The Supporting Information for

Synthesis of Figure-of-Eight Helical BisBODIPY Macrocycles and Their Chiroptical Properties

Makoto Saikawa, Takashi Nakamura, Junji Uchida, Masaki Yamamura, and Tatsuya Nabeshima*

Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan

*Corresponding Author. Email: <u>nabesima@chem.tsukuba.ac.jp</u>

3rd September 2018

Note added after first publication: This Supplementary Information file replaces that originally published on 21st July 2016. Schemes S1 and S2, and the synthetic procedures for [H31B] and [1B2], were incorrect in the original file and have been corrected here. For further details, please refer to the correction notice which was published for the original article (see DOI: 10.1039/C8CC90385A).

Table of Contents

Materials and methods	
Synthesis and characterization of the compounds	S4
Optical resolution by chiral HPLC	
UV-vis absorbance/fluorescence and CD measurements	
X-ray crystallographic analysis	
References for the Supporting Information	

Materials and methods

Unless otherwise noted, solvents and reagents were purchased from TCI Co., Ltd., Wako Pure Chemical Industries, Ltd., Kanto Chemical Co., Inc., Nacalai Tesque, Inc. or Sigma-Aldrich Co., and used without further purification. Silica gel for column chromatography was purchased from Kanto Chemical Co. Inc. (Silica Gel 60 N (spherical, neutral, 63–210 μ m). Alumina for column chromatography was purchased from Wako Pure Chemical Industries, Ltd. (alumina, activated (about 75 μ m)). GPC purification was performed on a JAI LC-9210 II NEXT system with JAIGEL-1HH/2HH columns using CHCl₃ as an eluent.

¹H, ¹³C, NMR, and other 2D NMR spectra were recorded on a Bruker AVANCE III-400, 600 spectrometers. Tetramethylsilane was used as an internal standard (δ 0.00 ppm) for ¹H and ¹³C NMR measurements when CDCl₃ was used as a solvent. BF₃·Et₂O in CDCl₃ (1 wt%) was used as an external standard (δ 0.0 ppm) for ¹¹B NMR measurements.

Single-crystal X-ray crystallographic measurements were performed using a Bruker APEX II ULTRA with Mo $K\alpha$ radiation. Obtained data were processed using a Bruker APEX2^[S1] and Yadokari-XG^[S2] crystallographic software package except for refinement, which was performed using SHELXL-2014^[S3]. CCDC 1486268–1486272 contain the data for the structures. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.

MALDI-TOF mass data were recorded on an AB SCIEX TOF/TOF 5800 system. ESI-TOF mass data were recorded on an AB SCIEX TripleTOF 4600 system.

UV-Vis spectra were recorded on a JASCO V-670 spectrophotometer. Emission spectra were recorded on a JASCO FP-8600 fluorescence spectrophotometer. Absolute fluorescence quantum yields were determined with a Hamamatsu Photonics absolute PL quantum yield measurement system C9920-02. CD spectra were recorded on a JASCO J-720W spectrophotometer. CPL spectra were recorded on a JASCO CPL-200S spectrophotometer. Solvents used for measurements were air-saturated.

Elemental analysis was performed on a Yanaco MT-6 analyzer with tin boats purchased from Elementar. We appreciate Mr. Ikuo Iida for the measurements.

Synthesis and characterization of the compounds

Scheme S1. Synthesis of [H₃1B]

Synthesis of [H₃1B] (method A, B(OH)₃)

A 5 mL two-necked round-bottom flask was charged with $H_61^{[S4]}$ (4.97 mg, 5.40 µmol) and boric acid (0.80 mg, 13 µmol). Chloroform (1.8 mL) was added to the flask. The mixture was stirred at 50 °C for 22.5 h. After cooling, the mixture was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent: *n*-hexane/dichloromethane = 1/1) to give [H₃1B] (4.12 mg, 4.44 µmol, 82%).

Synthesis of [H₃1B] (method B, B(OMe)₃)

A 5 mL two-necked round-bottom flask was charged with $H_61^{[S4]}$ (6.9 mg, 7.5 µmol) and trimethyl borate (2.50 µL, 22.5 µmol). Chloroform (2.0 mL) was added to the flask. The mixture was stirred at 50 °C for 66 h. After cooling, the mixture was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent: chloroform/*n*-hexane = 2/1) to give [H₃1B] (5.9 mg, 6.4 µmol, 84%).

[H₃1B]: dark purple solid.

m.p. >280 °C.

¹H NMR (400 MHz, CDCl₃) δ 12.70 (br, 1H), 7.56 (dd, J = 8.0, 1.6 Hz, 2H), 7.46 (dd, J = 7.8, 1.3 Hz, 2H), 7.03 (dd, J = 8.0, 1.6 Hz, 2H), 7.00 (s, 2H), 6.96 (s, 2H), 6.90 (dd, J = 8.0, 8.0 Hz, 2H), 6.88–6.84 (m, 8H), 6.59 (dd, J = 8.0, 1.3 Hz, 2H), 6.46 (d, J = 4.4 Hz, 2H), 2.39 (s, 3H), 2.38 (s, 3H), 2.16 (s, 6H), 2.14 (s, 6H).

¹¹B NMR (128 MHz, CDCl₃) δ –0.3 (br).

¹³C NMR (151 MHz, CDCl₃) δ 153.6, 150.5, 149.2, 149.1, 143.1, 141.3, 139.4, 138.6, 138.3, 137.9, 137.5, 137.2, 137.0, 135.2, 134.6, 129.4, 129.2, 128.3, 128.2, 127.8, 124.8, 124.8, 123.9, 120.6, 120.3, 120.0, 119.3, 119.0, 116.3, 115.8, 114.9, 21.18, 21.15, 20.3, 19.9.

Elemental analysis: calcd for C₆₀H₄₇BN₄O₇ ([H₃1B]·H₂O): C, 76.11; H, 5.00; N, 5.92. Found: C, 76.06; H, 5.16; N, 5.79.

Scheme S2. Synthesis of [1B₂]

Synthesis of [1B₂] (method A, B(OH)₃)

A 10 mL two-necked round-bottom flask was charged with $H_61^{[S4]}$ (2.9 mg, 3.1 µmol) and boric acid (1.60 mg, 25.9 µmol). Chloroform (2.0 mL) was added to the flask. The mixture was refluxed for 66 h. After cooling, the mixture was concentrated in vacuo. The crude product was reprecipitated with chloroform (1.0 mL) and *n*-hexane (10 mL) to give [1B₂] (3.2 mg, quant.).

Synthesis of [1B₂] (method B, B(OMe)₃)

A 10 mL two-necked round-bottom flask was charged with $H_6 \mathbf{1}^{[S4]}$ (4.95 mg, 5.37 µmol) and trimethyl borate (18.0 µL, 162 µmol). 1,2-dichloroethane (3.0 mL) was added to the flask. The mixture was stirred at 67 °C for 66.5 h. After cooling, the mixture was concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent: chloroform/*n*-hexane = 2/1). Reprecipitation with chloroform (1.0 mL) and *n*-hexane (20 mL) was performed to give [1B₂] (4.9 mg, 5.2 µmol, 92%).

[1B₂]: red solid. m.p. >280 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (dd, J = 7.8, 1.6 Hz, 4H), 7.16 (dd, J = 7.8, 1.6 Hz, 4H), 6.98 (s, 4H), 6.77 (d, J = 4.2 Hz, 4H), 6.70 (d, J = 4.2 Hz, 4H), 6.67 (dd, J = 7.8, 7.8 Hz, 4H), 2.38 (s, 6H), 2.17 (s, 12H). ¹³B NMR (128 MHz, CDCl₃) δ -1.1 (br). ¹³C NMR (101 MHz, CDCl₃) δ 149.5, 147.9, 146.5, 138.5, 138.0, 137.3, 134.2, 129.6, 128.3, 127.2, 125.7, 120.8, 120.6, 119.5, 115.9, 21.2, 20.5. Elemental analysis: calcd for C₆₀H₄₇B₂N₄O_{8.5} ([1B₂]·2.5H₂O): C, 73.41; H, 4.83; N, 5.71.

Found: C, 73.14; H, 4.68; N, 5.40.

Scheme S3. Synthesis of 6

A 100 mL three-necked round-bottom flask was charged with $5^{[S5]}$ (2.25 g, 10.7 mmol), Na₂CO₃ (1.36 g, 12.8 mmol), and tetrakis(triphenylphosphine)palladium (0.218 g, 0.189 mmol). The flask was evacuated then refilled with argon. $4^{[S6]}$ (1.14 g, 3.63 mmol), dry THF (40 mL) and degassed water (13 mL) were added to the flask. The mixture was refluxed under argon for 10 h. After cooling, water (25 mL) was added, and the mixture was extracted with ethyl acetate (25 mL × 3). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude was purified by column chromatography on silica gel using dichloromethane / *n*-hexane (1:2) as the eluent. The obtained oil was dissolved in dry THF (35 mL) in a 100 mL round-bottom flask, and the mixture was stirred at room temperature for 13 h. Water (65 mL) was added, and the mixture was extracted with ethyl acetate (30 mL × 3). The combined over Na₂SO₄, filtered, and concentrated in vacuo to give **6** (0.656 g, 2.60 mmol, 72%).

6: dark brown oil.

¹H NMR (400 MHz, CDCl₃) δ 9.70 (br, 1H), 7.50 (d, *J* = 8.3 Hz, 1H), 7.11 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.08 (d, *J* = 1.8 Hz, 1H), 6.88–6.86 (m, 1H), 6.61–6.59 (m, 1H), 6.29–6.27 (m, 1H), 3.95 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.1, 128.9, 127.6, 124.5, 120.3, 119.2, 118.2, 115.1, 109.0, 106.5, 56.0.

A 200 mL three-necked round-bottom flask was charged with **6** (1.34 g, 5.30 mmol). The flask was evacuated then refilled with argon. Degassed dichloromethane solution (50 mL) of 2,4,6-trimethylbenzaldehyde (0.446 g, 3.01 mmol) and trifluoroacetic acid (0.080 mL, 1.04 mmol) was added, and the mixture was stirred under argon at room temperature in the dark for 21 h. DDQ (0.663 g, 2.92 mmol) was added and the mixture was stirred under argon at room temperature in the dark for another 3 h. Triethylamine (0.145 mL, 1.04 mmol) was added and the reaction mixture was loaded onto a short alumina-gel column and eluted with ethyl acetate / dichloromethane (1:1). Eluted bands were collected and concentrated in vacuo. The crude was purified reprecipitation from dichloromethane / *n*-hexane to yield 7. The filtrate was further purified by column chromatography on silica gel using ethyl acetate / *n*-hexane (1:4) as the eluent to obtain 7 (total amount: 1.39 mg, 2.19 μ mol, 83%). 7: red solid.

¹H NMR (400 MHz, CDCl₃) δ 13.42 (br, 1H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.18 (dd, *J* = 8.3, 1.7 Hz, 2H), 7.15 (d, *J* = 1.7 Hz, 2H), 6.93 (s, 2H), 6.83 (d, *J* = 4.3 Hz, 2H), 6.41 (d, *J* = 4.3 Hz, 2H), 3.90 (s, 6H), 2.37 (s, 3H), 2.15 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 157.6, 151.0, 141.0, 138.5, 137.3, 137.0, 133.8, 129.9, 127.7, 127.4, 124.1, 122.9, 121.6, 118.4, 115.3, 56.3, 21.1, 20.1.

Elemental analysis: calcd for $C_{32}H_{28}Br_2N_2O_2$: C, 60.78; H, 4.46; N, 4.43. Found: C, 60.66; H, 4.46; N, 4.33.

7 (0.326 g, 0.515 mmol) was placed in a 200 mL three-necked round-bottom flask. The flask was evacuated then refilled with argon. Dry CH₂Cl₂ was added to the flask, and stirred at 0 °C. Then, BBr₃ (0.732 mL, 7.72 mmol) was added, and the reaction mixture was stirred at room temperature for 12.5 h. The reaction was quenched with water (25 mL) and saturated NaHCO₃ aq (30 mL). The mixture was extracted with chloroform (50 mL × 3). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated in vacuo. To the obtained residue was added toluene (150 mL), and refluxed for 17.5 h. After cooled, the reaction mixture was concentrated in vacuo., and the crude was purified by column chromatography on silica gel using ethyl acetate / *n*-hexane (1:8) as the eluent to obtain *rac*-**8** (0.297 g, 0.485 mmol, 94%). *rac*-**8**: dark red solid;

¹H NMR (400 MHz, CDCl₃) δ 7.63–7.61 (m, 2H), 7.21–7.19 (m, 4H), 6.97 (s, 2H), 6.84 (d, *J* = 3.8 Hz, 2H), 6.82 (d, *J* = 3.8 Hz, 2H), 2.37 (s, 3H), 2.10 (s, 6H).

¹¹B NMR (128 MHz, CDCl₃) δ –0.8 (br).

¹³C NMR (101 MHz, CDCl₃) δ 154.6, 149.5, 138.8, 138.5, 137.0, 135.1, 129.0, 128.6, 128.3, 126.6, 125.9, 124.0, 123.0, 118.7, 116.1, 21.2, 20.2.

Elemental analysis: calcd for $C_{30}H_{21}BBr_2N_2O_2$: C, 58.87; H, 3.46; N, 4.58. Found: C, 58.66; H, 3.59; N, 4.43.

Scheme S6. Synthesis of rac-3

A 100 mL three-necked round-bottom flask was charged with rac-8 (124 mg, 0.203 mmol), **9**[S7] (111)mg, 0.542 mmol), Na₂CO₃ (95.5 mg, 0.901 mmol). and tetrakis(triphenylphosphine)palladium (18.3 mg, 0.0158 mmol). The flask was evacuated then refilled with argon. Dry THF (40 mL) and degassed water (14 mL) were added to the sflask. The mixture was refluxed under argon for 3 h. After cooling, THF was evaporated. Water (10 mL) was added, and the mixture was extracted with chloroform ($20 \text{ mL} \times 3$). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude was purified by column chromatography on silica gel using ethyl acetate as the eluent to give rac-3 (102 mg, 0.168 mmol, 83%). Analytically pure sample was obtained by recrystallization from chlorohorm/*n*-hexane.

rac-**3**: dark purple solid.

m.p. > 280 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, *J* = 1.6 Hz, 2H), 8.56 (dd, *J* = 4.7, 2.0 Hz, 2H), 7.90 (d, *J* = 8.1 Hz, 2H), 7.87 (ddd, *J* = 7.9, 2.0, 1.6 Hz, 2H), 7.34–7.31 (m, 4H), 7.26 (overlapped with CHCl₃), 6.99 (s, 2H), 6.91 (d, *J* = 4.3 Hz, 2H), 6.87 (d, *J* = 4.3 Hz, 2H), 2.38 (s, 3H), 2.14 (s, 6H).

¹¹B NMR (128 MHz, CDCl₃) δ –0.6 (br).

¹³C NMR (101 MHz, CDCl₃) δ 154.6, 149.7, 148.9, 148.3, 141.7, 138.8, 138.1, 137.1, 135.9, 135.3, 134.3, 129.2, 128.46, 128.35, 126.5, 123.5, 119.4, 118.1, 116.3, 21.2, 20.3.

Elemental analysis: calcd for C₄₀H₂₉BN₄O₂·0.5H₂O·CHCl₃: C, 66.83; H, 4.24; N, 7.60. Found: C, 66.98; H, 4.28; N, 7.54.

S10 / S25

S11 / S25

S12 / S25

Figure S8. ¹³C NMR spectrum of 7 (101 MHz, CDCl₃).

Figure S10. ¹³C NMR spectrum of *rac*-8 (101 MHz, CDCl₃).

Figure S12. ¹³C NMR spectrum of *rac-***3** (101 MHz, CDCl₃).

Optical resolution by chiral HPLC

Optical resolution was performed by chiral HPLC on a JAI LC-9201 system (5.5 mL/min) with the Daicel CHIRALPAK IA column (ϕ 20 mm × 250 mm) or the Daicel CHIRALPAK IE column (ϕ 20 mm × 250 mm).

Time / min

Figure S13. Chiral HPLC profile of for the separation of the enantiomers of [H₃1B] (column, CHIRALPAK IE; eluent, CH₂Cl₂).

Figure S14. Chiral HPLC profile of for the separation of the enantiomers of $[1B_2]$ (column, CHIRALPAK IE; eluent, CH_2Cl_2).

Figure S15. Chiral HPLC profile of for the separation of the enantiomers of $2^{[S8]}$ (column, CHIRALPAK IE; eluent, CH₂Cl₂:hexane = 1:1).

Figure S16. Chiral HPLC profile of for the separation of the enantiomers of **3** (column, CHIRALPAK IA; eluent, CH_2Cl_2 :hexane = 1:1).

Figure S17. (top) CD spectra of *P*-**2** (red line) and *M*-**2** (blue line). (bottom) UV/vis absorption spectrum of *P*-**2**. Conditions: CHCl₃, 10 μ M, 298 K, *l* = 1 cm.

Figure S18. CPL spectra of *P*-**2** (red line) and *M*-**2** (blue line) (excited at 400 nm, CHCl₃, 10 μ M, 298 K).

Figure S19. (top) CD spectra of *P*-**3** (red line) and *M*-**3** (blue line). (bottom) UV/vis absorption (solid line), and normalized fluorescence (dashed line, excited at 550 nm) spectra of *P*-**3**. Conditions: CHCl₃, 10 μ M, 298 K, *l* = 1 cm.

Wavelength / nm

Figure S20. CPL spectra of *P*-**3** (red line) and *M*-**3** (blue line) (excited at 400 nm, CHCl₃, 10 μ M, 298 K).

X-ray crystallographic analysis

rac-[H31B]

Single crystal of *rac*-[H₃1B] suitable for X-ray diffraction analysis was obtained by slow diffusion of *n*-hexane vapor in to chloroform solution of *rac*-[H₃1B].

Crystal data for 2(H₃1B)·3(CHCl₃): C₁₂₃H₉₃B₂Cl₉N₂O₄, Fw = 2215.72, purple block, 0.20 × 0.05 × 0.02 mm³, triclinic, space group $P \bar{1}$ (No. 2), a = 13.411(3) Å, b = 20.416(5) Å, c = 21.320(5) Å, $\alpha = 75.181(3)^{\circ}$, $\beta = 83.052(4)^{\circ}$, $\gamma = 88.030(3)^{\circ}$, V = 5602(2) Å³, Z = 2, T = 120(2) K, λ (MoK α) = 0.71073 Å, $\theta_{max} = 21.984^{\circ}$, $R_1 = 0.0912$, $wR_2 = 0.2635$, GOF = 0.998. CCDC No. 1486269.

Figure S21. The molecular structure of $(P-[H_31B]) \cdot (M-[H_31B]) \cdot 3(CHCl_3)$ determined by X-ray diffraction analysis. An ellipsoidal model (50% probability). Hydrogen atoms were omitted for clarity. C, light green; N, blue; O, red; B, yellow; Cl, green.

rac-[1B₂]

Single crystal of rac-[1B₂] suitable for X-ray diffraction analysis was obtained by slow diffusion of *n*-hexane vapor in to chloroform solution of rac-[1B₂].

Crystal data for (1B₂)·2(CHCl₃): C₆₂H₄₂B₂Cl₆N₄O₆, Fw = 1175.33, purple plate, 0.24 × 0.12 × 0.03 mm³, monoclinic, space group $P 2_1/c$ (No. 14), a = 27.3653(13) Å, b = 13.7830(7) Å, c = 31.7984(14) Å, $\beta = 114.516(3)^\circ$, V = 10912.3(9) Å³, Z = 8, T = 120(2) K, λ (MoK α) = 0.71073 Å, $\theta_{max} = 23.255^\circ$, $R_1 = 0.0847$, $wR_2 = 0.2564$, GOF = 1.522. CCDC No. 1486272.

Figure S22. The molecular structure of $(P-[1B_2]) \cdot (M-[1B_2]) \cdot 4(CHCl_3)$ determined by X-ray diffraction analysis. An ellipsoidal model (50% probability). Hydrogen atoms were omitted for clarity. C, light green; N, blue; O, red; B, yellow; Cl, green.

P,*P*-[1B₂]

Single crystal of P,P-[1B₂] suitable for X-ray diffraction analysis was obtained by slow diffusion of *n*-hexane vapor in to dichloromethane solution of P,P-[1B₂].

Crystal data for (1B₂): C₆₀H₄₂B₂N₄O₆, Fw = 936.59, purple prism, $0.15 \times 0.10 \times 0.10 \text{ mm}^3$, monoclinic, space group $P 2_1$ (No. 4), a = 11.4322(4) Å, b = 16.3704(5) Å, c = 12.5755(4) Å, $\beta = 100.994(2)^\circ$, V = 2310.31(13) Å³, Z = 2, T = 120(2) K, $\lambda(MoK\alpha) = 0.71073$ Å, $\theta_{max} = 30.606^\circ$, $R_1 = 0.0443$, $wR_2 = 0.1431$, GOF = 1.045. Flack x = -0.1(3). CCDC No. 1486271.

Figure S23. The molecular structure of P-[1B₂] determined by X-ray diffraction analysis. An ellipsoidal model (50% probability). Hydrogen atoms were omitted for clarity. C, light green; N, blue; O, red; B, yellow.

rac-3

Single crystal of rac-3 suitable for X-ray diffraction analysis was obtained by slow diffusion of *n*-hexane layer on chloroform solution of rac-3.

Crystal data for **3**·(CHCl₃): C₄₁H₃₀BCl₃N₄O₂, *Fw* = 727.85, purple prism, 0.10 × 0.04 × 0.02 mm³, triclinic, space group *P* $\overline{1}$ (No. 2), *a* = 9.821(3) Å, *b* = 12.383(3) Å, *c* = 15.111(4) Å, α = 79.156(3)°, β = 84.922(4)°, γ = 73.193(3)°, *V* = 1726.7(8) Å³, *Z* = 2, *T* = 120(2) K, λ (Mo*K* α) = 0.71073 Å, θ_{max} = 27.463°, *R*₁ = 0.0648, *wR*₂ = 0.2214, GOF = 1.746. CCDC No. 1486268.

Figure S24. The molecular structure of $3 \cdot (CHCl_3)$ determined by X-ray diffraction analysis. An ellipsoidal model (50% probability). A *P*-**3** isomer in the crystal of *rac*-**3** is shown. Hydrogen atoms were omitted for clarity. C, light green; N, blue; O, red; B, yellow; Cl, green.

P-3

Single crystal of P-**3** suitable for X-ray diffraction analysis was obtained by slow diffusion of *n*-hexane layer on dichloromethane solution of P-**3**.

Crystal data for 2(**3**)·(CH₂Cl₂): C₈₁H₆₀B₂Cl₂N₈O₄, Fw = 1301.89, deep green prism, 0.40 × 0.20 × 0.10 mm³, triclinic, space group *P* 1 (No. 1), a = 9.887(3) Å, b = 11.839(4) Å, c = 15.495(5) Å, $\alpha = 77.762(3)^{\circ}$, $\beta = 80.071(3)^{\circ}$, $\gamma = 66.473(3)^{\circ}$, V = 1617.3(9) Å³, Z = 1, T = 120(2) K, λ (MoK α) = 0.71073 Å, $\theta_{max} = 27.948^{\circ}$, $R_1 = 0.0789$, $wR_2 = 0.1712$, GOF = 1.185. Flack x = -0.03(9). CCDC No. 1486270.

Figure S25. The molecular structure of $2(P-3) \cdot (CH_2Cl_2)$ determined by X-ray diffraction analysis. An ellipsoidal model (50% probability). Hydrogen atoms were omitted for clarity. C, light green; N, blue; O, red; B, yellow; Cl, green.

References for the Supporting Information

- 1. Bruker, APEX2, 2014.
- 2. (a) K. Wakita, *Yadokari-XG, Software for Crystal Structure Analyses*, 2001; (b) C. Kabuto, S. Akine, T. Nemoto and E. Kwon, *J. Cryst. Soc. Jpn.*, 2009, **51**, 218.
- 3. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- 4. M. Saikawa, M. Daicho, T. Nakamura, J. Uchida, M. Yamamura and T. Nabeshima, *Chem. Commun.*, 2016, **52**, 4014.
- 5. D. M. Knapp, E. P. Gillis and M. D. Burke, J. Am. Chem. Soc., 2009, 131, 6961.
- 6. D. W. Lin, T. Masuda, M. B. Biskup, J. D. Nelson and P. S. Baran, J. Org. Chem., 2011, **76**, 1013.
- 7. W. Li, D. P. Nelson, M. S. Jensen, R. S. Hoerrner, D. Cai, R. D. Larsen and P. J. Reider, *J. Org. Chem.*, 2002, **67**, 5394.
- 8. C. Ikeda, S. Ueda and T. Nabeshima, Chem. Commun., 2009, 2544.