Electronic Supplementary information (EIS) for

Exploration of calcium-organic framework as an anode material for

sodium-ion batteries

Yan Zhang ^{a,b}, Yubin Niu ^{a,b}, Min-Qiang Wang^{a,b}, Jingang Yang^{a,c}, Shiyu Lu ^{a,b}, Jin Han ^{a,b}, Shu-Juan Bao ^{a,b}, Maowen Xu^{a,b*}

- a. Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, P.R. China.
- b. Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, P.R. China.
- c. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.

E-mail: xumaowen@swu.edu.cn

Fig.S1 The PXRD patterns and crystal structure of Ca₂BTEC • 6H₂O

Fig.S2 TGA curves of Ca_2BTEC . **Pristine**: The Ca_2BTEC sample as synthesized; **As prepared**: The Ca_2BTEC sample prepared according to the similar procedure of electrode fabrication (first

dispersed in water and then dried at 120° C in vacuum). The **As prepared** sample shows no obvious mass loss before 200° C and two curves are almost overlapped indicating the hydrated compound can not form during electrode fabrication procedure.

Fig.S4 Structural stability of Ca₂BTEC electrodes upon repeated discharge/charge processes. The XRD patterns of pristine electrodes and in the discharged state after 50 cycles (at a current density of 50mA/g) indicate good structural stability during repeated discharge/charge processes. This means the repeated insertion and exertion of Na⁺ do not significantly affect the structure of Ca₂BTEC.

Fig.S5 The optical photographs of Na₄BTEC and Ca₂BTEC before and after electrolytes injection. After electrolytes injection and shaking, Na₄BTEC was dissolved and formed an almost transparent solution while Ca₂BTEC was not dissolved and form a white turbid liquid. The results can prove the lower solubility of Ca₂BTEC in electrolytes than Na₄BTEC.

Fig.S6 Molecular formula of Na₄BTEC and Ca₂BTEC.Due to the smaller molecular weight than Na₄BTEC, Ca₂BTEC owns a larger theoretical specific capacity.

Fig.S7 The cyclic performance of Ca₂BTEC • 6H₂O

Fig.S8 The cyclic performance of Na₄BTEC

Fig.S9 The cyclic performance of Super P at a current density of 40 mA g⁻¹. The first discharge and charge capacity of super P carbon are 206.5 and 103.1 mA h g⁻¹, resulting in an initial Columbic efficiency of only 49.93%. After 35 cycles, the discharge and charge capacity fade to 84 and 82 mA h g⁻¹. In consideration of that the super P content in Ca₂BTEC electrodes is 30% by weight, so the capacity contribution of super P carbon during initial and 35th cycle is only 61.95 (206.5×30%) and 25.2 (84×30%) mA h g⁻¹.