -6.7.

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₁H₂₄B₁O₂Si₁ 227.16386 *Da*, found: 227.16352 *Da*.

^{S17} S. Pereira, M. Srebnik, *Organometallics* **1995**, *14*, 3127-3128.

¹H NMR (500 MHz, 298 K, CDCl₃), ¹¹B NMR (128 MHz, 298 K, CDCl₃) and ²⁹Si-dept (80 MHz, 298 K, CDCl₃) spectra of compound **16**.

(17) (Z)-4,4,5,5-tetramethyl-2-(1-phenylhex-1-en-2-yl)-1,3,2-dioxaborolane

According to the general procedure hex-1-yn-1-ylbenzene (79 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2CI_2 (2.5 ml) and reacted for 18 h at 50 °C. Crude NMR studies showed greater 99% conversion and a ratio of 78:12 of isomers. Both isomers were isolated in 93% (133 mg, 0.47 mmol) yield as a pale yellow oil. The NMR data was consistent with the values reported in the literature.^[S18]

```
(Data of the major isomer)
```

 R_f (*n*-pentane/ether; 90/3) = 0.62.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 7.36 – 7.28 (m, 4H), 7.25 – 7.18 (m, 2H), 2.41 – 2.36 (m, 2H), 1.51 – 1.43 (m, 2H), 1.41 – 1.29 (m, 14H), 0.89 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 141.6, 138.0, 129.0, 128.0, 126.9, 83.3, 32.2, 29.2, 24.8, 22.8, 14.0. N.o. =C^B

¹¹B NMR (128 MHz, 298 K, CDCl₃): δ¹¹B: 30.6 ($ν_{1/2} ≈ 430$ Hz). HRMS (DART-TOF+): mass [M+NH₄] calcd. for C₁₈H₃₁B₁N₁O₂ 304.24478 *Da*, found: 304.24401 *Da*.

¹H NMR (500 MHz, 298 K, CDCl₃) and ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectra of compound **17**.

(18) (Z)-trimethyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(thiophen-2-yl)vinyl) silane

According to the general procedure trimethyl(thiophen-2-ylethynyl)-silane (90 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and HBCF (17 mg, 10 mol%) were dissolved in CH_2Cl_2 (2.5 ml) and reacted for 18 h at 50 °C. Crude NMR studies showed greater 60% conversion. The crude product was purified by column chromatography (*n*-pentane/ether 98/2) and alkenyl borane **18** was isolated in 50% (76 mg, 0.25 mmol) yield as colorless oil.

 R_f (*n*-pentane/ether; 97/3) = 0.69.

¹**H NMR** (400 MHz, 298 K, CDCl₃): δ¹H: 7.88 (s, 1H), 7.28 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.02 (dt, *J* = 3.6, 1.1 Hz, 1H), 6.98 – 6.95 (m, 1H), 1.29 (s, 12H), 0.15 (s, 9H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 147.6, 143.7, 127.9, 126.9, 126.4, 83.3, 24.8, 0.7. N.o. =C^B.

¹¹**B NMR** (128 MHz, 298 K, CDCl₃): δ¹¹B: 31.5 ($ν_{1/2}$ ≈ 290 Hz).

²⁹Si NMR (80 MHz, 298 K, CDCl₃): δ²⁹Si: -8.4.

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₅H₂₆B₁O₂S₁Si₁ 309.15158 *Da*, found: 309.15129 *Da*.

(19) (Z)-2-(1,2-diphenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

According to the general procedure 1,2-diphenylethyne (89 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2CI_2 (2.5 ml) and reacted for 18 h at 50 °C. Crude NMR studies showed greater 99% conversion and alkenyl borane **19** was isolated in 98% (150 mg, 0.49 mmol) yield as an off white solid. The NMR data was consistent with the values reported in the literature.^[S12]

 R_f (hexanes/ether; 90/10) = 0.67.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 7.36 (br s, 1H), 7.26 (m, 2H), 7.20 (m, 1H), 7.16 (m, 2H), 7.11 (m, 3H), 7.05 (m, 2H), 1.31 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 143.1, 140.4, 137.0, 129.9, 128.8, 128.2, 127.8, 127.5, 126.2, 83.8, 24.8. N.o. =C^B.

¹¹**B NMR** (128 MHz, 298 K, CDCl₃): δ¹¹B: 30.3 ($v_{1/2} \approx 380$ Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₂₀H₂₄B₁O₂ 307.18693 *Da*, found: 307.18587 *Da*.

(20) (Z)-2-(1,2-bis(4-bromophenyl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

According to the general procedure 1,2-bis(4-bromophenyl)ethyne (168 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2Cl_2 (2.5 mL) and reacted for 18 h at 50 °C. Crude NMR studies showed greater 99% conversion and alkenyl borane **20** was isolated in 98% (228 mg, 0.49 mmol) yield as a white solid. The NMR data was consistent with the values reported in the literature.[S¹⁹]^[1]

 R_f (hexanes/ether; 90/10) = 0.55.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 7.41 – 7.37 (m, 2H), 7.29 (br s, 1H), 7.28 – 7.26 (m, 2H), 7.03 – 7.00 (m, 2H), 6.93 – 6.90 (m, 2H), 1.30 (s, 12H).

¹³**C NMR** (126 MHz, 298 K, CDCl₃): δ¹³C: 142.3, 138.8, 135.5, 131.5, 131.3, 131.2, 130.6, 121.9, 120.5, 84.0, 24.8. N.o. =C^B.

¹¹**B NMR** (128 MHz, 298 K, CDCl₃): δ¹¹B: 30.2 (v_{1/2} ≈ 380 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₂₀H₂₂B₁Br₂O₂ 463.00796 *Da*, measured 463.00663 *Da*.

(21) (Z)-4,4,5,5-tetramethyl-2-(1-phenylprop-1-en-2-yl)-1,3,2-dioxaborolane

According to the general procedure prop-1-yn-1-ylbenzene (58 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2CI_2 (2.5 ml) and reacted for 5 h at rt. Crude NMR studies showed greater 99% conversion and a ratio

¹⁹ C.-C. Tai, M.-S. Yu, Y.-L. Chen, W.-H. Chuang, T.-H. Lin, G. P. A. Yap, T.-G. Ong, *Chem. Commun.* **2014**, *50*, 4344-4346.

of 88:12 of isomers. Both isomers were isolated in 94% (115 mg, 0.47 mmol) yield as a colorless oil. The NMR data was consistent with literature reported values.^[S20]

(Data of the main isomer)

 R_f (hexanes/ether; 90/10) = 0.54.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 7.41 – 7.30 (m, 4H), 7.26 – 7.14 (m, 2H), 2.00 (d, ⁴*J*_{HH} = 1.7 Hz, 3H), 1.32 (s, 12H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 142.3, 137.9, 129.4, 128.0, 127.1, 83.5, 24.8, 15.9. N.o. =C^B. ¹¹B NMR (128 MHz, CDCl₃): δ¹¹B: 30.7 ($ν_{1/2} ≈ 320$ Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for $C_{15}H_{22}B_1O_2$ 245.17128 *Da*, found: 245.17127 *Da*.

¹H NMR (500 MHz, 298 K, CDCl₃) and ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectra of compound **21**.

^{S20} D. Janssen-Müller, M. Schedler, M. Fleige, C. G. Daniliuc, F. Glorius, *Angew. Chem. Int. Ed.* **2015**, *54*, 12492-12496.

According to the general procedure 4-octyne (55 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and HB(C_6F_5)₂ (9 mg, 5 mol%) were dissolved in CH₂Cl₂ (2.5 ml) and reacted for 18 h at rt. Crude NMR studies showed greater 99% conversion and alkenyl borane **22** was isolated in 98% (118 mg, 0.49 mmol) yield as a colorless liquid.

 R_f (hexanes/ether; 99/1) = 0.11.

¹**H NMR** (500 MHz, 298 K, CDCl₃): δ¹H: 6.29 (t, ${}^{3}J_{HH}$ = 7.1 Hz, 1H), 2.10 (m, 4H), 1.41 (m, 2H), 1.35 (m, 2H), 1.25 (s, 12H), 0.91 (t, ${}^{3}J_{HH}$ = 7.4 Hz, 3H), 0.88 (t, ${}^{3}J_{HH}$ = 7.4 Hz, 3H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ^{13} C: 146.0, 82.9, 30.7, 30.6, 24.7, 23.3, 22.4, 14.10, 14.06. N.o. =C^B.

¹¹**B NMR** (128 MHz, CDCl₃): δ¹¹B: 30.5 ($v_{1/2}$ ≈ 290 Hz).

HRMS (DART-TOF+): mass [M+H] calcd. for C₁₄H₂₈B₁O₂ 239.21823 *Da*, found: 239.21842 *Da*.

¹H NMR (500 MHz, 298 K, CDCl₃) and ¹¹B NMR (128 MHz, 298 K, CDCl₃) spectra of compound 22.

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃) spectrum of compound **22**.

According to the general procedure 1,2-bis(trimethylsilyl)ethyne (85 mg, 0.50 mmol, 1.0 eq.), pinacol borane (77 mg, 0.55 mmol, 1.2 eq.) and $HB(C_6F_5)_2$ (9 mg, 5 mol%) were dissolved in CH_2Cl_2 (2.5 ml) and reacted for 18 h at r.t. Crude NMR studies showed greater 99% conversion and alkenyl borane **23** was isolated in 99% (148 mg, 0.50 mmol) yield as colorless oil.

 R_f (hexanes/ether; 99/1) = 0.14.

 1 H NMR (500 MHz, 298 K, CDCl₃): δ^{1} H: 6.95 (s, 1H), 1.29 (s, 12H), 0.18 (s, 9H), 0.10 (s, 9H).

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃): δ¹³C: 172.1, 148.4, 83.5, 25.1, 1.3, -0.2.

¹¹**B NMR** (128 MHz, 298 K, CDCl₃): δ¹¹B: 29.0 ($v_{1/2} \approx 300$ Hz).

²⁹Si-dept (80 MHz, 298 K, CDCl₃): δ²⁹Si: -0.2, -7.2.

HRMS (DART-TOF+): mass [M+NH₄] calcd. for C₁₄H₃₅B₁N₁O₂Si₂ 316.2994 *Da*, found: 316.23037 *Da*.

¹H NMR (500 MHz, 298 K, CDCl₃), ¹¹B NMR (128 MHz, 298 K, CDCl₃) and ²⁹Si-dept (80 MHz, 298 K, CDCl₃) spectra of compound **23**.

¹³C{¹H} NMR (126 MHz, 298 K, CDCl₃) spectrum of compound **23**.