Rh-catalyzed annulations of *N*-methoxybenzamides and ketenimines: Synthesis of 3-aminoisoindolinones and 3-diarylmethyleneisoindolinones with strong aggregation induced emission properties

Xiaorong Zhou[†], Zhixing Peng[†], Hongyang Zhao, Zhiyin Zhang, Ping Lu*, Yanguang Wang*

Department of Chemistry, Zhejiang University, P. R. China

Content

General Considerations	S1
Table S1. Optimization of the [4+1] reaction conditions.	S2
Table S2 Photophysical properties of compounds 4a-p and 5a-d	S3
Preparation of Cesium 2,2,2-trichloroacetate and Potassium 2,2,2-trichloroac	etate.S4
General Procedure for the Preparation of N-methoxybenzamides 1	S4
General Procedure for the Preparation of Ketenimines 2	S6
Synthetic Procedure and Characterization Data for 3	S10
Synthetic Procedure and Characterization Data for 4	S18
Synthetic Procedure and Characterization Data for 5 and 6	S26
Scheme S1 Mechanistic Experiments and Their Procedures	S29
Figure S3. UV-vis absorption and fluorescence spectra of 4a-5d	S33
Table S3. Data of DFT Studies.	S36
Copies of NMR Spectra	S42

General considerations

Unless otherwise mentioned, solvents and reagents were purchased from commercial sources and used as received. THF and toluene were distilled from Na before use. MeCN, CH₂Cl₂ and DCE was distilled from CaH₂. Melting points were measured with a micro melting point apparatus. Infrared spectra were obtained with an FTIR spectrometer. NMR spectra were obtained on a Bruker AVANCE DMX500 or 400 spectrometer operating at 500 MHz or 400 MHz for ¹H NMR, 126 MHz or 101 MHz for ¹³C NMR. Unless otherwise noted, all the NMR spectra were recorded at room temperature. Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ and d_6 -DMSO as an internal standard. ¹³C NMR spectra were obtained by using the same NMR spectrometers and chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of CDCl₃ or the center line of a heptet at 39.52 ppm of d_6 -DMSO. The following abbreviations are used to describe peak patterns as appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants J were reported in hertz unit (Hz). High-resolution mass spectra (HRMS) data were obtained with an electron ionization time-of-flight (EI-TOF) mass spectrometer. Flash column chromatography was performed employing 300-400 mesh silica gel. Thin layer chromatography (TLC) was performed on silica gel HSGF254.

The absorption spectra were measured using UV-vis spectrometer (Shimadzu, UV-2450, Japan). FL spectra were recorded on a fluorospectro photometer (Shimadzu, RF-5301PC, Japan) with a xenon lamp excitation source. Particle size analysis was determined at room temperature on a Brookhaven 90 Plus Particle Size Analyzer. TEM micrographs of particle size were obtained using HT7700 transmission electron microscope by copper net as a supporter. SXRD spectra was obtained using Xeuss with SAXS/WAXS system. Distilled water was filtered through a membrane with 0.22µm pore size. Tetrahydrofuran (THF) was distilled from sodium prior to use.

Absorption and emission spectra of these compounds in solutions were measured in THF with a concentration scale of 10⁻⁵ M. Nanoparticles were formed by adding a certain volume of water into its dilute THF solution with a rotlet stirring sharply for 10 minutes, all the solution concentration was same. The absorption spectra, FL spectra and particle size distribution (DLS) of the resulting solutions were then performed immediately.

Preparation of TEM sample: solution of nanoparticles was added to a copper net with carbon membrane. Then the copper net was dried by infrared lamp.

	0 ↓ +	Ph →=C=N		5% [Cp 	*RhCl Base	2l2 ►		-0	
	Ĥ	Pń		slover I	nt, 80º N ₂	C Ph			
1a		2a					3aa		
Entry	Solvent	Base(equiv.)	T(°C)	Atom-	Cat.	Add-	1a:2a	$\text{Yield}(\%)^b$	
1	DCE	CaOAa	80	sphere	(%)	itive	1.2	16	
1	DUE CH CN	COAc	80	IN ₂	5	-	1.2	40 trace	
2	Toluene	CsOAc	80	IN2 N	5	-	1.2	28	
3	1 4 Diovana	COAc	80	1N2 N	5	-	1.2	Zo Trace	
4		COAc	80	1N2 N	5	-	1.2	10	
5		COAc	80	IN2 N.	5	-	1.2	40 35	
7	DCE	COAC	rt	N.	5	-	1.2	ND	
8	DCE	CsOAc	50	N ₂	5	-	1.2	N.D. 21	
9	DCE	CsOAc	100	No.	5	_	1.2	45	
10	DCE	CsOAc	80	air	5	_	1.2	16	
11	DCE	CsOAc	80		5	_	1.2	Trace	
12 ^c	DCE	CsOAc	80	N ₂	5	_	1.2	40	
13	DCE	NaOAc	80	N ₂	5	_	1.2	17	
14	DCE	KOAc	80	N ₂	5	_	1.2	45	
15	DCE	Cl ₂ CCOONa	80	N ₂	5	_	1.2	55	
16	DCE	PivOCs	80	N ₂	5	_	1:2	39	
17	DCE	Cl ₂ CCOOCs	80	N ₂	5	-	1:2	78	
18	DCE	Cl ₂ CCOOK	80	N ₂	5	-	1:2	70	
19^d	DCE	Cl ₃ CCOOCs	80	N_2	5	_	1:2	N.D.	
20^{e}	DCE	Cl ₃ CCOOCs	80	N_2	5	_	1:2	N.D.	
21	DCE	None	80	N_2	5	-	1:2	N.D.	
22	DCE	Cl ₃ CCOOCs	80	N_2	5	$H_2O(1eq.)$	1:2	N.D.	
23	DCE	Cl ₃ CCOOCs	80	N_2	5	$4 \text{A} \text{MS}^{f}$	1:2	82	
24	DCE	Cl ₃ CCOOCs	80	N_2	5	$4A MS^{f}$	1:1.5	81	
25	DCE	Cl ₃ CCOOCs	80	N_2	5	$4A MS^{f}$	1:1.2	80	
26	DCE	Cl ₃ CCOOCs	80	N_2	5	$4A MS^{f}$	1:1	71	
27	DCE	Cl ₃ CCOOCs	80	N_2	5	$4A MS^{f}$	1.2:1	81	
28	DCE	Cl ₃ CCOOCs	80	N_2	5	$4A MS^{f}$	1.5:1	82	
29	DCE	Cl ₃ CCOOCs	80	N_2	5	$4A MS^{f}$	2:1	84	
30	DCE	Cl ₃ CCOOCs	80	N_2	4	$4A MS^{f}$	1.2:1	76	
31	DCE	Cl ₃ CCOOCs	80	N_2	2.5	$4A MS^{f}$	1.2:1	70	

Table S1 Optimization of the [4+1] reaction conditions^{*a*}

^{*a*}Reaction condition: **1a** (0.3 mmol), **2a** (0.6 mmol),[Cp*RhCl₂]₂ (0.015 mmol), Base (0.09 mmol), Solvent (2 mL), N₂, 80 °C, 10 h. ^{*b*}Isolated yield. ^{*c*}CsOAc(1 equiv). ^{*d*}2% [Cp*IrCl₂]₂ instead of [Cp*RhCl₂]₂. ^{*e*}5% [RuCl₂(*p*-cymene)]₂ instead of [Cp*RhCl₂]₂. ^{*f*}4Å MS (60 mg).

		$\lambda_{abs}(nm)$			λ_{em}	n(nm)		Φ_{F} (%)	
	THF, $(\epsilon/10^4)^a$	Nano, $(\epsilon/10^4)^b$	Cal. ^c	$\% \Delta^d$	Nano	Solid	$\Phi_{\rm sol}{}^e$	$\Phi_{nano}{}^{e}$	$\Phi_{nano}\!/\Phi_{sol}$
4a	373(2.37)	375(1.87)	375	0.7	516	507	0.028	2.572	91.9
4b	373(1.78)	377(1.53)	375	0.5	514	482	0.028	2.571	91.7
4c	372(1.85)	377(1.62)	381	2.3	523	507	0.022	1.773	80.6
4d	376 (1.99)	381(1.62)	372	-1.1	508	510	0.034	2.969	87.3
4 e	372(2.09)	379(1.81)	378	1.7	515	498	0.045	4.296	95.5
4f	405(2.61)	407(1.99)	395	-2.6	533	491	0.031	1.352	43.6
4g	375(1.98)	377(1.54)	378	0.8	518	500	0.049	3.324	67.8
4h	394(2.64)	398(2.00)	394	0.0	542	519	0.077	12.571	163.3
4i	412(2.24)	415(1.55)	403	-2.3	535	534	0.053	2.294	43.3
4j	387(2.29)	388(1.86)	381	-1.6	518	501	0.076	7.865	103.5
4k	374(2.09)	378(1.73)	380	1.7	516	525	0.046	1.967	42.8
41	375(1.95)	379(1.65)	370	-1.5	515	527	0.041	2.102	51.3
4m	362(1.21)	371(0.97)	363	0.3	502	511	0.039	1.374	35.2
4n	357(1.47)	362(1.19)	356	-0.2	492	499	0.031	0.554	18
40	364(1.89)	370(1.34)	362	-0.5	501	490	0.017	1.291	77.3
4p	362(1.81)	362(1.57)	355	-2.1	492	460	0.025	0.660	26.4
5a	348(1.57)	349 (0.10)	346	-0.4	454	449	0.514	4.680	9.1
5b	348(1.60)	349(0.16)	349	0.2	455	458	0.025	0.657	26.3
5c	349(1.73)	354(0.07)	351	0.6	441	451	0.269	8.797	32.7
5d	343(1.17)	348(0.16)	343	0.0	445	446	0.045	1.606	35.7

Table S2. Photophysical properties of compounds 4a-p and 5a-d

^{*a*}Absorption spectra were measured at a concentration scale of 10⁻⁵ in THF solution; ^{*b*}Nano-suspensions were obtained by adding water into dilute THF solution (water/THF = 95/5); ^{*c*}Calculated absorption wavelengths were obtained from HOMO-LUMO gaps using the B3LYP functional and the 6-31G* basis set. ^{*d*}% Δ = 100*(Cal.-THF)/Cal. ^{*e*}Quantum yields were calculated referring to the standard of Quinine sulfate (Φ =0.54 in 0.1M H₂SO₄).

Preparation of Cesium 2,2,2-trichloroacetate and potassium

2,2,2-trichloroacetate

Cesium pivalate was prepared according to the reported procedure.¹

2,2,2-Trichloroacetic acid (3.24 g, 20 mmol) and cesium carbonate (3.28 g, 10 mmol) or potassium carbonate (1.38 g, 10 mmol) was dissolved in CH₃OH (20 mL). The resulting solution was stirred during 30 min at 50 °C. The solvent was then evaporated under reduced pressure until a white solid appeared. The obtained solid was crushed into a fine powder and dry under high vacuum at 80 °C during 8 h.

General Procedure for the Preparation of N-methoxybenzamides 1

Compounds 1a - 1o, 1a-D5 as well as new compounds 1p and 1q were prepared according to the literature procedures.²

¹ (a) M. A. Campo and R. C. Larock, *Org. Lett.* **2000**, *2*, 3675. (b) T. Piou, A. Bunescu, Q. Wang, L. Neuville and J. Zhu, *Angew. Chem., Int. Ed.* **2013**, *52*, 12385.

- ² (a) N. Guimond, C. Gouliaras and K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6908. (b) S. Rakshit, C. Grohmann,
- T. Besset and F. Glorius, J. Am. Chem. Soc. 2011, 133, 2350. (c) L. E. Fisher, J. M. Caroon, Jahangir, S. R. Stabler,
 S. Lundberg and J. M. Muchowsk, J. Org. Chem. 1993, 58, 3643.

4-Substituted-1-naphthoic acid (2 mmol) was dissolved in dry dichloromethane (5 mL), followed by addition of a drop of DMF and oxalyl chloride (0.21 mL, 1.49 g/mL, 2.4 mmol). After 2 hour, the volatile and solvent were evaporated and the resulting acid chloride was obtained and used directly for the subsequent reactions without further purification. To the crude product was then added K₂CO₃ (4 mmol), MeONH₂·HCl (2.4 mmol), ethyl acetate (5 mL), and water (2.5 mL) sequentially. The resulting mixture was stirred for 16 h at r.t. and extracted twice with ethyl acetate. The combined organic layers were dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The products were obtained as pure solids without need for purification.

4-Bromo-N-methoxy-1-naphthamide (1p)

Following the general procedure afforded **1p** (530 mg, 95 %) as a white solid, **m.p.** 140 – 146 °C. **¹H NMR** (400 MHz, DMSO-*d*₆) δ 11.80 (s, 1H), 8.22 (td, *J* = 8.9, 1.5 Hz, 2H), 7.96 (d, *J* = 7.6 Hz, 1H), 7.82 – 7.68 (m, 2H), 7.52 (d, *J* = 7.6 Hz, 1H), 3.81 (s, 3H).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 164.6 , 131.8 , 131.2 , 131.1 , 129.2 , 128.4 , 128.1 , 126.8 , 126.3 , 125.7 , 124.3 , 63.5 .

IR (ATR): 3140, 2979, 1640, 1563, 1512, 1439, 1296, 1256, 1193, 1072, 1006, 920, 846, 818, 756 cm⁻¹;

HRMS (EI) m/z calcd for $C_{12}H_{10}NO_2Br [M^+]$: 278.9895; found: 278.9899.

4-Ethoxy-N-methoxy-1-naphthamide (1q)

Following the general procedure afforded 1q (451 mg, 92 %) as a white solid, m.p. 153 – 154 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.54 (s, 1H), 8.33 (dd, *J* = 8.3, 1.5 Hz, 2H), 7.61 – 7.48 (m, 3H), 6.71 (d, *J* = 7.9 Hz, 1H), 4.23 (q, *J* = 7.0 Hz, 2H), 3.95 (s, 3H), 1.57 (t, *J* = 7.0 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 157.3 , 131.6 , 127.9 , 126.9 , 125.8 , 124.9 , 122.4 , 122.3 , 102.8 , 64.8 , 64.0 , 14.7 .

IR (ATR): 3130, 2979, 1638, 1581, 1516, 1383, 1263, 1243, 1155, 1112, 1070, 1030, 954, 902, 839, 758 cm⁻¹;

HRMS (EI) m/z calcd for $C_{14}H_{15}NO_3$ [M⁺]: 245.1052; found: 245.1053.

General Procedure for the Preparation of Ketenimines 2

Compounds **2a-2f**, **2j** as well as new compounds **2g**, **2i**, and **2k-2m** were prepared according to the literature procedures.³

To a mixture of corresponding N-(triphenylphosphoranylidene)aniline (2 mmol), Et_3N (2.4 mmol) in CH_2Cl_2 (5 mL) was added corresponding 2,2-diarylacetyl chloride (2 mmol) in CH_2Cl_2 (5 mL) dropwise. The mixture was stirred at room temperature for 15 min and then evaporated on vacuum. The residue was subjected to silica gel column chromatography with petroleum ether as eluent.

2,2-Diphenyl-N-(m-tolyl)ethen-1-imine (2f)

Following the general procedure afforded 2f (504 mg, 89 %) as a brown oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38 – 7.32 (m, 8H), 7.28 – 7.17 (m, 5H), 7.10 (d, *J* = 7.5 Hz, 1H), 2.36 (s, 3H).

³ X. Zhou, Z. Jiang, L. Xue, P. Lu and Y. Wang, Eur. J. Org. Chem. 2015, 2015, 5789.

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 190.1 , 139.6 , 134.0 , 129.3 , 128.8 , 128.6 , 127.8 , 126.4 , 124.5 , 121.1 , 77.8 , 21.3 .

IR (film): 3057, 3023, 2001, 1596, 1581, 1493, 1454, 1175, 1123, 1072, 1030, 760, 694, 645 cm⁻¹; **HRMS** (EI) m/z calcd for C₂₁H₁₇N [M⁺]: 283.1361; found: 283.1365.

N-(naphthalen-2-yl)-2,2-diphenylethen-1-imine (2g)

Following the general procedure afforded **2g** (478 mg, 75 %) as a brown solid, **m.p.** 113 – 116 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ7.86 – 7.81 (m, 4H), 7.56 – 7.47 (m, 3H), 7.42 – 7.33 (m, 8H), 7.26 – 7.22 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 191.1, 137.8, 133.9, 133.7, 132.7, 129.6, 128.9, 128.1, 127.9, 127.8, 126.8, 126.5, 126.4, 122.9, 122.0, 78.3.

IR (ATR): 1990, 1594, 1492, 1452, 1286, 1155, 1070, 1027, 815, 746, 693 cm⁻¹;

HRMS (EI) m/z calcd for $C_{24}H_{17}N$ [M⁺]: 319.1361; found: 319.1359.

2,2-Bis(4-methoxyphenyl)-*N*-(*p*-tolyl)ethen-1-imine (2i)

Following the general procedure afforded 2i (631 mg, 92 %) as a brown oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.30 – 7.21 (m, 6H), 7.17 (d, *J* = 7.8 Hz, 2H), 6.93 – 6.85 (m, 4H), 3.80 (s, 6H), 2.35 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 192.5 , 158.3 , 138.5 , 137.6 , 130.0 , 128.9 , 126.2 , 123.7 , 114.3 , 77.1 , 55.3 , 21.1 .

IR (film): 2953, 2834, 1990, 1606, 1504, 1246, 1174, 1034, 829 cm⁻¹;

HRMS (EI) m/z calcd for $C_{23}H_{21}NO_2$ [M⁺]: 343.1572; found: 343.1571.

2,2-Bis(4-chlorophenyl)-*N*-(*p*-tolyl)ethen-1-imine (2j)

Following the general procedure afforded **2j** (498 mg, 71 %) as a brown oil. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.33 – 7.28 (m, 4H), 7.28 – 7.17 (m, 8H), 2.37 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 187.9 , 138.4 , 137.0 , 132.4 , 132.1 , 130.3 , 129.1 , 128.8 ,

124.0, 76.3, 21.2.

IR (ATR): 2923, 1997, 1582, 1490, 1415, 1280, 1187, 1094, 1014, 911, 824, 751 cm⁻¹; **HRMS** (EI) m/z calcd for $C_{21}H_{15}NCl_2$ [M⁺]: 351.0582; found: 351.0581.

2,2-Bis(3,4-dimethoxyphenyl)-*N*-(*p*-tolyl)ethen-1-imine (2k)

Following the general procedure afforded 2k (446 mg, 65 %) as a brown oil.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.29 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.92 – 6.83 (m, 6H), 3.87 (s, 6H), 3.81 (s, 6H), 2.35 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 191.8 , 149.1 , 147.6 , 138.2 , 137.6 , 130.0 , 126.4 , 123.6 , 120.1 , 111.4 , 110.8 , 77.6 , 55.8 , 55.7 , 21.0 .

IR (film): 2953, 2834, 1990, 1606, 1504, 1246, 1174, 1034, 829 cm⁻¹;

HRMS (EI) m/z calcd for $C_{23}H_{21}NO_2$ [M⁺]: 343.1572; found: 343.1571.

2,2-Bis(4-(tert-butyl)phenyl)-N-(p-tolyl)ethen-1-imine (2l)

Following the general procedure afforded **2l** (561 mg, 71 %) as a yellow solid, **m.p.** 113 – 115 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38 – 7.34 (m, 4H), 7.31 – 7.26 (m, 6H), 7.17 (d, *J* = 8.2 Hz, 2H), 2.36 (s, 3H), 1.32 (s, 18H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 191.4 , 149.3 , 138.2 , 137.7 , 131.1 , 130.0 , 127.4 , 125.7 , 123.9 , 77.6 , 34.5 , 31.3 , 21.1 .

IR (ATR): 2958, 2924, 2865, 1992, 1505, 1462, 1363, 1269, 1189, 1113, 1019, 828, 750, 717 cm⁻¹; **HRMS** (EI) m/z calcd for C₂₉H₃₃N [M⁺]: 395.2613; found: 395.2614

2,2-Di([1,1'-biphenyl]-4-yl)-*N*-(*p*-tolyl)ethen-1-imine (2m)

Following the general procedure afforded 2m (609 mg, 70 %) as a yellow solid, **m.p.** 119 – 120 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.63 – 7.58 (m, 8H), 7.48 – 7.41 (m, 8H), 7.37 – 7.30 (m, 4H), 7.21 (d, *J* = 8.2 Hz, 2H), 2.38 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 189.7, 140.7, 139.3, 138.1, 133.1, 130.2, 128.8, 128.1, 127.5, 127.2, 126.9, 124.0, 77.5, 21.2.

IR (ATR): 3028, 2923, 1990, 1602, 1485, 1413, 1284, 1186, 909, 837, 821, 764, 730, 696, 664 cm⁻¹;

HRMS (EI) m/z calcd for C₃₃H₂₅N [M⁺]: 435.1987; found: 435.1978.

General Procedures for the Preparation of 2,2-Di(substitutedphenyl)acetyl chloride

Step 1:

Condition A ($R = OCH_3$ or 1,2 - dimethoxy):

Following a modified procedure described by Li^4 . A solution of glyoxylic acid (50 mmol) and Substituted benzene (100 mmol) in acetic acid (100 mL) was cooled in an ice bath. Concentrated sulfuric acid (6 mL) was added dropwise under stirring. The solution was then stirred at 40 °C overnight. After most solvent was removed under reduced pressure, the residue was triturated with dichloromethane (200 mL). The solution was washed with aqueous sodium carbonate solution to pH 6, water, and brine and dried over Na₂SO₄. After removed the solvent under reduce pressure, afforded the corresponding acid. The product was used for the next step directly without further purification.

Condition B (R=Cl, t-Bu, Ph):

⁴ X. Shao, X. Jiang, X. Zhao, C. Zhao, Y. Chen and Z. Li, J. Org. Chem. 2004, 69, 899.

Following a modified procedure described by Marzabadi⁵.Substituted benzene (100 mmol) and glyoxylic acid monohydrate (50 mmol) were dissolved in acetic acid (60 mL). The mixture was cooled in an ice/water bath and concentrated sulfuric acid (50 mL) was added dropwise over 0.5 h. The mixture was stirred at 80°C for 12 h and then cooled to room temperature. Water (300 mL) was added and a dark solid was precipitated. The solid was washed with water (50mL) and petroleum ether (3*50mL) and dried in vacuum to give the desired product, which was used in the subsequent step without further purification.

Step 2:

2,2-diarylacetic acid (1.0 equiv) was dissolved in dry dichloromethane (c 0.4 M), followed by addition of a drop of DMF and oxalyl chloride (1.2 equiv). After 2 hour, the volatile and solvent were evaporated and the resulting acid chloride was obtained and used directly for the subsequent reactions without further purification.

Synthetic Procedure and Characterization Data for 3

Typical procedure for the preparation of 3-benzhydryl-2-methoxy-3-(*p*-tolylamino)isoindolin-1-one (3a)

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially **1a** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol), 4A MS (60 mg) and dry DCE (2 mL) under N₂ atmosphere. The reaction vessel was heated to 80 °C in oil bath for 10 hours. Upon completion, The reaction mixture was cooled to room temperature and then the solvent was evaporated in vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 4:1) to give the product **3a** (107 mg, 82 %) as a white solid; **m.p.** 159 – 161 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.4 Hz, 1H), 7.54 (td, *J* = 7.5, 1.1 Hz, 1H), 7.47-7.41 (m, 4.1 Hz, 4H), 7.34 – 7.22 (m, 3H), 7.20 – 7.10 (m, 5H), 6.71 (d, *J* = 8.3 Hz, 2H), 6.04 (d, *J* = 8.5 Hz, 2H), 4.92 (s, 1H), 4.51 (s, 1H), 3.82 (s, 3H), 2.09 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.5, 141.8, 140.8, 137.7, 136.8, 131.9, 131.1, 130.4, 130.1, 129.4, 129.3, 128.63, 128.60, 128.2, 127.74, 127.73, 123.6, 123.4, 115.2, 82.0, 64.6, 61.1, 20.3.

IR (film): 3418, 2939, 1713, 1615, 1519, 1495, 1451, 1301, 1073, 1002, 908, 809, 716 cm⁻¹; **HRMS** (EI) m/z calcd for C₂₉H₂₆N₂O₂ [M⁺]: 434.1994; found:434.2009.

3-Benzhydryl-2-methoxy-5-methyl-3-(p-tolylamino)isoindolin-1-one (3b)

⁵ Y. Jiang, C. Chen, K. Lu, I. Daniewska, J. De Leon, R. Kong, C. Forray, B. Li, L. G. Hegde, T. D. Wolinsky, D. A. Craig, J. M. Wetzel, K. Andersen and M. R. Marzabadi, *J. Med. Chem.* **2007**, *50*, 3870.

The reaction of **1h** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3b** (108 mg, 80 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a white solid; **m.p.** 181 – 182 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.7 Hz, 1H), 7.39 (d, *J* = 6.6 Hz, 2H), 7.30 – 7.22 (m, 5H), 7.22 – 7.14 (m, 5H), 6.72 (d, *J* = 8.3 Hz, 2H), 6.05 (d, *J* = 8.5 Hz, 2H), 4.87 (s, 1H), 4.50 (s, 1H), 3.77 (s, 3H), 2.43 (s, 3H), 2.10 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.8, 142.7, 142.2, 140.9, 137.7, 137.0, 130.5, 130.3, 130.0, 129.4, 128.5, 128.3, 128.2, 127.7, 127.6, 123.9, 123.2, 115.1, 81.6, 64.5, 61.5, 22.2, 20.3.

IR (film): 3418, 2924, 1713, 1620, 1519, 1494, 1451, 1302, 1075, 1008, 908, 808, 729, 707 cm⁻¹; **HRMS** (EI) m/z calcd for $C_{30}H_{28}N_2O_2$ [M⁺]: 448.2151; found: 448.2159.

3-Benzhydryl-2,5-dimethoxy-3-(p-tolylamino)isoindolin-1-one (3c)

The reaction of **1i** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3c** (113 mg, 81 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a white solid; **m.p.** 183 – 185 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.4 Hz, 1H), 7.45 (d, *J* = 7.2 Hz, 2H), 7.32 – 7.22 (m, 3H), 7.21-7.15 (m, 5H), 6.96 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.88 (d, *J* = 1.8 Hz, 1H), 6.73 (d, *J* = 8.3 Hz, 2H), 6.08 (d, *J* = 8.3 Hz, 2H), 4.87 (s, 1H), 4.49 (s, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 2.10 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.9, 163.0, 144.2, 140.8, 137.7, 136.8, 130.4, 130.1, 129.4, 128.6, 128.5, 128.2, 127.7, 125.0, 123.4, 115.4, 115.3, 108.9, 81.5, 64.6, 61.3, 55.6, 20.3.

IR (film): 3418, 2939, 1712, 1614, 1519, 1493, 1286, 1250, 1069, 1004, 909, 730, 707 cm⁻¹; **HRMS** (EI) m/z calcd for $C_{30}H_{28}N_2O_3$ [M⁺]: 464.2100; found:464.2094.

3-Benzhydryl-5-chloro-2-methoxy-3-(p-tolylamino)isoindolin-1-one (3d)

The reaction of **1j** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3d** (83 mg, 59 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a white solid; **m.p.** 216 – 218 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.6 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.40 (d, *J* = 7.8 Hz, 2H), 7.33 – 7.24 (m, 3H), 7.24 – 7.16 (m, 5H), 6.74 (d, *J* = 8.3 Hz, 2H), 6.05 (d, *J* = 8.4 Hz, 2H), 4.87 (s, 1H), 4.50 (s, 1H), 3.78 (s, 3H), 2.11 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.6, 144.0, 140.4, 138.5, 137.2, 136.5, 130.4, 130.0, 129.9, 129.5, 129.4, 129.0, 128.7, 128.4, 127.92, 127.90, 124.6, 123.8, 115.2, 81.6, 64.5, 61.4, 20.3.
 IR (film): 3418, 2939, 1715, 1614, 1519, 1495, 1424, 1301, 1140, 1090, 909, 732, 707 cm⁻¹;

HRMS (EI) m/z calcd for $C_{28}H_{21}N_2OCI$ [M-CH₄O]⁺: 436.1342; found:436.1339. **MALDI-TOF-MS** m/z 469.16 ([M+H]⁺);

3-Benzhydryl-2-methoxy-3-(p-tolylamino)-5-(trifluoromethyl)isoindolin-1-one (3e)

The reaction of **1k** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3e** (92 mg, 61 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a white solid; **m.p.** 200 – 201 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.9 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.66 (s, 1H), 7.36 (d, *J* = 6.6 Hz, 2H), 7.32 – 7.24 (m, 3H), 7.24 – 7.13 (m, 5H), 6.73 (d, *J* = 8.3 Hz, 2H), 6.03 (d, *J* = 8.4 Hz, 2H), 4.89 (s, 1H), 4.55 (s, 1H), 3.79 (s, 3H), 2.10 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.0, 143.0, 140.4, 137.0, 136.4, 134.3, 133.7 (q, *J* = 32.8 Hz), 130.3, 129.9, 129.5, 129.3, 128.7, 128.4, 128.0 (d, *J* = 1.2 Hz), 126.5 (q, *J* = 3.8 Hz), 123.8, 123.5 (q, *J* = 271.4 Hz), 120.6 (q, *J* = 3.6 Hz), 115.4, 82.1, 64.5, 61.5, 20.3.

IR (film): 3418, 3030, 2941, 1722, 1715, 1519, 1495, 1324, 1171, 1134, 1089, 1055, 909, 732, 693 cm⁻¹;

HRMS (EI) m/z calcd for $C_{29}H_{21}N_2OF_3$ [M-CH₄O]⁺: 470.1606; found:470.1604. **MALDI-TOF-MS** m/z 503.19 ([M+H]⁺).

3-Benzhydryl-6-chloro-2-methoxy-3-(p-tolylamino)isoindolin-1-one (3f)

The reaction of **11** (0.36 mmol), **2a** (0.3 mmol), [Cp*RhCl₂]₂ (0.015 mmol), Cl₃CCOOCs (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3f** (119 mg, 85 %)

after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a white solid; **m.p.** 186 - 188 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (d, *J* = 1.8 Hz, 1H), 7.50 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.42 (d, *J* = 6.7 Hz, 2H), 7.35 – 7.26 (m, 4H), 7.24 – 7.11 (m, 5H), 6.73 (d, *J* = 8.2 Hz, 2H), 6.04 (d, *J* = 8.5 Hz, 2H), 4.89 (s, 1H), 4.49 (s, 1H), 3.81 (s, 3H), 2.11 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.1, 140.5, 140.1, 137.4, 136.5, 135.6, 132.9, 132.0, 130.3, 130.0, 129.5, 129.0, 128.8, 128.3, 127.92, 127.91, 125.0, 123.6, 115.3, 82.0, 64.6, 61.0, 20.3.

IR (film): 3418, 2939, 1715, 1614, 1519, 1494, 1452, 1301, 1182, 1088, 909, 808, 733, 706, 631 cm⁻¹;

HRMS (EI) m/z calcd for $C_{28}H_{21}N_2OCI$ [M-CH₄O]⁺: 436.1342; found:436.1343. **MALDI-TOF-MS** m/z 469.17 ([M+H]⁺);

3-Benzhydryl-2-methoxy-6-nitro-3-(p-tolylamino)isoindolin-1-one (3g)

The reaction of **1m** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3g** (14 mg, 10 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a yellow solid; **m.p.** 186 – 188 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.46 (d, *J* = 1.8 Hz, 1H), 8.40 (dd, *J* = 8.3, 2.2 Hz, 1H), 7.61 (d, *J* = 8.3 Hz, 1H), 7.40 (dd, *J* = 7.8, 1.5 Hz, 2H), 7.34 – 7.27 (m, 3H), 7.24 – 7.15 (m, 5H), 6.74 (d, *J* = 8.2 Hz, 2H), 6.03 (d, *J* = 8.5 Hz, 2H), 4.93 (s, 1H), 4.56 (s, 1H), 3.84 (s, 3H), 2.11 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.1, 148.9, 148.5, 140.2, 136.8, 136.0, 132.8, 130.3, 129.9, 129.6, 129.6, 128.9, 128.5, 128.21, 128.19, 126.7, 124.7, 118.6, 115.4, 82.3, 64.7, 61.2, 20.3.
IR (KBr): 3410, 2939, 1728, 1617, 1530, 1519, 1343, 1309, 1063, 1003, 725, 705 cm⁻¹;
HRMS (EI) m/z calcd for C₁₇H₂₄N₃O₄ [M-C₁₂H₁]⁺: 334.1767; found:334.1723.
MALDI-TOF-MS m/z 480.10 ([M+H]⁺).

3-Benzhydryl-2-methoxy-6-methyl-3-(p-tolylamino)isoindolin-1-one (3h)

The reaction of **1n** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3h** (113 mg, 84 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a white solid; **m.p.** 172 – 174 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.41 (m, 3H), 7.36 – 7.22 (m, 5H), 7.20 – 7.09 (m, 5H), 6.71 (d, *J* = 8.3 Hz, 2H), 6.04 (d, *J* = 8.3 Hz, 2H), 4.90 (s, 1H), 4.48 (s, 1H), 3.81 (s, 3H), 2.41 (s, 3H), 2.09 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.8, 140.9, 139.6, 138.7, 137.9, 136.9, 132. 8, 131.2, 130.3, 130.1, 129.3, 128.6, 128.5, 128.1, 127.7, 123.7, 123.5, 115.2, 81.9, 64.5, 61.0, 21.5, 20.3.

IR (film): 3418, 3030, 2939, 1714, 1615, 1519, 1494, 1451, 1301, 1084, 909, 810, 730, 707 cm⁻¹; **HRMS** (EI) m/z calcd for $C_{30}H_{28}N_2O_2$ [M⁺]: 448.2151; found:448.2152.

3-Benzhydryl-7-fluoro-2-methoxy-3-(p-tolylamino)isoindolin-1-one(3i)

The reaction of **10** (0.36 mmol), **2a** (0.3 mmol), [Cp*RhCl₂]₂ (0.015 mmol), Cl₃CCOOCs (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3i** (39 mg, 29 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a white solid; **m.p.** 198-199°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (td, *J* = 8.0, 4.7 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.32 – 7.21 (m, 9H), 7.09 (t, *J* = 8.6 Hz, 1H), 6.74 (d, *J* = 8.2 Hz, 2H), 6.10 – 6.03 (m, 2H), 4.89 (s, 1H), 4.50 (s, 1H), 3.80 (s, 3H), 2.11 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 160.51 (d, J = 1.0 Hz), 158.38 (d, J = 262.3 Hz), 144.75, 140.50, 137.26, 136.45, 133.82 (d, J = 7.6 Hz), 130.35, 129.97, 129.39, 128.88, 128.66, 128.32, 127.92 (d, J = 6.7 Hz), 119.54 (d, J = 3.9 Hz), 118.11 (d, J = 13.0 Hz), 116.92 (d, J = 19.5 Hz), 115.22, 81.55 (d, J = 1.6 Hz), 64.54, 61.30, 20.26.

IR (film): 3416, 3030, 2939, 1721, 1714, 1625, 1519, 1495, 1492, 1452, 1301, 1252, 1181, 1003, 884, 809, 729, 707 cm⁻¹;

HRMS (EI) m/z calcd for $C_{29}H_{25}N_2O_2F$ [M⁺]: 452.1900; found:452.1906.

3-Benzhydryl-2-methoxy-3-(phenylamino)isoindolin-1-one (3j)

The reaction of **1a** (0.36 mmol), **2b** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3j** (97 mg, 77 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a white solid; **m.p.** 162 – 164 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.66 (d, J = 7.4 Hz, 1H), 7.55 (td, J = 7.5, 1.0 Hz, 1H), 7.50 – 7.39 (m, 4H), 7.33 – 7.23 (m, 3H), 7.22 – 7.09 (m, 5H), 6.95 – 6.86 (m, 2H), 6.64 (t, J = 7.3 Hz, 1H), 6.13 (d, J = 7.8 Hz, 2H), 4.93 (s, 1H), 4.61 (s, 1H), 3.81 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 163.5, 143.2, 141.7, 137.6, 136.7, 132.0, 131.1, 130.4, 130.0, 129.5, 128.8, 128.7, 128.2, 127.8, 123.5, 123.4, 119.4, 115.1, 81.7, 64.6, 61.1.

IR (film): 3416, 2938, 1712, 1602, 1497, 1466, 1312, 1072, 1003, 908, 750, 718, 706 cm⁻¹; **HRMS** (EI) m/z calcd for C₂₈H₂₄N₂O₂ [M⁺]: 420.1838; found: 420.1843.

3-Benzhydryl-3-((4-bromophenyl)amino)-2-methoxyisoindolin-1-one (3k)

The reaction of **1a** (0.36 mmol), **2c** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3k** (105 mg, 70 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a white solid; **m.p.** 192 – 195 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.66 (d, *J* = 7.4 Hz, 1H), 7.56 (td, *J* = 7.5, 1.0 Hz, 1H), 7.48 (td, *J* = 7.5, 0.7 Hz, 1H), 7.43 (d, *J* = 7.1 Hz, 2H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.33 – 7.25 (m, 3H), 7.21 – 7.08 (m, 5H), 7.00 (d, *J* = 8.9 Hz, 2H), 6.01 (d, *J* = 9.0 Hz, 2H), 4.92 (s, 1H), 4.64 (s, 1H), 3.82 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 163.5, 142.2, 141.2, 137.4, 136.4, 132.1, 131.6, 131.1, 130.3, 130.0, 129.7, 128.8, 128.2, 127.93, 127.90, 123.6, 123.5, 116.7, 111.5, 81.6, 64.6, 60.9.

IR (film): 3417, 2938, 1712, 1512, 1466, 1241, 1073, 1036, 1002, 908, 822, 732 cm⁻¹; **HRMS** (EI) m/z calcd for C₂₇H₁₉N₂OBr [M-CH₄O]⁺: 466.0681; found: 466.0680. **MALDI-TOF-MS** m/z 499.10 ([M+H]⁺).

3-Benzhydryl-2-methoxy-3-((4-methoxyphenyl)amino)isoindolin-1-one (3l)

The reaction of **1a** (0.36 mmol), **2d** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3l** (120 mg, 89 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a white solid; **m.p.** 142 – 144 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.64 (d, *J* = 7.4 Hz, 1H), 7.57 – 7.50 (m, 1H), 7.47 – 7.37 (m, 4H), 7.32 – 7.21 (m, 3H), 7.20 – 7.08 (m, 5H), 6.48 (d, *J* = 9.0 Hz, 2H), 6.11 (d, *J* = 9.0 Hz, 2H), 4.91 (s, 1H), 4.40 (s, 1H), 3.81 (s, 3H), 3.60 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 163.6, 153.2, 141.9, 137.8, 137.0, 131.9, 131.1, 130.3, 130.1, 129.4, 128.6, 128.2, 127.71, 127.69, 123.7, 123.3, 116.9, 114.2, 82.4, 64.4, 61.1, 55.3.

IR (film): 3417, 2938, 1714, 1593, 1494, 1310, 1182, 1071, 1003, 908, 727 cm⁻¹; **HRMS** (EI) m/z calcd for $C_{29}H_{26}N_2O_3$ [M⁺]: 450.1943; found: 450.1940.

3-Benzhydryl-2-methoxy-3-(*m*-tolylamino)isoindolin-1-one (3m)

The reaction of **1a** (0.36 mmol), **2f** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3m** (60 mg, 46 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a white solid; **m.p.** 185 – 187 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 7.4 Hz, 1H), 7.55 (td, *J* = 7.5, 1.2 Hz, 1H), 7.47 (dd, *J* = 7.4, 1.1 Hz, 1H), 7.45 – 7.41 (m, 3H), 7.33 – 7.25 (m, 3H), 7.21 – 7.11 (m, 5H), 6.76 (t, *J* = 7.8 Hz, 1H), 6.46 (d, *J* = 7.5 Hz, 1H), 6.00 (s, 1H), 5.86 (dd, *J* = 8.1, 2.1 Hz, 1H), 4.92 (s, 1H), 4.56 (s, 1H), 3.82 (s, 3H), 2.05 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 163.50, 143.17, 141.78, 138.62, 137.64, 136.72, 131.94, 130.37, 130.04, 129.42, 128.68, 128.64, 128.20, 127.79, 127.77, 123.56, 123.36, 120.24, 116.01, 111.97, 81.75, 64.61, 61.15, 21.38.

IR (film): 3417, 3030, 2938, 1720, 1714, 1607, 1519, 1493, 1467, 1451, 1314, 1176, 1134, 1074, 1002, 907, 772, 706 cm⁻¹;

HRMS (EI) m/z calcd for $C_{28}H_{22}N_2O$ [M-CH₄O]⁺: 402.1732; found: 402.1731. **MALDI-TOF-MS** m/z 435.21 ([M+H]⁺);

3-(Bis(4-methoxyphenyl)methyl)-2-methoxy-3-(p-tolylamino)isoindolin-1-one (3n)

The reaction of **1a** (0.36 mmol), **2i** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3n** (55 mg, 37 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a pale yellow solid; **m.p.** 103 – 105 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.3 Hz, 1H), 7.53 (td, J = 7.5, 1.3 Hz, 1H), 7.44 (td, J = 7.5, 1.1 Hz, 1H), 7.40 (d, J = 7.5 Hz, 1H), 7.31 (d, J = 8.5 Hz, 2H), 7.05 (d, J = 7.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 6.71 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 8.9 Hz, 2H), 6.05 (d, J = 8.5 Hz, 2H), 4.81 (s, 1H), 4.51 (s, 1H), 3.82 (s, 3H), 3.75 (s, 3H), 3.71 (s, 3H), 2.09 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.5 , 158.84 , 158.79 , 141.95 , 140.85 , 131.8 , 131.3 , 131.0 , 130.9 , 129.9 , 129.3 , 129.0 , 128.4 , 123.3 , 115.1 , 113.9 , 113.4 , 82.0 , 64.5 , 59.5 , 55.1 , 55.0 , 20.2 .

IR (film): 3412, 2999, 2936, 2838, 1722, 1713, 1609, 1514, 1464, 1303, 1250, 1180, 1034, 908, 813, 736 cm⁻¹;

HRMS (EI) m/z calcd for $C_{30}H_{26}N_2O_3$ [M-CH₄O]⁺: 462.1943; found: 462.1947. **MALDI-TOF-MS** m/z 495.23 ([M+H]⁺);

3-(Bis(4-chlorophenyl)methyl)-2-methoxy-3-(p-tolylamino)isoindolin-1-one) (30)

The reaction of **1a** (0.36 mmol), **2j** (0.3 mmol), [Cp*RhCl₂]₂ (0.015 mmol), Cl₃CCOOCs (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3o** (60 mg, 40 %) after chromatography on silica gel (petroleum ether/ethyl acetate 4:1) as a pale yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.4 Hz, 1H), 7.56 (td, *J* = 7.5, 1.3 Hz, 1H), 7.48 (td, *J* = 7.5, 1.1 Hz, 1H), 7.41 (d, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 8.5 Hz, 2H), 7.25 (d, *J* = 8.8 Hz, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 7.09 (d, *J* = 8.1 Hz, 2H), 6.73 (d, *J* = 8.3 Hz, 2H), 6.05 (d, *J* = 8.5 Hz, 2H), 4.87 (s, 1H), 4.39 (s, 1H), 3.80 (s, 3H), 2.10 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.4 , 141.5 , 140.4 , 135.8 , 135.0 , 134.0 , 133.9 , 132.2 , 131.6 , 131.2 , 130.8 , 129.7 , 129.4 , 129.1 , 128.8 , 128.5 , 123.7 , 123.3 , 115.4 , 81.6 , 64.6 , 60.1 , 20.3.

IR (film): 3419, 2939, 2920, 1722, 1713, 1616, 1519, 1493, 1467, 1301, 1093, 1073, 1014, 908, 810, 734, 695 cm⁻¹;

HRMS (EI) m/z calcd for $C_{28}H_{20}N_2OCl_2$ [M-CH₄O]⁺: 470.0953; found: 470.0950. **MALDI-TOF-MS** m/z 503.13 ([M+H]⁺);

3-Benzhydryl-2-methoxy-3-(p-tolylamino)-2,3-dihydro-1H-benzo[f]isoindol-1-one(3pa)

The reaction of **1b** (0.36 mmol), **2a** (0.3 mmol), [Cp*RhCl₂]₂ (0.015 mmol), Cl₃CCOOCs (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3pa** + **3pb** after chromatography on silica gel (petroleum ether/ethyl acetate 5:1) . **3pa** (45 mg, 31 %) was obtained as a white solid; **m.p.** 193 – 195 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.01 – 7.93 (m, 1H), 7.90 – 7.84 (m, 1H), 7.83 (s, 1H), 7.63 – 7.54 (m, 2H), 7.49 – 7.42 (m, 2H), 7.31 – 7.24 (m, 3H), 7.19 – 7.09 (m, 5H), 6.66 (d, *J* = 8.3 Hz, 2H), 6.04 (d, *J* = 8.5 Hz, 2H), 4.98 (s, 1H), 4.63 (s, 1H), 3.82 (s, 3H), 2.05 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.3, 140.6, 137.8, 136.9, 136.8, 134.8, 133.4, 130.3, 130.1, 129.6, 129.4, 128.7, 128.6, 128.5, 128.3, 128.2, 127.9, 127.76, 127.75, 127.0, 123.9, 123.1, 115.3, 81.9, 64.5, 61.5, 20.2

IR (film): 3417, 2925, 1712, 1615, 1519, 1452, 1347, 1302, 1067, 909, 733, 707, 646 cm⁻¹;

HRMS (EI) m/z calcd for $C_{33}H_{28}N_2O_2$ [M⁺]: 484.2151; found:484.2151.

1-Benzhydryl-2-methoxy-1-(p-tolylamino)-1,2-dihydro-3H-benzo[e]isoindol-3-one(3pb)

The reaction of **1b** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **3pa** + **3pb** after chromatography on silica gel (petroleum ether/ethyl acetate 5:1) . **3pb** (48 mg, 33 %) was obtained as a white solid; **m.p.** 111 – 112 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 7.7 Hz, 1H), 7.98 – 7.93 (m, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.80 (d, J = 7.3 Hz, 2H), 7.64 – 7.52 (m, 3H), 7.43 (t, J = 7.3 Hz, 2H), 7.40 – 7.33 (m, 1H), 7.04 (t, J = 7.3 Hz, 1H), 6.96 (t, J = 7.5 Hz, 2H), 6.79 (d, J = 7.4 Hz, 2H), 6.64 (d, J = 8.3 Hz, 2H), 6.08 (d, J = 8.5 Hz, 2H), 5.08 (s, 1H), 4.79 (s, 1H), 3.78 (s, 3H), 2.03 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.6, 141.0, 139.4, 137.1, 136.3, 135.6, 131.5, 130.5, 129.6, 129.5, 129.4, 128.9, 128.8, 128.4, 128.0, 127.9, 127.67, 127.66, 127.5, 127.1, 123.5, 118.9, 115.1, 81.9, 64.5, 64.1, 20.2.

IR (film): 3413, 2925, 1714, 1615, 1519, 1495, 1452, 1301, 1034, 909, 807, 760, 732, 706 cm⁻¹; **HRMS** (EI) m/z calcd for $C_{33}H_{28}N_2O_2$ [M⁺]: 484.2151; found:484.2157.

Synthetic procedure and Characterization data for 4

Typical procedure for the preparation of

3-(Diphenylmethylene)-2-(p-tolyl)-2,3-dihydro-1*H*-benzo[*e*]isoindol-1-one (4a)

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially **1c** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol), 4A MS (60 mg) and dry DCE (2 mL) under N₂ atmosphere. The reaction vessel was heated to 80°C in oil bath for 10 hours. Upon completion, the reaction mixture was cooled to room temperature and then the solvent was evaporated in vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 20:1) to give the product **4a** (97 mg, 74 %) as a yellow solid; **m.p.** 146 – 148 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.23 (d, J = 8.3 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.68 – 7.61 (m, 2H), 7.56 – 7.51 (m, 1H), 7.50 – 7.39 (m, 5H), 7.00 (d, J = 8.3 Hz, 2H), 6.95 – 6.86 (m, 5H), 6.84 (d, J = 8.1 Hz, 2H), 6.54 (d, J = 8.8 Hz, 1H), 2.17 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.2, 141.6, 139.9, 138.1, 135.8, 134.8, 134.1, 133.3, 132.0, 131.6, 131.1, 129.0, 128.9, 128.8, 128.7, 128.5, 128.3, 127.8, 127.6, 127.2, 127.1, 126.9, 124.5, 122.7, 120.8, 20.9.

IR (film): 3056, 1698, 1512, 1443, 1359, 1205, 1127, 1096, 825, 756, 701 cm⁻¹; **HRMS** (EI) m/z calcd for C₃₂H₂₃NO [M⁺]: 437.1780; found:437.1782.

3-(Diphenylmethylene)-2-(m-tolyl)-2,3-dihydro-1*H*-benzo[*e*]isoindol-1-one (4b)

The reaction of **1c** (0.36 mmol), **2f** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4b** (97 mg, 74 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 149 – 150 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.23 (d, *J* = 8.5 Hz, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.68 – 7.60 (m, 2H), 7.57 – 7.37 (m, 6H), 7.03 – 6.83 (m, 8H), 6.75 (d, *J* = 7.6 Hz, 1H), 6.55 (d, *J* = 8.8 Hz, 1H), 2.13 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.1, 141.6, 140.0, 138.0, 137.5, 136.4, 134.6, 133.3, 132.1, 131.5, 130.8, 129.0, 128.9, 128.8, 128.7, 128.6, 128.3, 127.81, 127.75, 127.2, 127.0, 126.85, 126.84, 124.9, 124.5, 122.6, 120.8, 21.0.

IR (film): 3054, 1694, 1587, 1518, 1489, 1442, 1360, 1205, 1125, 909, 825, 755, 732, 702, 646 cm⁻¹;

HRMS (EI) m/z calcd for C₃₂H₂₃NO [M⁺]: 437.1780; found:437.1787.

3-(Diphenylmethylene)-2-(4-methoxyphenyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one (4c)

The reaction of **1c** (0.36 mmol), **2d** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4c** (63 mg, 46 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 136 – 138 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.22 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.69 – 7.60 (m, 2H), 7.57 – 7.37 (m, 6H), 7.07 – 7.00 (m, 2H), 6.99 – 6.85 (m, 5H), 6.62 – 6.56 (m, 2H), 6.54 (d, *J* = 8.8 Hz, 1H), 3.69 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3 , 157.6 , 141.6 , 139.9 , 138.0 , 134.9 , 133.3 , 132.0 , 131.5 , 131.0 , 129.7 , 129.0 , 128.89 , 128.86 , 128.7 , 128.3 , 127.8 , 127.2 , 126.9 , 124.5 , 122.6 , 120.8 , 113.4 , 55.4 .

IR (film): 3045, 1694, 1510, 1442, 1293, 1246, 1207, 1129, 1031, 910, 826, 756, 732, 702, 622 cm⁻¹;

HRMS (EI) m/z calcd for $C_{32}H_{23}NO_2$ [M⁺]: 453.1729; found: 453.1732.

Ethyl 4-(3-(diphenylmethylene)-1-oxo-1,3-dihydro-2H-benzo[e]isoindol-2-yl)benzoate (4d)

The reaction of **1c** (0.36 mmol), **2e** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4d** (94 mg, 63 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 91 – 93 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.20 (d, *J* = 8.5 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.78 – 7.72 (m, 2H), 7.68 – 7.64 (m, 2H), 7.58 – 7.54 (m, 1H), 7.54 – 7.41 (m, 5H), 7.27 – 7.21 (m, 2H), 6.93 – 6.89 (m, 5H), 6.56 (d, *J* = 8.8 Hz, 1H), 4.32 (q, *J* = 7.1 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.8 , 166.1 , 141.1 , 140.9 , 139.8 , 138.3 , 134.0 , 133.4 , 132.6 , 131.5 , 131.0 , 129.5 , 129.3 , 129.0 , 128.5 , 127.9 , 127.7 , 127.6 , 127.5 , 127.2 , 127.0 , 124.4 , 122.3 , 120.6 , 60.9 , 14.3 .

IR (film): 3056, 2981, 1703, 1604, 1517, 1443, 1358, 1273, 1192, 1106, 1019, 911, 825, 748, 701 cm⁻¹;

HRMS (EI) m/z calcd for $C_{34}H_{25}NO_3$ [M⁺]: 495.1834; found: 495.1833.

3-(Diphenylmethylene)-2-(naphthalen-2-yl)-2,3-dihydro-1*H*-benzo[*e*]isoindol-1-one (4e)

The reaction of **1c** (0.36 mmol), **2g** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4e** (95 mg, 67 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 211 – 212 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.25 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.70 – 7.62 (m, 4H), 7.60 (d, J = 2.0 Hz, 1H), 7.54 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.52 – 7.43 (m, 6H), 7.40 – 7.34 (m, 2H), 7.29 – 7.23 (m, 1H), 6.89 (d, J = 7.3 Hz, 2H), 6.70 (t, J = 7.7 Hz, 2H), 6.63 – 6.56 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.2 , 141.4 , 139.8 , 138.1 , 134.7 , 134.2 , 133.4 , 132.7 , 132.3 , 131.6 , 131.5 , 130.8 , 129.2 , 129.0 , 128.9 , 128.8 , 128.3 , 127.8 , 127.7 , 127.6 , 127.3 , 127.1 , 127.0 , 126.9 , 126.7 , 125.8 , 125.7 , 125.6 , 124.5 , 122.6 , 120.8 .

IR (film): 3054, 2924, 1698, 1597, 1517, 1469, 1442, 1367, 1266, 1207, 1117, 825, 754, 701 cm⁻¹; **HRMS** (EI) m/z calcd for C₃₅H₂₃NO [M⁺]: 473.1780; found: 473.1776.

3-(Bis(4-methoxyphenyl)methylene)-2-(p-tolyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one (4f)

The reaction of **1c** (0.36 mmol), **2i** (0.3 mmol), [Cp*RhCl₂]₂ (0.015 mmol), Cl₃CCOOCs (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4f** (107 mg, 72 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 181 – 184 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.23 (d, *J* = 8.3 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.68 – 7.60 (m, 2H), 7.52 (ddd, *J* = 8.2, 6.9, 1.3 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.03 – 6.95 (m, 4H), 6.86 (d, *J* = 8.1 Hz, 2H), 6.83 – 6.77 (m, 2H), 6.64 (d, *J* = 8.8 Hz, 1H), 6.49 – 6.38 (m, 2H), 3.92 (s, 3H), 3.68 (s, 3H), 2.19 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1 , 160.2 , 158.9 , 138.3 , 135.5 , 134.2 , 134.0 , 133.3 , 133.08 , 133.06 , 132.7 , 132.6 , 131.9 , 129.1 , 128.7 , 128.5 , 128.1 , 127.7 , 127.4 , 126.6 , 124.5 , 122.2 , 120.8 , 114.2 , 112.7 , 55.4 , 55.2 , 20.9 .

IR (film): 2929, 1693, 1602, 1511, 14621, 1359, 1302, 1249, 1173, 1031, 826, 761, 732 cm⁻¹; **HRMS** (EI) m/z calcd for $C_{34}H_{27}NO_3$ [M⁺]: 497.1991; found: 497.1993.

3-(Bis(4-chlorophenyl)methylene)-2-(p-tolyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one (4g)

The reaction of **1c** (0.36 mmol), **2j** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4g** (91 mg, 60 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 199 – 200 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 9.25 – 9.15 (m, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.66 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.55 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.48 – 7.41 (m, 2H), 7.37 – 7.30 (m, 2H), 6.99 – 6.92 (m, 2H), 6.92 – 6.85 (m, 4H), 6.79 – 6.72 (m, 2H), 6.63 (d, J = 8.8 Hz, 1H), 2.23 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.9 , 139.6 , 138.0 , 137.5 , 136. 5 , 135.5 , 135.0 , 133.7 , 133.4 , 133.3 , 132.9 , 132.3 , 132.1 , 129.3 , 128.9 , 128.8 , 128.5 , 127.9 , 127.6 , 127.4 , 127.1 , 125.3 , 124.5 , 122.8 , 120.5 , 20.9 .

IR (film): 2922, 1703, 1694, 1587, 1514, 1487, 1399, 1361, 1206, 1128, 1090, 1015, 908, 824, 756, 732 cm⁻¹;

HRMS (EI) m/z calcd for $C_{32}H_{21}NOCl_2$ [M⁺]: 505.1000; found: 505.1000.

3-(Di([1,1'-biphenyl]-4-yl)methylene)-2-(p-tolyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one (4h)

The reaction of **1c** (0.36 mmol), **2m** (0.3 mmol), [Cp*RhCl₂]₂ (0.015 mmol), Cl₃CCOOCs (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4h** (164 mg, 93 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 214 – 216 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 9.25 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.77 – 7.70 (m, 4H), 7.65 (td, J = 8.6, 2.3 Hz, 2H), 7.56 – 7.47 (m, 5H), 7.45 – 7.37 (m, 5H), 7.36 – 7.29 (m, 1H), 7.12 (d, J = 8.3 Hz, 2H), 7.02 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 8.3 Hz, 2H), 6.85 (d, J = 8.1 Hz, 2H), 6.76 (d, J = 8.8 Hz, 1H), 2.10 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.1 , 141.4 , 140.8 , 140.4 , 140.2 , 138.8 , 138.0 , 135.9 , 134.9 , 134.0 , 133.3 , 132.2 , 132.1 , 131.5 , 129.0 , 128.9 , 128.7 , 128.6 , 128.3 , 127.83 , 127.80 , 127.74 , 127.70 , 127.4 , 127.3 , 127.0 , 126.92 , 126.87 , 126.0 , 124.5 , 122.6 , 120.9 , 20.9 .

IR (film): 3028, 2920, 1694, 1512, 1486, 1361, 1192, 1128, 1095, 825, 766, 740, 619 cm⁻¹; **HRMS** (EI) m/z calcd for C₄₄H₃₁NO [M⁺]: 589.2406; found: 589.2411.

3-(Bis(3,4-dimethoxyphenyl)methylene)-2-(p-tolyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one (4i)

The reaction of **1c** (0.36 mmol), **2k** (0.3 mmol), [Cp*RhCl₂]₂ (0.015 mmol), Cl₃CCOOCs (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4i** (117 mg, 70 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 180 – 183 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.23 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.69 – 7.62 (m, 2H), 7.53 (ddd, *J* = 8.1, 7.0, 1.2 Hz, 1H), 7.03 (d, *J* = 7.4 Hz, 3H), 6.95 (d, *J* = 8.2 Hz, 1H), 6.88 (d, *J* = 7.9 Hz, 3H), 6.67 (d, *J* = 8.8 Hz, 1H), 6.46 (s, 3H), 4.00 (s, 3H), 3.81 (s, 3H), 3.76 (s, 3H), 3.69 (s, 3H), 2.19 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.09, 149.79, 149.07, 148.53, 147.31, 138.28, 135.59, 134.22, 133.96, 133.48, 133.15, 132.92, 131.94, 129.08, 128.93, 128.41, 128.21, 127.77, 127.09, 126.68, 124.80, 124.66, 124.42, 122.28, 120.88, 114.42, 111.03, 110.19, 56.03, 55.95, 55.87, 55.54, 20.89.

IR (film): 2930, 1694, 1597, 1512, 1463, 1409, 1325, 1253, 1168, 1139, 1026, 826 cm⁻¹; **HRMS** (EI) m/z calcd for $C_{36}H_{31}NO_5$ [M⁺]: 557.2202; found: 557.2205.

3-(Bis(4-(tert-butyl)phenyl)methylene)-2-(p-tolyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one(4j)

The reaction of **1c** (0.36 mmol), **2l** (0.3 mmol), [Cp*RhCl₂]₂ (0.015 mmol), Cl₃CCOOCs (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4j** (119 mg, 72 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 258 – 261 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.23 (d, *J* = 8.5 Hz, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.67 – 7.60 (m, 2H), 7.52 (ddd, *J* = 8.2, 6.9, 1.3 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.37 – 7.31 (m, 2H), 6.99 – 6.93 (m, 2H), 6.92 – 6.87 (m, 2H), 6.84 – 6.77 (m, 4H), 6.57 (d, *J* = 8.8 Hz, 1H), 2.15 (s, 3H), 1.41 (s, 9H), 1.17 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.1 , 152.0 , 150.2 , 138.5 , 138.2 , 137.1 , 135.3 , 134.23 , 134.19 , 133.2 , 131.8 , 131.2 , 130.8 , 129.2 , 129.1 , 128.4 , 128.1 , 127.7 , 126.7 , 125.6 , 124.5 , 124.0 , 122.5 , 120.9 , 34.8 , 34.4 , 31.4 , 31.1 , 20.9 .

IR (film): 2961, 2867, 1698, 1513, 1361, 1267, 1213, 1192, 1129, 1111, 1019, 825, 777, 756 cm⁻¹; **HRMS** (EI) m/z calcd for C₄₀H₃₉NO [M⁺]: 549.3032; found: 549.3040.

5-Bromo-3-(diphenylmethylene)-2-(p-tolyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one(4k)

The reaction of **1p** (0.36 mmol), **2a** (0.3 mmol), [Cp*RhCl₂]₂ (0.015 mmol), Cl₃CCOOCs (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4k** (76 mg, 49 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 234 – 235 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.27 (d, J = 7.8 Hz, 1H), 8.20 (d, J = 8.2 Hz, 1H), 7.68 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.62 (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), 7.58 – 7.46 (m, 3H), 7.40 (dt, J = 6.8, 1.5 Hz, 2H), 7.03 – 6.96 (m, 2H), 6.96 – 6.82 (m, 7H), 6.78 (s, 1H), 2.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.5 , 141.0 , 139.5 , 138.0 , 136.0 , 133.8 , 133.65 , 131.61 , 131.5 , 131.0 , 129.7 , 129.6 , 129.1 , 128.98 , 128.96 , 128.6 , 128.0 , 127.5 , 127.4 , 127.33 , 127.30 , 127.2 , 125.3 , 124.9 , 122.1 , 20.9 .

IR (film): 3056, 2924, 2854, 1703, 1698, 1513, 1443, 1367, 1208, 1129, 910, 764, 733, 701 cm⁻¹; **HRMS** (EI) m/z calcd for C₃₂H₂₂NOBr [M⁺]: 515.0885; found:515.0884.

3-(Diphenylmethylene)-5-ethoxy-2-(p-tolyl)-2,3-dihydro-1H-benzo[e]isoindol-1-one(4l)

The reaction of **1q** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4l** (66 mg, 46 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 262 – 263 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 9.14 (d, J = 8.3 Hz, 1H), 8.20 (d, J = 8.3 Hz, 1H), 7.63 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.53 – 7.41 (m, 6H), 7.03 – 6.98 (m, 2H), 6.95 – 6.87 (m, 5H), 6.83 (d, J = 8.0 Hz, 2H), 5.86 (s, 1H), 3.64 (q, J = 7.0 Hz, 2H), 2.16 (s, 3H), 1.34 (t, J = 7.0 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.2 , 157.6 , 141.8 , 139.8 , 139.7 , 135.5 , 135.2 , 134.3 , 131.6 , 130.9 , 129.8 , 128.9 , 128.6 , 128.45 , 128.39 , 127.8 , 127.4 , 127.1 , 126.9 , 126.1 , 125.8 , 124.3 , 122.2 , 115.5 , 99.8 , 63.2 , 20.9 , 14.6 .

IR (ATR): 3058, 1697, 1579, 1512, 1360, 1280, 1209, 1176, 1136, 1097, 1025, 827, 772, 755, 698, 623 cm⁻¹;

HRMS (EI) m/z calcd for $C_{34}H_{27}NO_2$ [M⁺]: 481.2042; found: 481.2043.

7-Chloro-3-(diphenylmethylene)-2-(p-tolyl)isoindolin-1-one(4m)

The reaction of **1d** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4m** (77 mg, 61 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 156 – 158 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.49 – 7.40 (m, 3H), 7.35 (dd, *J* = 7.8, 1.5 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.12 (t, *J* = 8.0 Hz, 1H), 6.94 (d, *J* = 8.2 Hz, 2H), 6.92 – 6.84 (m, 3H), 6.81 (d, *J* = 8.2 Hz, 4H), 6.37 (d, *J* = 8.0 Hz, 1H), 2.15 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.8, 141.4, 140.5, 139.6, 136.0, 133.6, 132.7, 132.2, 131. 6, 131.0, 130.7, 130.1, 129.0, 128.7, 128.5, 128.0, 127.4, 127.2, 127.0, 124.8, 122.1, 20.9.

IR (film): 3056, 2923, 1714, 1596, 1512, 1463, 1360, 1330, 1261, 1229, 1099, 803, 756, 695, 669, 648 cm⁻¹;

HRMS (EI) m/z calcd for C₂₈H₂₀NOCl [M⁺]: 421.1233; found:421.1230.

3-(Diphenylmethylene)-7-methyl-2-(p-tolyl)isoindolin-1-one(4n)

The reaction of **1e** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4n** (54 mg, 45 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 175 – 176 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 3H), 7.38 – 7.33 (m, 2H), 7.14 (d, *J* = 7.4 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 8.3 Hz, 2H), 6.90 – 6.84 (m, 3H), 6.84 – 6.77 (m, 4H), 6.31 (d, *J* = 7.7 Hz, 1H), 2.74 (s, 3H), 2.15 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 141.8, 140.0, 138.7, 137.7, 135.7, 134.03, 133.99, 131.3, 131.1, 130.65, 130.63, 128.9, 128.4, 128.3, 127.4, 127.1, 126.6, 126.4, 126.1, 121.2, 20.9, 17.8.
 IR (film): 3055, 2923, 1704, 1601, 1513, 1444, 1361, 1332, 1219, 1115, 696, 668, 652 cm⁻¹;
 HRMS (EI) m/z calcd for C₂₉H₂₃NO [M⁺]: 401.1780; found:401.1784.

3-(diphenylmethylene)-7-phenyl-2-(p-tolyl)isoindolin-1-one (40)

The reaction of **1f** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4n** (33 mg, 24 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a yellow solid; **m.p.** 191 – 193 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.58 – 7.53 (m, 2H), 7.49 – 7.35 (m, 8H), 7.32 (dd, *J* = 7.5, 1.1 Hz, 1H), 7.25 (t, *J* = 3.8 Hz, 1H), 6.94 – 6.90 (m, 2H), 6.90 – 6.81 (m, 5H), 6.76 (d, *J* = 8.1 Hz, 2H), 6.52 (dd, *J* = 7.8, 1.2 Hz, 1H), 2.12 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.4 , 141.9 , 140.9 , 140.0 , 139.2 , 137.5 , 135.7 , 133.9 , 133.7 , 131.3 , 131.2 , 130.8 , 130.7 , 129.8 , 129.0 , 128.5 , 128.4 , 127.7 , 127.53 , 127.48 , 127.1 , 126.78 , 126.76 , 124.7 , 122.7 , 20.8.

IR (film): 3057, 3029, 2924, 1711, 1597, 1513, 1474, 1444, 1360, 1259, 1223, 1118, 759, 697 cm⁻¹; **HRMS** (EI) m/z calcd for C₂₉H₂₃NO [M⁺]: 463.1936; found: 463.1931.

3-(Diphenylmethylene)-2-(p-tolyl)-2,3,6,7,8,9-hexahydro-1*H*-benzo[*e*]isoindol-1-one(4p)

The reaction of **1g** (0.36 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), $Cl_3CCOOCs$ (0.09 mmol) and 4A MS (60 mg) in DCE (2 mL) following the typical procedure afforded **4n** (61 mg, 46 %) after chromatography on silica gel (petroleum ether/ethyl acetate 20:1) as a pale yellow solid; **m.p.** 157 – 158 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 3H), 7.38 – 7.33 (m, 2H), 6.96 – 6.90 (m, 3H), 6.89 – 6.83 (m, 3H), 6.83 – 6.77 (m, 4H), 6.19 (d, *J* = 8.2 Hz, 1H), 3.32 (t, *J* = 5.6 Hz, 2H), 2.76 (t, *J* = 5.5 Hz, 2H), 2.15 (s, 3H), 1.86 – 1.74 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 141.9, 140.1, 138.5, 136.7, 136.6, 135.6, 134.14, 134.10, 132.7, 131.1, 130.7, 128.8, 128.4, 128.2, 127.4, 127.1, 126.5, 125.7, 125.5, 120.6, 29.6, 25.3, 22.6, 22.5, 20.9.

IR (film): 3028, 2927, 2857, 1704, 1698, 1513, 1486, 1444, 1360, 1203, 1135, 1100, 909, 756, 697, 652 cm⁻¹;

HRMS (EI) m/z calcd for C₃₂H₂₇NO [M⁺]: 441.2093; found:441.2096.

Synthetic procedure and Characterization data for 5 and 6

Typical procedure for the preparation of 3-(Diphenylmethylene)-2-methoxyisoindolin-1-one (5a):

To a 25 ml pressure tube charged with a magnetic stir bar was added **3a** (0.1 mmol), BF₃·OEt₂ (0.3 mmol), and 1.5 mL acetone as solvent. The reaction vessel was sealed and heated to 80 °C in an oil bath for a period of 3 hours. Then the solvent was removed under reduce pressure, and the residue was subject to silica gel column chromatography with ethyl acetate/petroleum ether = 10:1 (v:v) as eluent. The product **5a** was obtained as a white solid (27 mg, 83%), **m.p.** 170 – 171 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.6 Hz, 1H), 7.46 – 7.20 (m, 12H), 6.46 (d, *J* = 8.0 Hz, 1H), 3.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 163.3 , 140.5 , 139.5 , 134.0 , 131.9 , 130.6 , 130.3 , 128.9 , 128.7 , 128.5 , 128.3 , 127.7 , 127.3 , 127.0 , 126.1 , 123.6 , 123.1 , 62.6 .

IR (ATR): 3566, 1713, 1442, 1305, 1267, 1189, 1114, 1032, 997, 951, 911, 756, 698, 638 cm⁻¹; **HRMS** (EI) m/z calcd for C₂₂H₁₇NO₂ [M⁺]: 327.1259; found:327.1263.

Preparation of 3-(Diphenylmethylene)-2-methoxy-6-methylisoindolin-1-one (5b):

The reaction of **3h** (0.1 mmol), BF₃·OEt₂ (0.3 mmol), and acetone (1.5mL) following the typical procedure afforded **5b** (26 mg, 76 %) after chromatography on silica gel (petroleum ether/ethyl acetate 10:1) as a white solid, **m.p.** 166 – 168 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.44 – 7.38 (m, 3H), 7.37 – 7.27 (m, 7H), 7.08 – 7.02 (m, 1H), 6.33 (d, *J* = 8.1 Hz, 1H), 3.43 (s, 3H), 2.38 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.6 , 140.7 , 139.5 , 139.1 , 133.0 , 131.5 , 130.6 , 130.4 , 128.9 , 128.5 , 128.4 , 127.6 , 127.3 , 127.1 , 125.2 , 123.5 , 123.3 , 62.6 , 21.4 .

IR (ATR): 3055, 1710, 1488, 1443, 1320, 1264, 1194, 1128, 1017, 827, 753, 699, 651, 631 cm⁻¹; **HRMS** (EI) m/z calcd for $C_{23}H_{19}NO_2$ [M⁺]: 341.1416; found: 341.1414.

Preparation of 5-Chloro-3-(diphenylmethylene)-2-methoxyisoindolin-1-one (5c):

The reaction of **3d** (0.1 mmol), $BF_3 \cdot OEt_2$ (0.3 mmol), and acetone (1.5mL) following the typical procedure afforded **5c** (31 mg, 86 %) after chromatography on silica gel (petroleum ether/ethyl acetate 10:1) as a white solid, **m.p.** 215 – 217 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.76 (d, *J* = 8.1 Hz, 1H), 7.51 – 7.43 (m, 3H), 7.37 – 7.28 (m, 8H), 6.35 (d, *J* = 1.7 Hz, 1H), 3.44 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.5 , 139.9 , 139.0 , 138.2 , 135.4 , 130.5 , 130.3 , 129.1 , 129.03 , 128.98 , 128.0 , 127.5 , 127.4 , 125.3 , 124.3 , 123.9 , 62.8 .

IR (ATR): 3077, 1718, 1607, 1451, 1424, 1317, 1273, 1186, 1121, 1075, 1014, 958, 761, 696 cm⁻¹; **HRMS** (EI) m/z calcd for C₂₂H₁₆NO₂Cl [M⁺]: 361.0870; found: 361.0866.

Preparation of 3-(Diphenylmethylene)-2,5-dimethoxyisoindolin-1-one (5d):

The reaction of **3c** (0.1 mmol), BF₃·OEt₂ (0.3 mmol), and acetone (1.5mL) following the typical procedure afforded **5d** (29 mg, 81 %) after chromatography on silica gel (petroleum ether/ethyl acetate 10:1) as a white solid, **m.p.** 194 - 196 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 1H), 7.47 – 7.42 (m, 3H), 7.39 – 7.36 (m, 2H), 7.33 – 7.27 (m, 5H), 6.89 (dd, J = 8.4, 2.3 Hz, 1H), 5.88 (d, J = 2.2 Hz, 1H), 3.45 (s, 3H), 3.43 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.8, 162.8, 140.6, 139.4, 136.3, 130.6, 130.3, 129.0, 128.8,

128.5, 127.7, 127.4, 125.8, 124.6, 119.8, 116.6, 107.6, 62.5, 55.0.

IR (ATR): 3002, 1708, 1617, 1581, 1476, 1440, 1355, 1278, 1214, 1165, 1117, 1009, 962, 757, 697, 642 cm⁻¹;

HRMS (EI) m/z calcd for $C_{23}H_{19}NO_3$ [M⁺]: 357.1365; found: 357.1368.

Preparation of N-(2,2-diphenyl-1-(p-tolylimino)ethyl)-N-methoxybenzamide (6):

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially **1a** (0.45 mmol), **2a** (0.3 mmol), $[Cp*RhCl_2]_2$ (0.015 mmol), AgNTf₂ (0.045 mmol), 4A MS (60 mg) and dry DCE (2 mL) under N₂ atmosphere. The reaction vessel was heated to reflux in oil bath for 10 hours. Upon completion, The reaction mixture was cooled to room temperature and then the solvent was evaporated in vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 10:1) to give the product **6** (125 mg, 96 %) as a white solid; **m.p.** 118 – 124 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.29 – 7.25 (m, 8H), 7.24 – 7.20 (m, 3H), 7.12 – 7.06 (m, 4H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.69 (d, *J* = 7.9 Hz, 2H), 5.46 (s, 1H), 3.62 (s, 3H), 2.24 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 171.6 , 139.3 , 138.9 , 136.6 , 135.4 , 130.0 , 129.6 , 129.4 , 128.6 , 128.0 , 127.6 , 127.3 , 126.6 , 62.1 , 54.1 , 21.0 .

IR (ATR): 3060, 2926, 1661, 1602, 1509, 1451, 1329, 1298, 1180, 1050, 923, 897, 796, 742, 700 cm⁻¹;

HRMS (EI) m/z calcd for $C_{29}H_{26}N_2O_2$ [M⁺]: 434.1994; found: 434.1996.

Scheme S1. Mechanistic Experiments and Their Procedures

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially **6** (0.2 mmol), $[Cp*RhCl_2]_2$ (0.01 mmol), Cl_3CCO_2Cs (0.06 mmol), 4A MS (40 mg) and dry DCE (1.5 mL) under N₂ atmosphere. The reaction vessel was heated to reflux in oil bath for 10 hours. Upon completion, TLC showed that no [4+1] or [4+2] product was found and the reactant was unreacted.

(2) The reversibility of the C-H activation step in absence of ketenimines

To a dried Schlenk tube equipped with a Teflon-coated magnetic stirring bar were added **1a** (31 mg, 0.2 mmol), $[Cp*RhCl_2]_2$ (6 mg, 0.01 mmol), Cl_3CCO_2Cs (18 mg, 0.06 mmol), 4A MS (40mg), D₂O (0.2 mmol, 4 µL) and DCE (1.5 mL) under N₂ atmosphere. The reaction vessel was stirred at 80°C for 30 minutes. The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 1:1) to afford **1a** (30 mg, 97%).

Following general procedure, to a dried Schlenk tube equipped with a Teflon-coated magnetic stirring bar were added **1a** (0.24 mmol), **2a** (0.2 mmol), $[Cp*RhCl_2]_2$ (0.01 mmol), $Cl_3CCOOCs$ (0.06 mmol), 4A M S(40 mg) and DCE (1.5 mL) under N₂ atmosphere. In another Schlenk tube, **1a-d₅** (0.24 mmol) was used instead of **1a**. The two reactions were allowed to stir at 80 °C for 30 min and then were combined. The solvent was removed under vacuum and the residue was

purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to afford the product (59 mg, 34% combined yield). The value of K_H/K_D was obtained based on ¹HNMR.

(4) [4+1] reaction with the additive of D₂O

To a dried Schlenk tube equipped with a Teflon-coated magnetic stirring bar were added **1a** (0.24 mmol), **2a** (0.2 mmol), ([Cp*RhCl₂]₂ (0.01 mmol), Cl₃CCOOCs (0.06 mmol), 4A MS(40mg), D₂O (0.2 mmol, 4 μ L) and DCE (1.5 mL) under N₂ atmosphere. The reaction vessel was stirred at 80°C for 10 hours. The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to afford **1a** (51 mg, 59%).

Figure S3. UV-vis absorption and fluorescence spectra of 4a-5d

All the absorption and emission spectra were obtained in a concentration scale of 10^{-5} M. Then they were normalized except the absorption spectra of **5a-d**. Back line respects absorption in the THF. Red line respect absorption and emission in THF/water mixtures (5:95), respectively. Blue line stands for emission in solid.
Method	UV	B3LYP/6-31G*				$\% \Delta^b$
Compound	Absorption	LUMO	HOMO	Gap	Gap	
	$(nm)^{a}$	(Hartree)	(Hartree)	(Hartree)	(nm)	
4 a	373	-0.07686	-0.19821	0.12135	375	0.7
4 b	373	-0.08789	-0.20940	0.12151	375	0.5
4 c	372	-0.08745	-0.20712	0.11967	381	2.3
4d	376	-0.08215	-0.20465	0.12250	372	-1.1
4 e	372	-0.08904	-0.20949	0.12045	378	1.7
4f	405	-0.08240	-0.19788	0.11548	395	-2.6
4 g	375	-0.09815	-0.21873	0.12058	378	0.8
4h	394	-0.08900	-0.20455	0.11555	394	0
4i	412	-0.08484	-0.19799	0.11315	403	-2.3
4j	387	-0.08279	-0.20239	0.11960	381	-1.6
4k	374	-0.09337	-0.21318	0.11981	380	1.7
41	375	-0.08386	-0.20716	0.12330	370	-1.5
4 m	362	-0.08704	-0.21248	0.12544	363	0.3
4n	357	-0.07843	-0.20627	0.12784	356	-0.2
40	364	-0.08053	-0.20635	0.12582	362	-0.5
4 p	362	-0.07522	-0.20373	0.12851	355	-2.1
5a	348	-0.08218	-0.21369	0.13151	346	-0.4
5b	348	-0.08051	-0.21113	0.13062	349	0.2
5c	349	-0.08977	-0.21950	0.12973	351	0.6
5d	343	-0.07770	-0.21056	0.13286	343	0

Table S3. Data of DFT Studies

^{*a*} The wavelength of absorption was obtained by UV-vis spectrometer in the THF.

^{*b*} % $\Delta = 100 \text{ x} \text{ (Gap - Absorption)/Gap}$

OCH₃

Ph

Ρh

4c

-0.20940

0.12151 -0.08789

-0.20712

0.11967 -0.08745

0.12250

-0.08215

-0.20239

-0.08279

0.11960

-0.21248

0.12544

-0.20627

0.12784

0.12582

0.12851

-0.07843

-0.20635

-0.08053

-0.20373

Ph Ph 9b

-0.21113

-0.08051

-0.21950

0.12973

Copies of NMR Spectra

1p - ¹H NMR

1q - ¹H NMR

2f - ¹H NMR

2f - ¹³C NMR

2g - ¹H NMR

2g - ¹³C NMR

2i - ¹H NMR

2i - ¹³C NMR

S52

2k - ¹H NMR

2k - ¹³C NMR

2I - ¹H NMR

2n - ¹H NMR

3a - ¹H NMR

3a – ¹³C NMR

3b - ¹H NMR

3b – ¹³C NMR

3c - ¹H NMR

3c – ¹³C NMR

3d - ¹H NMR

S67

3e - ¹H NMR

3f - ¹H NMR

S71

3g - ¹H NMR

3h - ¹H NMR

3h – ¹³C NMR

3i - ¹H NMR

3k - ¹H NMR

3I - ¹H NMR

3m - ¹H NMR

3n - ¹H NMR

30 - ¹H NMR

3pb - ¹H NMR

4a - ¹H NMR

4b - ¹H NMR

4c - ¹H NMR

4d - ¹H NMR

4e - ¹H NMR

4f - ¹H NMR

4g - ¹H NMR

4h - ¹H NMR

4i - ¹H NMR

4j - ¹H NMR

4k - ¹H NMR

4I - ¹H NMR

4m - ¹H NMR

4n - ¹H NMR

4o - ¹H NMR

4p - ¹H NMR

5a - H NMR

5b –¹H NMR

6 - H NMR

