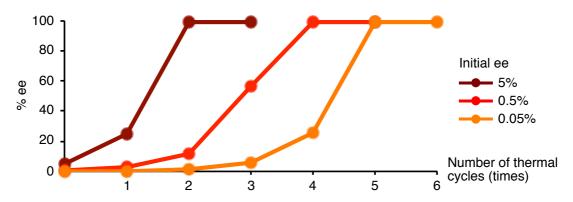
## **Electronic Supplementary Information (ESI)**

## **General comments**

Enantioenriched  $\alpha$ -(*p*-tolyl)glycine (2) was prepared by the previously reported method.<sup>18</sup> *p*-Tolualdehyde (3), benzhydrylamine (4), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and methanol used in the present work were purified by the distillations of commercial sources before use. Hydrogen cyanide (HCN) was prepared from the reaction between H<sub>2</sub>SO<sub>4</sub> and KCN (or NaCN) in water and isolated by the distillations.

Asymmetric induction of aminonitrile 1 by amino acid 2 followed by the amplification of solid ee (Table 1, entry 3): L-(p-Tolyl)glycine 2 with ca. 50% ee (46.5% ee from Chiral HPLC analysis) was prepared by mixing L-2 (110.5 mg, 97% ee) and D-2 (37.0 mg, 97% ee). To a solution of L-2 (83.4 mg, ca. 50% ee) in 1 M DBU solution of MeOH (2.4 mL) were added p-tolualdehyde (118 µL, 1.0 mmol), benzhydrylamine (173 µL, 1.0 mmol) and HCN (120 µL, 3.0 mmol) at room temperature. The crystallization of solid 1 was observed in 12 hours. After stirring the suspension for 2 days, the mixture allowed to warm to 50 °C dissolving apparently 80 to 90% of suspended solid 1. Before the complete dissolution of 1, the power of heating bath was shut off to cool to room temperature gradually for a period of >1 hour in accordance with lowering of the water bath temperature. After additional four temperature cycles, solid 1 was collected by a vacuum filtration and its ethereal solution was passed through silica gel. L-Aminonitrile 1 (131.7 mg, 0.42 mmol) with 99.1% ee was isolated in 42% yield. The filtrate was purified with silica gel column chromatography (hexane/ether = 3/1, v/v) to afford 1 (74 mg, 0.24 mmol) as a colorless solid in 24% yield.

Preparation of L and D-solid 1 with ca. 0.05% ee and following amplification in solid-phase ee: To a suspension of sodium sulfate (4.4 g) in CH<sub>2</sub>Cl<sub>2</sub>, (30 mL), were added *p*-tolualdehyde (2.0 g, 16.6 mmol) and benzhydrylamine (3.06 g, 16.6 mmol) at room temperature and the mixture was stirred for 1 day. After the filtration of the reaction mixture through celite, the solution was concentrated *in vacuo* to afford crude imine as colorless solid, and which was submitted to the next reaction without further purification. To a solution of crude imine and DBU (124  $\mu$ L, 0.84 mmol) in toluene (50


mL) was added HCN (1.96 mL, 50 mmol) at room temperature. After stirring for 7 hours, 1 M HCl (30 mL) was added to the reaction mixture and was extracted with ether (3 times). The combined organic layer was dried over sodium sulfate and ether was removed *in vacuo*. Without crystallization of **1**, the residue was purified with silica gel column chromatography (hexane/ether = 3/1 (v/v)) to afford racemic conglomerate **1** (4.84 g, 15.5 mmol) as colorless solid in the 2 steps yield of 93%. After racemic conglomerate **1** was ground into a fine powder, D-solid **1** (1.0 mg, >99.5% ee) was added to racemic conglomerate **1** (2.00 g, 6.4 mmol) and was ground again using motor and pestle to afford a fine powder of D-**1** with *ca*. 0.05% ee. The resulting powder of D-**1** (280.5 mg, 0.9 mmol) was suspended in 1 M DBU solution of methanol (2.4 mL) in the presence of HCN (73  $\mu$ L, 1.85 mmol) with stirring. The mixture was submitted to the thermal cycles to afford enantiomerically amplified D-**1** after the isolation procedure mentioned above.

Stereoselective reactive crystallization of D-1 using seed crystal: To a 1 M DBU solution of methanol (192 mL) were added *p*-tolualdehyde (7.55 mL, 64 mmol), benzhydrylamine (11.0 mL, 64 mmol) and HCN (8.29 mL, 208 mmol) at room temperature. After stirring the mixture for 1.5 hours, D-seed **1** (80 mg, 0.26 mmol) with >99.5% ee was added. After stirring for 12 hours, *p*-tolualdehyde (**3**) (3.78 mL, 32 mmol), benzhydrylamine (**4**) (5.50 mL, 32 mmol) and HCN (1.26 mL, 32 mmol) were added. It was repeated total four times to add three reagents (each 32 mmol) to the reaction mixture after stirring for >2 hours. Solid product **1** was collected by a vacuum filtration and washed with small amount of cold MeOH to afford D-**1** (46.5 g, 149 mmol) with >99.5% ee in 76% isolated yield.

| I | Entry | Config. of 1 | Solid-phase ee of 1 [%] |          |          |                 |                 |                 | Viald |
|---|-------|--------------|-------------------------|----------|----------|-----------------|-----------------|-----------------|-------|
|   |       |              | Initial                 | $1^{st}$ | $2^{nd}$ | 3 <sup>rd</sup> | 4 <sup>th</sup> | 5 <sup>th</sup> | Yield |
|   | 1     | L            | <i>ca</i> . 5           | 26       | 91       | >99.5           | _               | _               | 54    |
|   | 2     | L            | ca. 0.5                 | 5        | 22       | 73              | 93              | 99              | 52    |
|   | 3     | L            | ca. 0.05                | 2        | 10       | 38              | 93              | 99              | 46    |
|   | 4     | D            | <i>ca</i> . 5           | 16       | 71       | 87              | 96              | _               | 48    |
|   | 5     | D            | ca. 0.5                 | 2        | 27       | 87              | 93              | 99              | 51    |
|   | 6     | D            | ca. 0.05                | BDL      | 8        | 40              | 85              | >99.5           | 42    |

Table S1. The numerical data of Figure 3a.

BDL: Below the detectable level (<2% ee).



**Fig. S1.** Simulated amplification of solid-phase ee by the partial (80%) dissolution of racemic conglomerate **1** followed by deracemization *via* crystallization without decrease of enantiopurity.

| Entry           | Addition           | Solid 1   |                         | HCN                     | <b>3</b> and <b>4</b>   | Solvent <sup>a)</sup> |
|-----------------|--------------------|-----------|-------------------------|-------------------------|-------------------------|-----------------------|
|                 |                    | ee [%]    | [mmol]                  | [mmol]                  | [mmol]                  | [mL]                  |
| 1 <sup>b)</sup> | Initial            |           |                         | 208                     | 64                      | 192                   |
|                 | 1 <sup>st</sup>    | >99.5 (D) | 0.26                    |                         |                         |                       |
|                 | $2^{nd}$           |           |                         | 32                      | 32                      |                       |
|                 | 3 <sup>rd</sup>    |           |                         | 32                      | 32                      |                       |
|                 | $4^{th}$           |           |                         | 32                      | 32                      |                       |
|                 | $5^{\text{th}}$    |           |                         | 32                      | 32                      |                       |
|                 | Total              | >99.5 (D) | 149 (76%) <sup>c)</sup> | 336                     | 192                     | 192                   |
| 2 <sup>b)</sup> | Initial            |           |                         | 208                     | 64                      | 192                   |
|                 | $1^{st}$           | >99.5 (L) | 0.26                    |                         |                         |                       |
|                 | $2^{nd}$           |           |                         | 32                      | 32                      |                       |
|                 | 3 <sup>rd</sup>    |           |                         | 32                      | 32                      |                       |
|                 | $4^{th}$           |           |                         | 32                      | 32                      |                       |
|                 | Total              | >99.5 (L) | 96 (60%) <sup>c)</sup>  | 304                     | 160                     | 192                   |
| 3 <sup>d)</sup> | Initial            | >99.5 (L) | 0.1                     |                         |                         |                       |
|                 | 1 <sup>st</sup>    |           |                         | 0.18                    | 0.05                    | 0.4                   |
|                 | $2^{nd}$           |           |                         | 0.18                    | 0.05                    | _                     |
|                 | 3 <sup>rd</sup>    |           |                         | 0.23                    | 0.1                     | 0.2                   |
|                 | $4^{th}$           |           |                         | 0.23                    | 0.1                     | 0.2                   |
|                 | $5^{th}$           |           |                         | 0.47                    | 0.2                     | 0.4                   |
|                 | 6 <sup>th</sup>    |           |                         | 0.47                    | 0.2                     | 0.4                   |
|                 | 7 <sup>th</sup>    |           |                         | 0.94                    | 0.4                     | 0.8                   |
|                 | 8 <sup>th</sup>    |           |                         | 0.94                    | 0.4                     | 0.8                   |
|                 | 9–18 <sup>th</sup> |           |                         | $0.2 \times 10^{times}$ | $0.2 \times 10^{times}$ | _                     |
|                 | Total              | 99 (L)    | 2.5 (72%) <sup>c)</sup> | 5.64                    | 3.5                     | 3.2                   |

 Table S2. Highly stereoselective reactive crystallization of 1.

a) 1 M DBU solution of methanol was used as a reaction solvent.

b) The seed 1 was added to the reaction solution at the initial stage.

c) The isolated yield of solid **1**.

d) The solvent and substrates were added to the seed 1 at the initial stage.