

Noble-metal loading reverses the temperature dependent photocatalytic hydrogen generation in methanol-water solution

Liqun Ye,^{a,b} Ka Him Chu,^a Bo Wang,^a Dan Wu,^a Haiquan Xie,^b Guocheng Huang,^a Ho
Yin Yip,^a and Po Keung Wong^{a*}

^a School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China. (E-mail: pkwong@cuhk.edu.hk; PK. Wong)

^b Key Laboratory of Ecological Security for Water Source Region of Mid-line Project of South-to-North Water Diversion of Henan Province, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China. (E-mail: yeliquny@163.com; L. Ye)

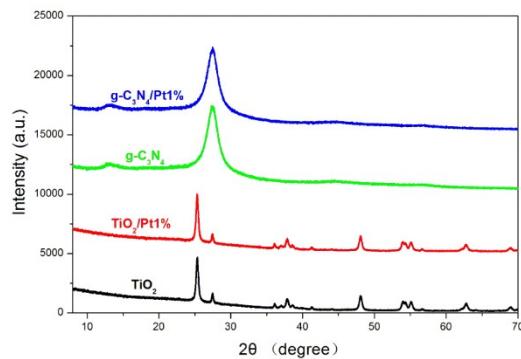
Part 1: Materials Preparation and characterization

Materials Preparation

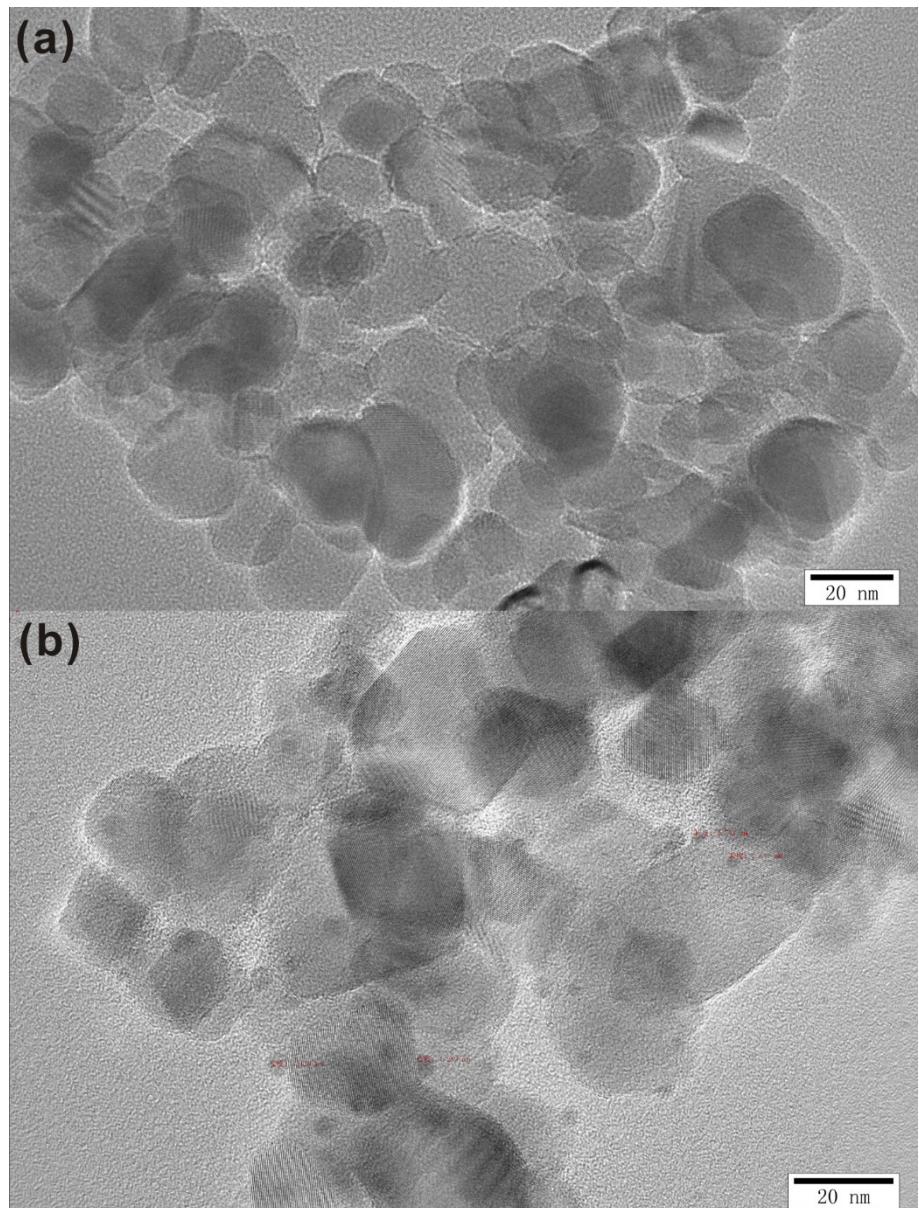
TiO₂: Nano-TiO₂ (P25, 70% in anatase phase and 30% in rutile, particle diameters: 30–50 nm) was bought from Degussa Co.

g-C₃N₄: 5 g of thiourea powder was put into an alumina crucible with a cover and heated at 500 °C for 3 h in a muffle furnace (5 °C min⁻¹). g-C₃N₄ was obtained after cooling down to room temperature.[1,2]

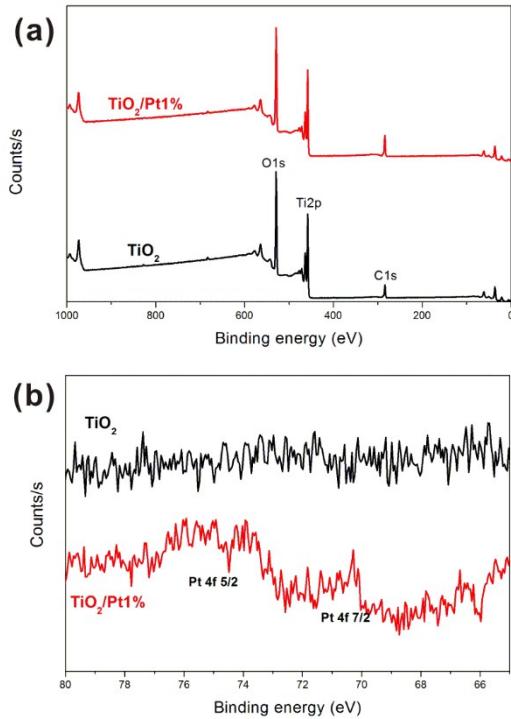
Pt loading photocatalysts: 0.2 g *photocatalyst* was dispersed into 40 mL distilled water under vigorous stirring, and then 10 mL of methanol and 0.13 mL of H₂PtCl₆(0.077 M) solution were added to the suspension in sequence. The mixture was irradiated by a 300 W high-pressure Xenon lamp for 3 h under continuous stirring. After centrifugation, the sample was washed with water and dried at 80 °C for 10 h to obtain 1 wt% Pt-loaded photocatalysts.[3]


MoS₂/TiO₂: 0.2 g of the TiO₂ was dispersed in 18 mL of aqueous solution consisting of 30 mg of sodium molybdate dehydrate and 60 mg of thioacetamide to form a transparent solution. The mixed solution was then transferred into a 50 mL Teflon-lined stainless steel autoclave and then heated at 200 °C for 24 h in an electric oven. The gray product was collected via centrifugation and washed thoroughly with ethanol before drying at 80 °C for 12 h to give a 1.00 wt% MoS₂/TiO₂ sample. All products were ground and heated to 400 °C for 2 h under a nitrogen atmosphere. [4]

Ni(OH)₂/TiO₂: 0.2 g of the TiO₂ P25 was dispersed in 50 mL of 1.0 M NaOH aqueous solution, and then a certain volume of 0.05M Ni(NO₃)₂ aqueous solution was added to obtain a 1.00 wt% Ni(OH)₂/TiO₂ sample. The mixed solutions were stirred for 24 h at room temperature. After that, the precipitates were collected by centrifuge and washed with distilled water and alcohol 10 times, respectively. The washed precipitates were dried at 80 °C for 24 h.[5]


Characterization

X-ray diffraction patterns (XRD) were recorded by Smart Lab X-ray diffractometer


(Rigaku, Tokyo, Japan) operating at 40 mA and 40 kV using Cu K α radiation. The 2 θ range of XRD patterns were taken over 10-60°. Transmission electron microscopy (TEM) images were obtained by a JEOL JEM-2100F (RH) Field Emission Electron Microscope working at 200 kV. X-ray photoelectron spectroscopy (XPS) data were obtained by Thermo ESCALAB 250XI X-ray photoelectron spectrometer (Al K α , 150 W, C 1s 284.8 eV). Brunauer-Emmett-Teller (BET) surface areas were measured by a quantachrome autosorb-1 automated gas adsorption systems at 77 K.

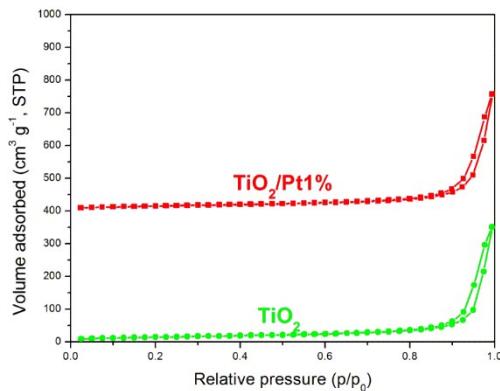

Figure S1 XRD patterns of TiO₂, TiO₂/Pt1%, g-C₃N₄, and g-C₃N₄/Pt1%.

Figure S2 TEM images of TiO_2 (a) and $\text{TiO}_2/\text{Pt}1\%$ (b).

Figure S3 Survey (a) and Pt4f (b) XPS spectra of TiO_2 and $\text{TiO}_2/\text{Pt}1\%$.

Figure S4 N_2 adsorption-desorption isotherms of TiO_2 and $\text{TiO}_2/\text{Pt}1\%$.

Additional discussion:

XRD patterns (Figure S1) indicated that TiO_2 and $\text{g-C}_3\text{N}_4$ were the standard samples. After 1% Pt loading, the crystallographic information were not change. TEM image displayed the size of TiO_2 were about 25-50 nm (Figure S2a). The size of Pt nanoparticle were about 3-5 nm on the surface of TiO_2 (Figure S2b). And the existence of Pt also was proved by the XPS spectra as shown in Figure S3. BET surface area of TiO_2 and $\text{TiO}_2/\text{Pt}1\%$ were 53.0 and $53.8 \text{ m}^2 \text{ g}^{-1}$ (Figure S4). It indicated that Pt loading did not change the surface area.

Part 2: Photocatalytic H₂ generation

Experimental Procedure

The photocatalytic H₂ production experiments were performed in Labsolar-IIIAG closed gas system (Beijing Perfect Light Technology Co., Ltd China) maintaining the photo-reaction temperature at 15 °C with a low-temperature thermostat bath (Poly Science, USA). In the photo-reaction system, 20 mg of samples was suspended in 50 mL of DI water containing methanol as an electron donor. To identify and quantify the gases produced, a volume of 1.5 mL of gas was hourly sampled and measured by a gas chromatography (GC 7806, Beijing Shiweipx analysis instrument co., LTD China) equipped with a thermal conductivity detector (TCD) and a 5 Å molecular sieve column, where N₂ was used as the carrier gas. At each time interval, 1 mL of gas was taken from the reaction cell for qualitative analysis using GC9790II gas chromatography (GC, Zhejiang Fuli Analytical Instrument Co., Ltd China) equipped with a flame ionization detector (FID, GDX-502 columns). The quantification of the CO and CO₂ yield were based on a calibration curve.

Apparent quantum efficiencies (AQE) calculations

The apparent quantum efficiency (AQE) was measured under the same photocatalytic reaction condition, except for the incident light wavelength. The H₂ yields of 1 h photoreaction under monochromatic light or LED light (365 nm) were measured. AQE was calculated by the following equation:

$$\begin{aligned} AQE &= \frac{N_{H_2}}{N_p} = \frac{2 \times \text{the number of evolved } H_2 \text{ molecules}}{\text{the number of incident photons}} \times 100\% \\ &= \frac{2 \times N_a \times M_{H_2}}{\frac{PSt\lambda}{hc}} = \frac{2 \times 6.02 \times 10^{23} \times M_{H_2}}{PS \times 3600 \times 365 \times 10^{-9}} \\ &\quad \frac{}{6.6626 \times 10^{-34} \times 3 \times 10^8} \end{aligned}$$

Monochromatic light of 300 W Xenon lamp: $\lambda = 365 \pm 5 \text{ nm}$

Experimental conditions: $\text{TiO}_2/\text{Pt}1\% 30\text{mg}$; 25 mL H_2O ; 25 mL CH_3OH ; 1h irradiation.

Power of 365 nm of Xenon lamp (P): 1.95 mW/cm²; Active area (S): 19.6 cm²

M_{H_2} at 10 °C: 86.2 μmol

M_{H_2} at 20 °C: 118 μmol

M_{H_2} at 30 °C: 167 μmol

M_{H_2} at 40 °C: 399 μmol

$$N_p = (1.95 \times 10^{-3} \times 19.6 \times 3600 \times 365 \times 10^{-9}) / (6.626 \times 10^{-34} \times 3 \times 10^8) = 2.53 \times 10^{20}$$

$$N_{\text{H}_2} \text{ at } 10 \text{ }^{\circ}\text{C} = N_{10} = 2 \times 6.02 \times 10^{23} \times 86.2 \times 10^{-6} = 1.04 \times 10^{20}$$

$$N_{20} = 2 \times 6.02 \times 10^{23} \times 118 \times 10^{-6} = 1.42 \times 10^{20}$$

$$N_{30} = 2 \times 6.02 \times 10^{23} \times 167 \times 10^{-6} = 2.01 \times 10^{20}$$

$$N_{40} = 2 \times 6.02 \times 10^{23} \times 399 \times 10^{-6} = 4.80 \times 10^{20}$$

$$\text{AQE at } 10 \text{ }^{\circ}\text{C} = \text{QE}_{10} = N_{10} / N_p = 1.04 / 2.53 = 41.1\%$$

$$\text{QE}_{20} = N_{20} / N_p = 1.42 / 2.53 = 56.1\%$$

$$\text{QE}_{30} = N_{30} / N_p = 2.01 / 2.53 = 79.4\%$$

$$\text{QE}_{40} = N_{40} / N_p = 4.80 / 2.53 = 189.7\%$$

Table S1 Quantum efficiencies (QE) calculation data.

Temperature (°C)	band pass filter $\lambda = 365 \pm 5 \text{ nm}$				LED $\lambda = 365 \text{ nm}$			
	M_{H_2} (μmol)	N_{H_2} ($\times 10^{20}$)	N_p ($\times 10^{20}$)	AQE (%)	M_{H_2} (μmol)	N_{H_2} ($\times 10^{20}$)	N_p ($\times 10^{20}$)	AQE (%)
10	86.2	1.04	2.53	41.1	423	5.09	12.98	39.2
20	118	1.42		56.1	658	7.92		61.0
30	167	2.01		79.4	926	11.14		85.8
40	399	4.80		189.7	2195	26.41		203.5

365 LED lamp: $\lambda = 365 \text{ nm}$

Experimental conditions: $\text{TiO}_2/\text{Pt}1\% 30\text{mg}$; 25 mL H_2O ; 25 mL CH_3OH ; 1h irradiation.

Power of 365 nm of Xenon lamp (P): 6.04 mW/cm²; Active area (S): 32.5 cm²

M_{H_2} at 10 °C: 423 μmol

M_{H_2} at 20 °C: 658 μmol

M_{H_2} at 30 °C: 926 μmol

M_{H_2} at 40 °C: 2195 μmol

$$N_p = (6.04 \times 10^{-3} \times 32.5 \times 3600 \times 365 \times 10^{-9}) / (6.626 \times 10^{-34} \times 3 \times 10^8) = 12.98 \times 10^{20}$$

$$N_{H_2} \text{ at } 10 \text{ °C} = N_{10} = 2 \times 6.02 \times 10^{23} \times 423 \times 10^{-6} = 5.09 \times 10^{20}$$

$$N_{20} = 2 \times 6.02 \times 10^{23} \times 658 \times 10^{-6} = 7.92 \times 10^{20}$$

$$N_{30} = 2 \times 6.02 \times 10^{23} \times 926 \times 10^{-6} = 11.14 \times 10^{20}$$

$$N_{40} = 2 \times 6.02 \times 10^{23} \times 2195 \times 10^{-6} = 26.41 \times 10^{20}$$

$$AQE \text{ at } 10 \text{ °C} = QE_{10} = N_{10} / N_p = 5.09 / 12.98 = 39.2\%$$

$$QE_{20} = N_{20} / N_p = 7.92 / 12.98 = 61.0\%$$

$$QE_{30} = N_{30} / N_p = 11.14 / 12.98 = 85.8\%$$

$$QE_{40} = N_{40} / N_p = 26.41 / 12.98 = 203.5\%$$

Light to hydrogen (LTH) conversion efficiency calculations

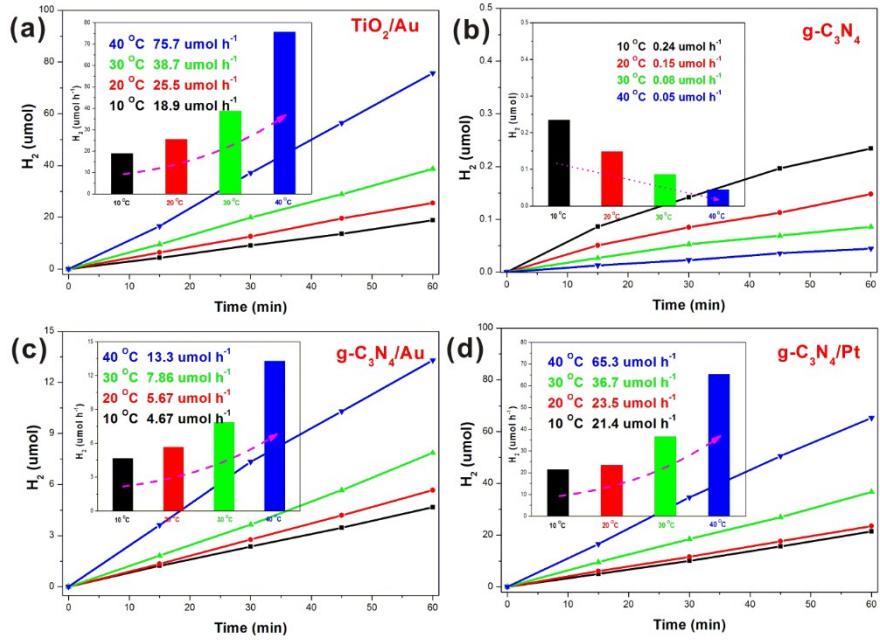
The light energy conversion was evaluated by using 300 W Xenon lamp as the light source 1 h of illumination, the total incident power over the 19.6 cm² irradiation area was 24.6 W.

$$\text{So, } E_{\text{light}} = T \times W = 3600 \times 24.6 = 8.856 \times 10^4 \text{ J.}$$

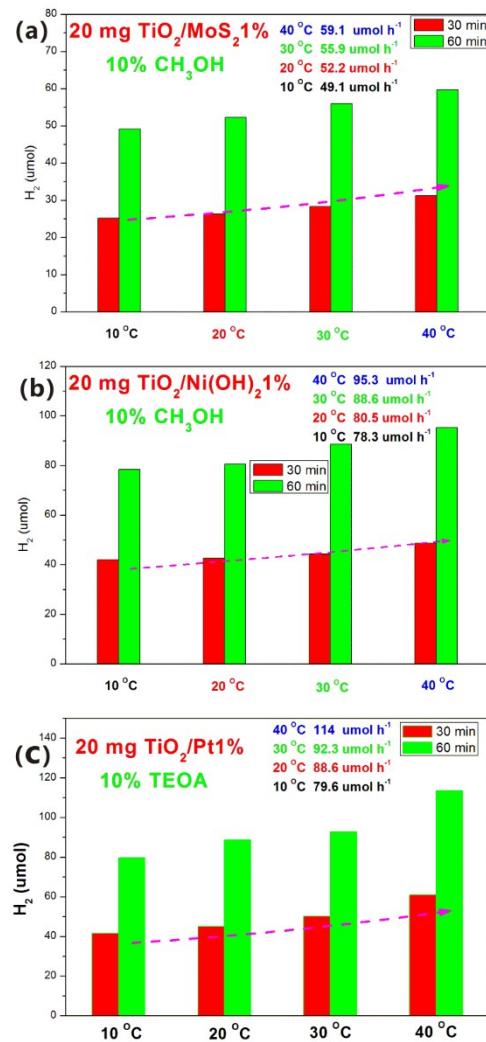
E_F was the energy generated by water splitting

$$E_F = N_a \times E_{\text{water}} \times E_e \times M_{H_2} = 6.02 \times 10^{23} \times 2.46 \times 1.609 \times 10^{-19} \times M_{H_2}$$

The “light -to-hydrogen” conversion efficiency (LTH) was determined to be:


LTH = (Energy of generation of hydrogen by water splitting) / (light energy irradiating the reaction cell).

$$LTH = E_F / E_{\text{light}}$$


Table S2 Light to hydrogen (LTH) conversion efficiency calculation data.

Temperature (°C)	M_{H_2} (μmol)	E_F (J)	E_{light} (J)	LTH (%)
10	379	90.31	8.856×10^4	0.10
20	593	141.30		0.16
30	1032	245.91		0.28


40	1850	440.82	0.50
----	------	--------	------

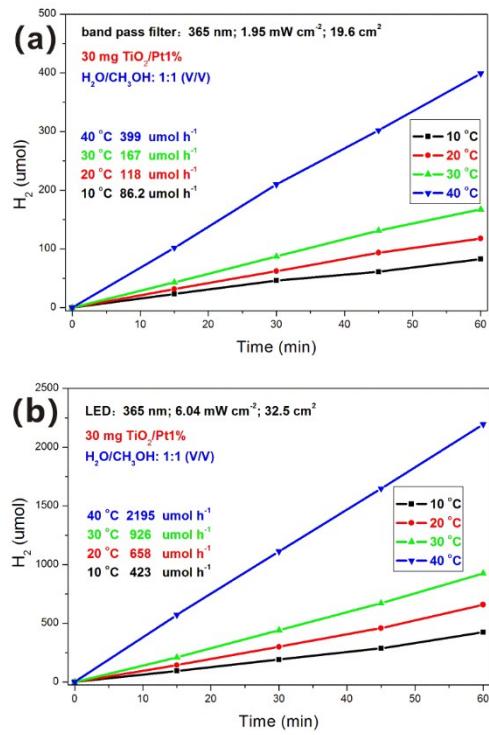
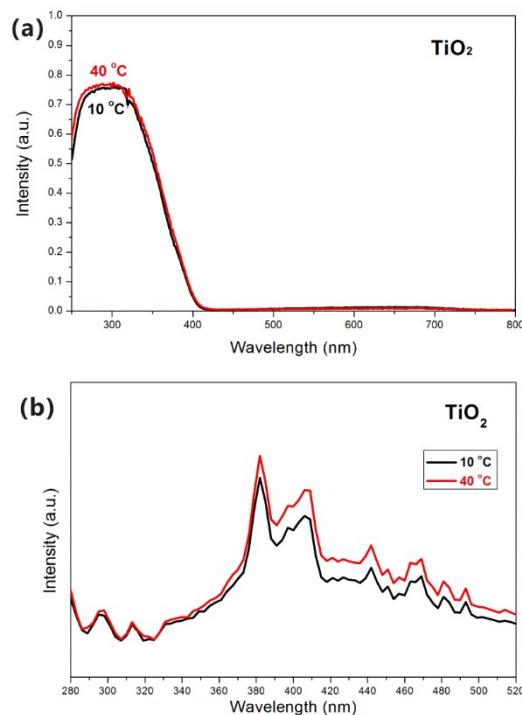
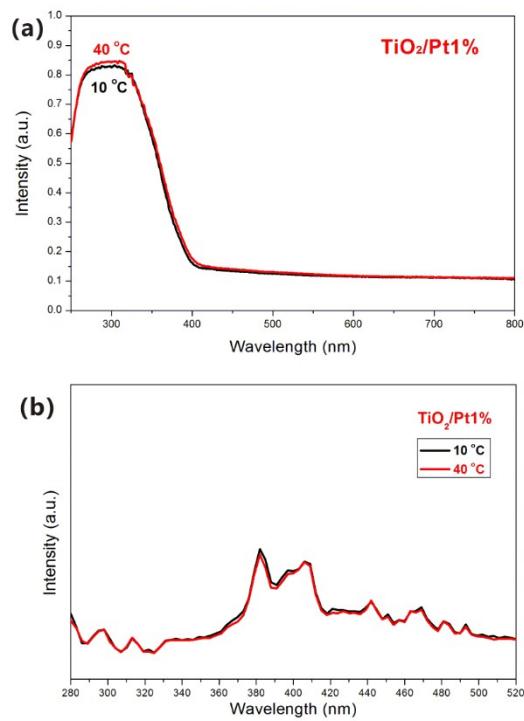

Figure S5 The photocatalytic activity for H₂ generation at different temperature (10 °C, 20 °C, 30 °C, 40 °C) over 20 mg TiO₂/Au1% (a), g-C₃N₄(b), g-C₃N₄/Pt1% (c) and g-C₃N₄/Au1% (d) in CH₃OH-H₂O (10% V/V) solution under UV-visible light (320-800 nm).

Figure S6 The control experiments: (a) MoS_2 ; (b) Ni(OH)_2 ; (c) TEOA solution.


Figure S7 The effects of dosage (a), concentration of CH_3OH (b), and amount of Pt-loading amount (c) at 40°C under UV-visible light (320-800 nm).


Figure S8 The photocatalytic activity for H_2 generation at different temperature (10, 20, 30, and 40°C) over $\text{TiO}_2/\text{Pt1\%}$ (30 mg) in $\text{CH}_3\text{OH}-\text{H}_2\text{O}$ (50% V/V) solution under 365 nm irradiation (a for a Xenon lamp with a band pass filter and b for LED light).

Part 3: DRS and PL spectrum analysis

UV-vis diffuse reflectance spectroscopy (DRS) was carried out using UV-Vis spectrometer (Perkin Elmer, Lambda 650s, BaSO_4 as a reference). Photoluminescence (PL) spectra were recorded by a Multifunction Steady State and Transient State Fluorescence Spectrometer (FES920, Edinburgh Instruments) at 381 nm with excitation at 252 nm.

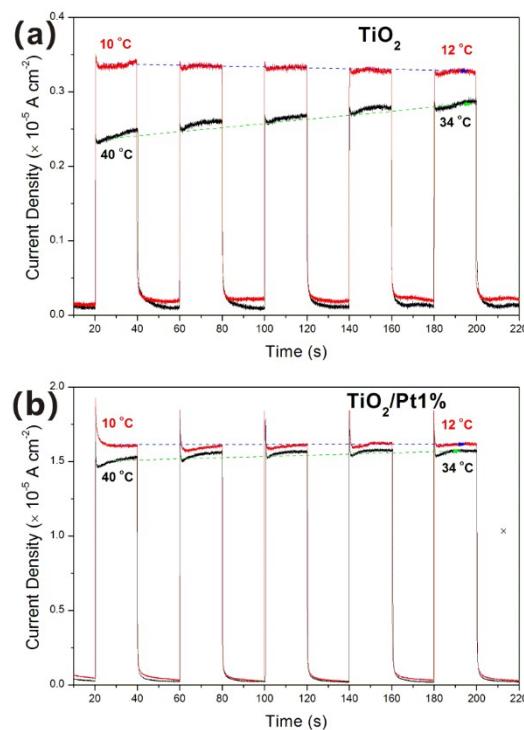

Figure S9 UV-vis diffuse reflectance spectroscopy and PL spectra of TiO_2 at 10 and 40 °C.

Figure S11 UV-vis diffuse reflectance spectroscopy and PL spectra of TiO₂/Pt1% at 10 and 40 °C.

Part 4: Photoelectrochemical measurement

The transient photocurrent responses and electrochemical impedance spectra (EIS) of the samples were determined using a CHI630E electrochemical working station (CHI Instruments, Shanghai, China) in a three-electrode quartz cell with Na_2SO_4 (0.1 M) electrolyte solution. Samples were deposited on a fluorinated-tin-oxide (FTO) conducting glass as the working electrode. Ag/AgCl and Pt were used as the reference and the counter electrodes, respectively.

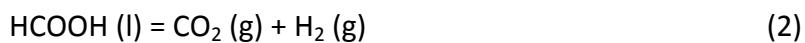
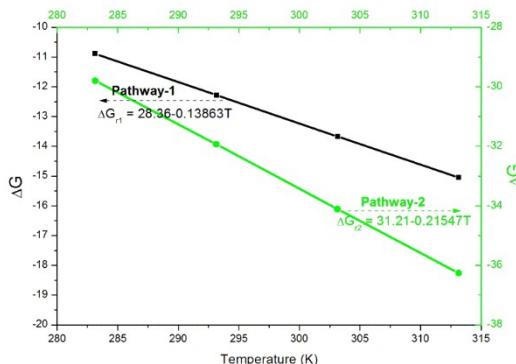


Figure S10 Photocurrent of TiO_2 film (a) and $\text{TiO}_2/\text{Pt}1\%$ film (b) at 10 and 40 °C Na_2SO_4 solution (0.1 mol L⁻¹) under UV-visible light (320-800 nm).

Part 5: Thermodynamic analysis

Table S3 Thermodynamic data of H_2O (l), HCOOH (l), CO (g), CO_2 (g) and H_2 (g) at 298.15K.

	H_2O (l)	HCOOH (l)	CO (g)	CO_2 (g)	H_2 (g)
$\Delta_f\text{H}_m^\theta$ (kJ mol ⁻¹)	-285.83	-424.72	-110.53	-393.51	0
$\Delta_f\text{G}_m^\theta$ (kJ mol ⁻¹)	-237.13	-361.35	-137.17	-394.36	0
S_m^θ (J mol ⁻¹ K ⁻¹)	69.91	128.95	197.67	213.74	130.68


$$\Delta G = \Delta_f\text{H}_m^\theta - T \Delta S_m^\theta$$

$$\Delta G_1 = \Delta H - T\Delta S = (-110.53 - 285.83 + 424.72) - T (69.91 + 197.67 - 128.95) 10^{-3}$$

$$\Delta G_1 = 28.36 - 0.13863T$$

$$\Delta G_2 = \Delta H - T\Delta S = (-393.51 + 0 + 424.72) - T (213.74 + 130.68 - 128.95) 10^{-3}$$

$$= 31.21 - 0.21547T$$

Figure S12 K^θ of pathway-1 and pathway-2 at 10-40 °C

$$\Delta_r\text{G}_m^\theta = -RT \ln K^\theta$$

Table S4 $\Delta_r\text{G}_m^\theta$ and the corresponding K^θ of pathway-1 at different.

Temperature	283.15K	293.15K	303.15K	313.15K
$\Delta_r\text{G}_m^\theta$ (kJ mol ⁻¹)	-10.89	-12.28	-13.67	-15.05
K^θ	102	154	227	324

Table S5 $\Delta_r G_m^\theta$ and the corresponding K^θ of pathway-2 at different

temperature	283.15K	293.15K	303.15K	313.15K
$\Delta_r G_m^\theta$ (kJ mol ⁻¹)	-29.8	-31.93	-34.11	-36.26
K^θ	314 488	489 351	753 878	1 118 221

Part 6: References

- [1] L. Ye, J. Liu, K. Deng, T. Peng, L. Zan, Facets Coupling of BiOBr-g-C₃N₄ Composite Photocatalyst for Enhanced Visible-light-driven Photocatalytic Activity, *Appl. Catal. B: Environ.*, 2013, 142-143, 1-7.
- [2] Y. Bai, L. Ye, L. Wang, X. Shi, P. Wang, W. Bai, P. K. Wong, g-C₃N₄/Bi₄O₅I₂ Heterojunction with I₃⁻/I⁻ Redox Mediator for Enhanced Photocatalytic CO₂ Conversion, *Appl. Catal. B: Environ.*, 2016, 194, 98-104.
- [3] J. Mao, L. Ye, K. Li, X. Zhang, J. Liu, T. Peng, L. Zan, Pt-loading reverses the photocatalytic activity order of anatase TiO₂ {001} and {010} facets for photoreduction of CO₂ to CH₄, *Appl. Catal. B: Environ.*, 2014, 144, 855-862.
- [4] Y. J. Yuan, Z. J. Ye, H. W. Lu, B. Hu, Y. H. Li, D. Q. Chen, J. S. Zhong, Z. T. Yu, Z. G. Zou, Constructing Anatase TiO₂ Nanosheets with Exposed (001) Facets/Layered MoS₂ Two-Dimensional Nanojunctions for Enhanced Solar Hydrogen Generation, *ACS Catal.*, 2016, 6, 532–541.
- [5] J. Yu, Y. Hai, B. Cheng, Enhanced Photocatalytic H₂-Production Activity of TiO₂ by Ni(OH)₂ Cluster Modification, *J. Phys. Chem. C*, 2011, 115, 4953–4958