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Materials and Methods 
1.1 Synthesis of (Bu4N)2[ReIVCl4(CN)2]�2DMA (1). The synthesis of 
(Bu4N)2[ReIVCl4(CN)2]�2DMA was performed following previously reported method.1 0.4 g 
solid (Bu4N)CN was added to a stirred green solution of cis-[ReCl4(THF)2] (0.2 g) in 2 mL 
of DMF under nitrogen. The resulting dark brown solution was allowed to stir overnight 
and then exposed to air. Addition of 25 mL of water to the solution resulted in the 
formation of a brown precipitate. The precipitate was collected after filtration, washed 
with water and diethyl ether, and allowed to dry under vacuum for 1 hour. The pale 
brown solid was then dissolved in 1.5 mL of N,N-dimethylacetamide (DMA), and the 
resulting dark yellow solution was filtered through diatomaceous earth. Diffusion of 
diethyl ether vapor into the resulting filtrate yielded pale blue rod-shaped crystals 
suitable for X-ray diffraction. Anal. Calcd for C42H90N6Cl4O2Re: C, 48.54; N: 8.09; H: 
8.73. Found: C, 48.49; N: 8.07; H: 8.63. IR (300 K):  νCN  = 2120 cm-1. 
 
1.2 X-ray crystal structure at 50 K. The crystal structure was collected at the 
Stanford Nano Shared Facilities (SNSF). Single crystal of (Bu4N)2[ReIVCl4(CN)2]�2DMA 
(1) was coated with Paratone-N oil and mounted on glass fibers. The crystal was then 
quickly transferred to a Bruker D8 Venture diffractometer, and cooled cooled to 50 K 
using Helium with an N-HeliX from Oxford Cryosystems. Space group assignments were 
based upon systematic absences, E-statistics, and successful refinement of the 
structure. Structure was solved by direct methods and expanded through successive 
difference Fourier maps. They were refined against all data using the SHELXTL2 
program. Thermal parameters for all non-hydrogen atoms were refined anisotropically.  
 
1.3 Magnetic Measurements. The magnetic measurements were carried out with the 
use of Quantum Design MPMS-XL SQUID magnetometer and PPMS-9 susceptometer. 
These instruments work between 1.8 and 400 K with applied dc fields ranging from -7 to 
7 T (MPMS). Measurements were performed on a polycrystalline samples of 1 sealed in 
a polyethylene bag (3 × 0.5 × 0.02 cm; typical 20 to 40 mg) and covered with mineral oil 
or directly in their frozen mother liquor within a sealed straw to prevent desolvation of the 
solid. No evaporation of the mother liquor was observed during these measurements. 
The mass of the sample was determined after the measurements and subsequent 
mother liquor evaporation. Prior to the experiments, the field-dependent magnetization 
was measured at 100 K in order to confirm the absence of any bulk ferromagnetic 
impurities. Ac susceptibility measurements were made with an oscillating field of 1 to 6 
Oe with a frequency from 10 to 10000 Hz (PPMS). The magnetic data were corrected for 
the sample holder, mineral oil, mother liquor and the intrinsic diamagnetic contributions. 
 
1.4 Other Physical Measurements. Infrared spectra were obtained on a Perkin-
Elmer Spectrum 400 FTIR spectrometer equipped with an attenuated total reflectance 
(ATR) accessory. Carbon, hydrogen, and nitrogen analyses were obtained from the 
Microanalytical Laboratory of the University of California, Berkeley. 
 
1.5 Inelastic Neutron Scattering. INS spectra of polycrystalline 1 were obtained by 
the direct geometry, time-of-flight spectrometer IN5 at the Institut Laue-Langevin, 
Grenoble, France. Approximately 0.5 g of a nondeuterated polycrystalline sample was 
loaded into a 10-mm-diameter double-wall hollow aluminum cylinder. A standard ILL 
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Orange cryostat was employed. The data were reduced and analyzed using the LAMP 
program package.3 
 
1.6 Frequency-domain Fourier-transform THz-EPR. FD-FT THz-EPR 
experiments were performed at the THz beamline at the BESSY II storage ring. The 
setup employing coherent synchrotron radiation is described in detail elsewhere.4,5 In 
short, coherent synchrotron radiation6 with strong intensity in the THz range is coupled 
out from the synchrotron, and passed through an FT-IR spectrometer. After passing a 
polarization retarder the radiation is focused on the sample placed in an optical magnet. 
The transmitted intensity is detected by a Si-bolometer immersed in superfluid Helium. 1 
was investigated as polycrystalline powder frozen in the solvent and also as 76 mg finely 
ground powder mixed with 100 mg polyethylene and pressed to a pellet (weight 161 
mg). In the following we will abbreviate them as polycrystalline and pellet sample, 
respectively. Experimental resolution was 0.5 cm-1. These FT-IR based experiments 
required a reference. As the undamped synchrotron radiation would completely saturate 
the detector we could not use an empty magnet or a polyethylene pellet as reference. 
Therefore we used spectra of the sample measured at elevated temperatures as 
reference. Hence the transmission is obtained by dividing the spectra measured at low 
temperature by that measured at the elevated temperature which was for all the 
experiments at 33 K. Recently, it was found that it is often useful to divide spectra 
measured at different magnetic fields but the same low temperature.5,7,8 In this way non-
magnetic transmission changes are canceled out. 
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Table S1. Selected Mean Interatomic Distances (Å) and Angles (°) for 1 at 139 K 
and 50 K. 
 
 139 K 50 K 

Re-Cl 2.3509(9), 2.3407(10) 2.3212(15), 2.3357(15) 

Re-C 2.148(4) 2.140(5) 

Re-C-N 177.2(3) 177.8(5) 

Cl-Re-Cl 90.13(4) 90.18(5) 

C-Re-Cl 88.58(10), 89.57(10) 88.28(15), 89.92(15) 

 
 
 
Table S2. Crystallographic data for 1 at 139 K and 50 K. 
 

 139 K 50 K 
Crystal system triclinic 
Space group P-1 

a / Å 10.5629(8) 10.4031(6) 
b / Å 11.9119(9) 11.9265(7) 
c / Å 12.1271(9) 11.9819(7) 
α / ° 64.8130(10) 64.8219(16) 
β / ° 75.0150(10) 75.0617(17) 
γ / ° 82.1510(10) 82.2082(17) 

V / Å3 1333.2(2) 1299.34(13) 
Z 1 

µ / mm-1 2.500 2.581 
Refl. Coll. / unique 6616 / 4241 23134 / 6646 

Rint 0.031 0.086 
aR1 (I > 2σ(I)) 0.0337 0.0624 

bwR2 (all data) 0.0859 0.1708 
Goodness-of-fit 1.045 1.033 

CCDC N° 781037 1488917 
aR1 = Σ||FO|-|FC||/Σ|FO|, bwR2 = [Σw(FO

2-FC
2)2/Σw(FO

2)2]1/2 
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Figure S1. Frequency dependence of the real (χ’, top) and imaginary (χ”, 
bottom) parts of the ac susceptibility at 1.9 K under different dc fields for a 
polycrystalline sample of 1. Solid lines are guides for the eye. 
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Figure S2. Frequency dependence of the real (χ’, top) and imaginary (χ”, 
bottom) parts of the ac susceptibility at different temperatures for a polycrystalline 
sample of 1 in a 1000 Oe dc field. Solid lines are the best fits for the generalized 
Debye model. 
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Figure S3. Frequency dependence of the real (χ’, top) and imaginary (χ”, 
bottom) parts of the ac susceptibility at different temperatures for a polycrystalline 
sample of 1 in a 4000 Oe dc field. Solid lines are the best fits for the generalized 
Debye model. 
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Figure S4. Cole-Cole plots for a polycrystalline sample of 1 at temperatures from 
1.83 K to 3.1 K, under 1000 Oe applied dc field. The solid lines correspond to the 
fits to the data with α values range from 0.03-0.10. 
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Figure S5. Cole-Cole plots for a polycrystalline sample of 1 at temperatures from 
1.83 K to 3.1 K, under 2000 Oe applied dc field. The solid lines correspond to the 
fits to the data with α values range from 0.03-0.10. 
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Figure S6. Cole-Cole plots for a polycrystalline sample of 1 at temperatures from 
1.83 K to 3.1 K, under 4000 Oe applied dc field. The solid lines correspond to the 
fits to the data with α values range from 0.03-0.10. 
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Figure S7. Variable field relaxation time (τ) vs. inverse temperature (T-1). The 
solid lines are for the fitting model with direct and Raman process which is 
physically unreasonable based on the large Raman exponent, n = 12 (with A = 
3.0×104 s-1 K-1 T-4 (fixed), C = 9.1 × 10-2 s-1 K-12 and n = 12). 
 

 
Figure S8. Variable field relaxation time (τ) vs. inverse temperature (T-1). The 
solid lines are for the fitting model with direct and Orbach processes, which is not 
fitting well the experimental data (with A = 3.0×104 s-1 K-1 T-4 (fixed), τ0 = 1.2(4) × 
10-9 s and ∆eff/kB = 29 K (20 cm–1)). 
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Figure S9. Variable field relaxation time (τ) vs. inverse temperature (T-1). The 
solid lines are for the eqn 6 fitting model (see main text, Fig. 2) with A = 2.9 × 104 
s-1 K-1 T-4, C = 2.5 s-1 K-6.9, n = 6.9, τ0 = 5.7 × 10-11 s and ∆eff/kB = 39 K (27 cm–1). 
The dotted lines are the contributions of the different relaxation processes as 
indicated on the legend of the figure. 
 
 

 
Figure S10. INS spectrum of 1 shown as an intensity vs. Q (linear momentum) 
transfer map as obtained at T = 1.5 K and an incident neutron wave length of λi = 
3.0 Å. 
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Figure S11. INS spectrum of 1 shown as an intensity vs. Q (linear momentum) 
transfer map as obtained at T = 1.8 K and an incident neutron wave length of λi = 
3.5 Å. 
 
 

 
Figure S12. Generalized (neutron) density of states (gDOS) as a function of 
energy transfer (ω) as extracted from the 3.5 Å INS data (above) following the 
procedure described by Squires (Introduction to the Theory of Thermal Neutron 
Scattering, 1997, University of Cambridge, p. 55). The solid red line is the best fit 
to the function 3ω2/ωD

3, where ωD = 12 meV (139 K) is the Debye energy 
(temperature).  
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Figure S13. FD-FT THz-EPR spectra of the pellet sample of 1 at T = 5 K. The 
upper panel show transmission in the absence of a magnetic field (reference was 
a spectrum of the sample measured at 33 K). The measurements were repeated 
three times under slightly different synchrotron conditions (for each a new 
reference was also recorded). For energies of 20 cm-1 and higher the 
transmission at 5 K was slightly lower than at 33 K. However no clear feature 
could be observed. In the bottom panel, spectra measured at 5 K and at fields of 
5 and 0 T are divided. The synchrotron radiation decays with time, therefore the 
measurement order for the two shown spectra is reversed. The observed 
variations are on the noise level, which was approximately 3% for these 
experiments. To conclude, no magnetic transition could be observed on the pellet 
sample of 1 in the spectral range from 8 to 30 cm-1 with FD-FT THz-EPR. 
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Figure S14. FD-FT THz-EPR spectra of a poly-crystalline sample of 1 at T = 5 K. 
Reference spectra were measured at the same external magnetic field and at a 
temperature of 33 K. Transmission was observed as independent of temperature 
and magnetic field changes in the studied field and temperature range. The 
variations in the transmission at energies of 10 cm-1 and lower are artifacts due 
to the lower radiation intensity in this spectral range.  
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