Copper-catalyzed intramolecular aryl-bicyclization of diynes with

diaryliodonium salts via vinyl cations

Guohua Wang, Chao Chen^{*}, Jing Peng

[†] Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China

E-mail: chenchao01@mails.tsinghua.edu.cn

Table of contents:

1.	General information	S2
2.	Synthesis of starting materials 1	
3.	Characterization data of starting materials 1	S4 - S8
4.	NMR spectra of starting materials 1	
5.	General procedure for the synthesis of polycyclic products	S25
6.	Characterization data of polycyclic products	S26-S38
7.	NMR spectra of polycyclic products	S39 - S66
8.	X-ray single crystallographic data of compound 3ae	S67
9.	References	S68

1. General information

All the reactions were carried out in oven dried screw capped tube with a Teflon lined septum under N₂ atmosphere. Diynes reagents were prepared according to the literature.¹ Diaryliodonium triflate reagents were synthesized according to the literatures.² All of the solvents were fresh distilled according to standard method. Column chromatography was performed on silica gel (particle size 10-40 μ m, Ocean Chemical Factory of Qingdao, China). ¹H NMR and ¹³C NMR spectras were recorded on an AL -300MHz, AL -400MHz or AL-600MHz spectrometer at ambient temperature with CDCl₃ as the solvent. ¹H NMR spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shift of CDCl₃ at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and coupling constants (Hz). ¹³C NMR spectra are reported in ppm (δ) relative to the central line of triplet for CDCl₃ at 77.16 ppm. Two dimensional NMR spectras were recorded on an AL-600MHz spectrometer at ambient temperature with CDCl₃ as the solvent. The reaction progress was monitored by GC-MS if applicable.

2. Synthesis of starting material **1**

2.1 General procedure

To a solution of the respective diyne (10 mmol) and 1-iodo-4-methylbenzene (30 mmol) in NEt₃ (60 mL), Pd(PPh₃)₂Cl₂ (421 mg), CuI (191 mg) and PPh₃ (185 mg) were added at ambient temperature. The reaction mixture was stirred at room temperature (60 °C for 1**j**) under nitrogen for 12-24 h. Then the suspension was filtered through a 3 cm thick layer of Celite, and the Celite was rinsed well with ethyl acetate (50 mL). The solvents of the filtrate were removed under reduced pressure, and the residue was subjected to chromatography on silica gel. Elution with hexane/ethyl acetate afforded the coupling product.

X	The second secon	Pd(PPh ₃) ₂ Cl ₂ , Cul PPh ₃ , Et ₃ N, r.t.	•	
Х	Y	Time (h)	Product	Yield
4-CH ₃	(CH ₂) ₂	18	1a	80%
4-CH ₃	CH ₂	12	1b	75%
4-F	$(CH_2)_2$	24	1c	80%
4-F	CH ₂	24	1d	75%
4-CI	(CH ₂) ₂	24	1e	71%
4-CI	CH ₂	24	1f	75%
4-Br	(CH ₂) ₂	24	1g	63%
4-Br	CH ₂	24	1h	60%
4-COOMe	CH ₂	24	1i	30%
2-F	CH ₂	24	1j	35%
3-Br	CH ₂	24	1k	81%
4-CH ₃	0	20	11	99%
4-CH3	C(COOMe) ₂	24	1m	93%
4-Meo	CH ₂	24	1n	67%

2.2 Synthesis of unsymmetrical diyne 10.

A mixture of methyl 4-iodobenzoate (2.62 g, 10 mmol), CuI (98 mg, 0.5 mmol), $PdCl_2(PPh_3)_2$ (420 mg, 0.6 mmol), 1,6-heptadiyne (1.8 mL, 15.67 mmol) and 40 mL of triethylamine was stirred at 60 °C for 24 h. After filtration and solvent removal, the crude product was purified on a silica gel column using PE/EA as an eluent to give **1p** as a colorless oil (985 mg, 4.4 mmol, 44%). A mixture of **1p** (452 mg, 2 mmol), 1-iodo-4-methylbenzene(654 mg, 3 mmol), CuI (38 mg, 0.2 mmol), PdCl₂(PPh₃)₂ (84.2 mg, 0.12 mmol) and PPh₃ (37 mg, 0.14 mmol) in 5 mL triethylamine was stirred for 24 h at RT. After removal of the volatile components under reduced pressure, the residue was subjected to silica gel column chromatography (PE/EA) to afford **1o** as white solid (452 mg, 72%).

3. Characterization data of starting materials 1

1,8-di-*p***-tolylocta-1,7-diyne 1a:** white solid, melting point: 89 °C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.29 (d, *J* = 8.0 Hz, 4H), 7.08 (d, *J* = 8.0 Hz, 4H), 2.46 (t, *J* = 5.8 Hz, 4H), 2.32 (s, 6H), 1.81 - 1.74 (m, 4H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 137.6(2×C), 131.6(4×CH), 129.1(4×CH), 121.0(2×C), 89.2(2×C≡C), 81.1(2×C≡C), 28.1(2×CH₂), 21.5(2×CH₂), 19.2(2×CH₃). ESI-HRMS: m/z calcd for C₂₂H₂₂ [M+H]⁺: 287.1794; found: 287.1796. GC-MS m/z: 286

1,7-di-*p*-tolylhepta-1,6-diyne 1b: white solid, melting point: 47 °C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.29 (d, *J* = 8.0 Hz, 4H), 7.08 (d, *J* = 8.0 Hz, 4H), 2.57 (t, *J* = 7.0 Hz, 4H), 2.32 (s, 6H), 1.94 - 1.84 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 137.7(2×C), 131.6(4×CH), 129.1(4×CH), 120.9(2×C), 88.6(2×C=C), 81.4(2×C=C), 28.3, 21.6(2×CH₂), 18.9(2×CH₃). ESI-HRMS: m/z calcd for C₂₁H₂₀ [M+H]⁺: 273.1638; found: 273.1637. GC-MS m/z: 272

1,8-bis(**4-fluorophenyl)octa-1,7-diyne 1c:** white solid, melting point: 72 °C. ¹H NMR (301 MHz, CHLOROFORM-D) δ 7.41 - 7.34 (m, 2H), 7.02 - 6.92 (m, 2H), 2.46 (t, *J* = 6.2 Hz, 4H), 1.83 - 1.73 (m, 4H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 162.2 (d, J = 248.2 Hz, 2×C), 133.5 (d, J = 8.3 Hz, 4×CH), 120.1 (d, J = 3.4 Hz, 2×C), 115.5 (d, J = 22.0 Hz, 4×CH) 89.5(2×C=C), 80.0(2×C=C), 28.0(2×CH₂), 19.1(2×CH₂).

ESI-HRMS: m/z calcd for C₂₀H₁₆F₂ [M+H]⁺: 295.1293; found: 295.1292.

1,7-bis(4-fluorophenyl)hepta-1,6-diyne 1d: oil.

¹H NMR (301 MHz, CHLOROFORM-D) δ 7.50 - 7.30 (m, 4H), 7.13 - 6.85 (m, 4H), 2.58 (t, *J* = 7.0 Hz, 4H), 1.96 - 1.83 (m, 2H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 162.2 (d, *J* = 248.4 Hz, 2×C), 133.5 (d, *J* = 8.2 Hz, 4×CH), 119.9 (d, *J* = 3.4 Hz, 2×C), 115.5 (d, *J* = 21.9 Hz, 4×CH), 88.8(2×C=C), 80.3(2×C=C), 28.0, 18.7(2×CH₂).

ESI-HRMS: m/z calcd for $C_{19}H_{14}F_2$ [M+H]⁺: 281.1136; found: 281.1134.

1,8-bis(4-chlorophenyl)octa-1,7-diyne 1e: white solid, melting point: 90 °C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.30 (d, *J* = 8.5 Hz, 4H), 7.24 (d, *J* = 8.5 Hz, 4H), 2.45 (t, *J* = 5.7 Hz, 4H), 1.81 - 1.73 (m, 4H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 133.7(2×C), 132.9(4×CH), 128.7(4×CH), 122.5(2×C), 91.0(2×C≡C), 80.1(2×C≡C), 27.9(2×CH₂), 19.2(2×CH₂). ESI-HRMS: m/z calcd for C₂₀H₁₆Cl₂ [M+H]⁺: 327.0702; found: 327.0703.

1,7-bis(4-chlorophenyl)hepta-1,6-diyne 1f: white solid, melting point: 53 °C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.34 - 7.29 (m, 4H), 7.27 - 7.22 (m, 4H), 2.57 (t, *J* = 7.0 Hz, 4H), 1.94 - 1.84 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 133.8(2×C), 132.9(4×CH), 128.7(4×CH), 122.4(2×C), 90.3(2×C≡C), 80.4(2×C≡C), 27.9, 18.8(2×CH₂). ESI-HRMS: m/z calcd for C₁₉H₁₄Cl₂ [M+H]⁺: 313.0545; found: 313.0543.

1,8-bis(4-bromophenyl)octa-1,7-diyne 1g: white solid, melting point: 95 °C. ¹H NMR (301 MHz, CHLOROFORM-D) δ 7.46 - 7.36 (m, 4H), 7.28 - 7.23 (m, 4H), 2.45 (t, *J* = 6.0 Hz, 4H), 1.82 - 1.73 (m, 4H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 133.2(4×CH), 131.6(4×CH), 123.0(2×C), 121.8(2×C), 91.2(2×C=C), 80.1(2×C=C), 27.9(2×CH₂), 19.2(2×CH₂). ESI-HRMS: m/z calcd for C₂₀H₁₆Br₂ [M+H]⁺: 416.9672; found: 416.9673.

1,7-bis(4-bromophenyl)hepta-1,6-diyne 1h: white solid, melting point: 63 °C. ¹H NMR (301 MHz, CHLOROFORM-D) δ 7.41 (d, *J* = 8.0 Hz, 4H), 7.25 (d, *J* = 8.0 Hz, 4H), 2.57 (t, *J* = 7.0 Hz, 4H), 1.97 - 1.83 (m, 2H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 133.2(4×CH), 131.6(4×CH), 122.9(2×C), 121.9(2×C), 90.5(2×C=C), 80.5(2×C=C), 27.8, 18.8(2×CH₂).

ESI-HRMS: m/z calcd for C₁₉H₁₄Br₂ [M+H]⁺: 402.9515; found: 402.9516.

dimethyl 4,4'-(hepta-1,6-diyne-1,7-diyl)dibenzoate 1i: white solid, melting point: 105 °C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.96 (d, *J* = 8.5 Hz, 4H), 7.45 (d, *J* = 8.5 Hz, 4H), 3.91 (s, 6H), 2.63 (t, *J* = 7.0 Hz, 4H), 1.98 - 1.89 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 166.8(2×C=O), 131.7(4×CH),

129.6(4×CH), 129.2(2×C), 128.7(2×C), 92.6(2×C≡C), 81.0(2×C≡C), 52.3(2×OCH₃), 27.7, 18.9(2×CH₂).

ESI-HRMS: m/z calcd for $C_{23}H_{20}O_4$ [M+H]⁺: 361.1434; found: 361.1436.

1,7-bis(2-fluorophenyl)hepta-1,6-diyne 1j: oil.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.44 - 7.35 (m, 2H), 7.28 - 7.19 (m, 2H), 7.10 - 7.00 (m, 4H), 2.65 (t, J = 7.0 Hz, 4H), 1.99 - 1.91 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 163.0 (d, J = 250.3 Hz, 2×C), 133.7(2×CH), 129.4 (d, J = 7.8 Hz, 2×CH), 123.9 (d, J = 3.6 Hz, 2×CH), 115.5 (d, J =21.1 Hz, 2×CH), 112.4 (d, J = 16.0 Hz, 2×C), 94.7 (d, J = 3.0 Hz, 2×C≡C), 74.8(2×C≡C), 27.8, 19.0(2×CH₂). ESI-HRMS: m/z calcd for C₁₉H₁₄F₂ [M+H]⁺: 281.1136; found: 281.1134.

1,7-bis(3-bromophenyl)hepta-1,6-diyne 1k: oil.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.55 (t, *J* = 1.7 Hz, 2H), 7.43 - 7.37 (m, 2H), 7.34 - 7.29 (m, 2H), 7.13 (t, *J* = 7.8 Hz, 2H), 2.58 (t, *J* = 7.0 Hz, 4H), 1.93 - 1.84 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 134.5(2×CH), 131.0(2×CH), 130.3(2×CH), 129.8(2×CH), 125.9(2×C), 122.2(2×C), 90.7(2×C≡C), 80.1(2×C≡C), 27.8, 18.8(2×CH₂).

ESI-HRMS: m/z calcd for $C_{19}H_{14}Br_2$ [M+H]⁺: 402.9515; found: 402.9515.

4,4'-(oxybis(prop-1-yne-3,1-diyl))bis(methylbenzene) 11: oil. ¹H NMR (301 MHz, CHLOROFORM-D) δ 7.34 (d, *J* = 8.0 Hz, 4H), 7.10 (d, *J* = 8.0 Hz, 4H), 4.52 (s, 4H), 2.32 (s, 6H). ¹³C NMR (76 MHz, CHLOROFORM-D) δ 138.7(2×C), 131.8(4×CH), 129.1(4×CH), 119.5(2×C), 87.0(2×C≡C), 83.8(2×C≡C), 57.5(2×CH₂), 21.5(2×CH₃). ESI-HRMS: m/z calcd for C₂₀H₁₈O [M+H]⁺: 275.1430; found: 275.1431. GC-MS m/z:274

MeOOC MeOOC

dimethyl 2,2-bis(3-(p-tolyl)prop-2-yn-1-yl)malonate 1m: ^{1b} ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.26 (d, *J* = 8.0 Hz, 4H), 7.08 (d, *J* = 8.0 Hz, 4H), 3.79 (s, 6H), 3.25 (s, 4H), 2.32 (s, 6H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 169.6(2×C=O), 138.2(2×C), 131.7(4×CH), 129.1(4×CH), 120.1(2×C), 84.0(2×C=C), 83.3(2×C=C), 57.5, 53.2(2×CH₃), 24.0(2×CH₂), 21.6(2×CH₃). ESI-HRMS: m/z calcd for C₂₅H₂₄O₄ [M+H]⁺: 389.1747; found: 389.1746.

1,7-bis(4-methoxyphenyl)hepta-1,6-diyne 1i: white solid, melting point: 49 °C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.36 - 7.30 (m, 4H), 6.87 - 6.76 (m,4H), 3.79 (s, 6H), 2.56 (t, *J* = 7.0 Hz, 4H), 1.94 - 1.83 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 159.2(2×C), 133.0(4×CH), 116.1(2×C), 114.0(4×CH), 87.8(2×C≡C), 81.0(2×C≡C), 55.4(2×OCH₃), 28.3, 18.8(2×CH₂). ESI-HRMS: m/z calcd for C₂₁H₂₀O₂ [M+H]⁺: 305.1536; found: 305.1539.

methyl 4-(hepta-1,6-diyn-1-yl)benzoate 1p: oil.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.44 (d, *J* = 8.3 Hz, 2H), 3.90 (s, 3H), 2.57 (t, *J* = 7.0 Hz, 2H), 2.38 (td, *J* = 7.0, 2.6 Hz, 2H), 2.00 (t, *J* = 2.6 Hz, 1H), 1.88 - 1.80(m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 166.7, 131.6(2×CH), 129.5(2×CH), 129.1, 128.7, 92.5, 83.5, 80.9, 69.2, 52.3, 27.6, 18.7, 17.8.

ESI-HRMS: m/z calcd for $C_{15}H_{14}O_2$ $[M+H]^+$: 227.1067; found: 227.1067.

methyl 4-(7-(p-tolyl)hepta-1,6-diyn-1-yl)benzoate 10: white solid, melting point: 119 °C.

¹H NMR (301 MHz, CHLOROFORM-D) δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.45 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.09 (d, *J* = 8.1 Hz, 2H), 3.91 (s, 3H), 2.66 - 2.55 (m, 4H), 2.33 (s, 3H), 1.98 - 1.85 (m, 2H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 166.8, 137.8, 131.7(2×CH), 131.6(2×CH), 129.6(2×CH), 129.1(2×CH, C), 128.8, 120.8, 92.9, 88.3, 81.5, 80.8, 52.3, 28.0, 21.6, 18.9.

ESI-HRMS: m/z calcd for $C_{22}H_{20}O_2$ $[M+H]^+$: 317.1536; found: 317.1534.

4. NMR spectra of starting materials 1

S 14

 ^1H NMR (400 MHz, CDCl₃) (up) and ^{13}C NMR (101 MHz, CDCl₃) (down)

¹H NMR (400 MHz, CDCl₃) (up) and ¹³C NMR (101 MHz, CDCl₃) (down)

S 24

5. General procedure for the synthesis of products

A sealed tube was charged with the mixture of prepared diyne **1** (0.2 mmol), diaryliodonium salt **2** (0.24 mmol), Li₂CO₃ (0.24 mmol, 18 mg), CuBr (n=2, 0.02 mmol, 3 mg) or CuCl (n=1, 0.02mmol, 2 mg). The tube was evacuated and recharged with N₂ for 4 times. Then dichloroethane (2.0 mL) were added, the tube was sealed and the mixture was allowed to stir at 80 °C for 12 h. After completion, the mixture was cooled to room temperature, then water (4 mL) was added and the mixture was extracted with EA (4 mL \times 3), dried by anhydrous Na₂SO₄. Evaporation of the solvent followed by purification on silica gel (PE or PE/EA) provided the corresponding product as a yellow solid. Or evaporation of the solvent and the yellow products were recrystallized from the dichloromethane or diethyl ether.

6. Characterization data of polycyclic products

2-methyl-5,10-di-*p*-tolyl-6,7,8,9-tetrahydrobenzo[a]azulene (3aa): yellow solid, 50 mg, yield: 66%, melting point:177 °C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.23 - 7.37 (m, 8H), 6.96 (s, 1H), 6.60 (d, J = 7.9 Hz, 1H), 6.25 (d, J = 7.9 Hz, 1H), 2.91 - 2.84 (m, 2H), 2.81 - 2.75 (m, 2H), 2.44 (s, 3H), 2.43 (s, 3H), 2.23 (s, 3H), 2.06 - 1.92 (m, 2H), 1.91 - 1.71 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 150.3, 143.8, 141.8, 139.9, 139.3, 139.1, 137.6, 136.9, 136.2, 133.4, 132.7, 129.5(2×CH), 129.5(2×CH), 129.2(2×CH), 128.3(2×CH), 124.8, 122.7, 119.9, 36.2, 26.9, 25.7, 25.5, 21.6, 21.5(2×CH₃). ESI-HRMS: m/z calcd for C₂₉H₂₈ [M+H]⁺: 377.2264; found: 377.2266. GC-MS m/z: 376

5-(4-fluorophenyl)-2-methyl-10-(*p***-tolyl)-6,7,8,9-tetrahydrobenzo[a]azulene (3ab)**: yellow solid, 44 mg, yield: 58%, melting point:202 °C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.40 - 7.26 (m, 6H), 7.12 (t, *J* = 8.7 Hz, 2H), 6.97 (s, 1H), 6.61 (d, *J* = 7.8 Hz, 1H), 6.18 (d, *J* = 7.8 Hz, 1H), 2.88 - 2.81 (m, 2H), 2.81 - 2.73 (m, 2H), 2.43 (s, 3H), 2.24 (s, 3H), 2.05 - 1.95 (m, 2H), 1.87 - 1.77 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 162.6 (d, J = 246.8 Hz), 148.6, 143.9, 140.7 (d, J = 3.4 Hz), 139.8, 139.7, 139.6, 137.1, 136.6, 133.2, 132.5, 130.1 (d, J = 7.8 Hz, 2×CH), 129.5(2×CH), 129.3(2×CH), 124.9, 122.6, 120.1, 115.8 (d, J = 21.2 Hz, 2×CH), 36.2, 26.9, 25.6, 25.4, 21.6, 21.5.

ESI-HRMS: m/z calcd for $C_{28}H_{25}F [M+H]^+$: 381.2013; found: 381.2015. GC-MS m/z: 380

5-(4-chlorophenyl)-2-methyl-10-(p-tolyl)-6,7,8,9-tetrahydrobenzo[a]azulene (3ac): vellow solid, 45 mg, yield: 57%, melting point:180 °C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.43 - 7.28 (m, 8H), 6.96 (s, 1H), 6.62 (d, J = 7.9 Hz, 1H), 6.23 (d, J = 7.9 Hz, 1H), 2.86 - 2.80 (m, 2H), 2.74 - 2.80 (m, 2H), 2.43 (s, 3H), 2.24 (s, 3H), 2.05 - 1.96 (m, 2H), 1.87 - 1.77 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 148.2, 143.9, 143.2, 139.9, 139.7, 139.7, 137.1, 136.7, 133.7, 133.0, 132.5, 129.8(2×CH), 129.5(2×CH), 129.3(2×CH), 129.1(2×CH), 125.0, 122.6, 120.1, 36.0, 26.9, 25.6, 25.4, 21.6, 21.5. ESI-HRMS: m/z calcd for C₂₈H₂₅Cl [M+H]⁺: 397.1718; found: 397.1717.

5-(4-bromophenyl)-2-methyl-10-(p-tolyl)-6,7,8,9-tetrahydrobenzo[a]azulene (3ad): yellow solid, 52 mg, yield: 59%, melting point:172 °C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.60 - 7.53 (m, 2H), 7.31 (dd, J = 15.4, 7.3 Hz, 4H), 7.26 - 7.23 (m, 2H), 6.96 (s, 1H), 6.63 (d, J = 7.8 Hz, 1H), 6.23 (d, J = 7.8 Hz, 1H), 2.87 - 2.80 (m, 2H), 2.80 - 2.73 (m, 2H), 2.43 (s, 3H), 2.24 (s, 3H), 2.05 -1.96 (m, 2H), 1.86 - 1.77 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 148.1, 144.0, 143.7, 139.8, 139.8, 139.7, 137.1, 136.7, 133.0, 132.5, 132.0(2×CH), 130.1(2×CH), 129.5(2×CH), 129.3(2×CH), 125.0, 122.6, 121.9, 120.1, 36.0, 26.9, 25.6, 25.4, 21.6, 21.5.

ESI-HRMS: m/z calcd for $C_{28}H_{25}Br [M+H]^+$: 443.1196; found: 443.1197.

2-methyl-5-phenyl-10-(*p***-tolyl**)**-6,7,8,9-tetrahydrobenzo**[**a**]**azulene** (**3ae**) : yellow solid, 45 mg, yield: 62%, melting point: 192°C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.45 - 7.26 (m, 9H), 6.96 (s, 1H), 6.57 (d, J = 7.8 Hz, 1H), 6.15 (d, J = 7.8 Hz, 1H), 2.91 - 2.84 (m, 2H), 2.82 - 2.75 (m, 2H), 2.42 (s, 3H), 2.22 (s, 3H), 2.06 - 1.97 (m, 2H), 1.88 - 1.78 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 150.0, 144.9, 143.9, 139.9, 139.4, 139.4, 137.0, 136.4, 133.3, 132.7, 129.5(2×CH), 129.3(2×CH), 128.8(2×CH), 128.2(2×CH), 127.8, 124.8, 122.7, 119.9, 36.2, 26.9, 25.7, 25.5, 21.6, 21.5. ESI-HRMS: m/z calcd for C₂₈H₂₆ [M+H]⁺: 363.2107; found: 363.2108. GC-MS m/z: 362

5-(4-methoxyphenyl)-2-methyl-10-(*p***-tolyl)-6,7,8,9-tetrahydrobenzo[a]azulene (3af)**: yellow solid, 34.5 mg, yield: 44%, melting point: 108°C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.28 - 7.39 (m, 6H), 7.02 - 6.95 (m, 3H), 6.63 (dd, *J* = 7.8, 0.7 Hz, 1H), 6.33 (d, *J* = 7.8 Hz, 1H), 3.90 (s, 3H), 2.92 - 2.85 (m, 2H), 2.83 - 2.76 (m, 2H), 2.45 (s, 3H), 2.26 (s, 3H), 2.07 - 1.97 (m, 2H), 1.89 - 1.80 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 159.5, 150.0, 143.8, 139.8, 139.3, 139.1, 137.0, 136.9, 136.2, 133.4, 132.8, 129.9(2×CH), 129.5(2×CH), 129.2(2×CH), 124.8, 122.6, 119.9, 114.2(2×CH), 55.5, 36.2, 26.8, 25.6(2×CH₂), 21.6, 21.5. ESI-HRMS: m/z calcd for C₂₉H₂₈O [M+H]⁺: 393.2213; found: 393.2211.

5-(4-(tert-butyl)phenyl)-2-methyl-10-(*p***-tolyl)-6,7,8,9-tetrahydrobenzo[a]azulene (3ag)**: yellow solid, 33.5 mg, yield: 40%, melting point: 139°C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.43 (d, 2H), 7.34 (d, 2H), 7.31 - 7.26 (m, 4H), 6.96 (s, 1H), 6.59 (d, *J* = 7.8 Hz, 1H), 6.20 (d, *J* = 7.8 Hz, 1H), 2.90 - 2.85 (m, 2H), 2.81 - 2.75 (m, 2H), 2.42 (s, 3H), 2.22 (s, 3H), 2.05 - 1.96 (m, 2H), 1.86 - 1.78 (m, 2H), 1.39 (s, 9H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 151.0, 150.4, 143.8, 141.8, 139.9, 139.3, 139.1, 136.9, 136.2, 133.4, 132.8, 129.5(2×CH), 129.2(2×CH), 128.0(2×CH), 125.6(2×CH), 124.8, 122.7, 119.8, 36.2, 34.8, 31.6(3×CH₃), 26.9, 25.7, 25.5, 21.6, 21.5.

ESI-HRMS: m/z calcd for C₃₂H₃₄ [M+H]⁺: 419.2733; found: 419.2734.

2-methyl-10-(*p***-tolyl)-5-(4-(trifluoromethyl)phenyl)-6,7,8,9-tetrahydrobenzo[a]az ulene (3ah)**: yellow solid, 48 mg, yield: 56%, melting point:141 °C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.31 (q, *J* = 8.0 Hz, 4H), 6.96 (s, 1H), 6.60 (d, *J* = 7.8 Hz, 1H), 6.09 (d, *J* = 7.8 Hz, 1H), 2.87 - 2.81 (m, 2H), 2.81 - 2.75 (m, 2H), 2.43 (s, 3H), 2.23 (s, 3H), 2.07 - 1.97 (m, 2H), 1.87 - 1.79 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 148.6, 147.5, 144.1, 140.1, 140.1, 139.6, 137.2, 136.9, 132.9, 132.4, 129.9 (q, *J* = 32.6 Hz), 129.5(2×CH), 129.3(2×CH), 128.7(2×CH), 125.9 (q, *J* = 3.5 Hz, 2×CH), 125.0, 124.4 (q, *J* = 272.2 Hz), 122.6, 120.2, 35.9, 27.0, 25.7, 25.3, 21.6, 21.5.

ESI-HRMS: m/z calcd for C₂₉H₂₅F₃ [M+H]⁺: 431.1981; found: 431.1980.

methyl 4-(2-methyl-10-(*p*-tolyl)-6,7,8,9-tetrahydrobenzo[a]azulen-5-yl)benzoate (3ai): yellow solid, 54 mg, yield: 64%, melting point: 136°C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.11 (d, *J* = 8.3 Hz, 2H), 7.45 (d, *J* = 8.3 Hz, 2H), 7.36 - 7.27 (m, 4H), 6.95 (s, 1H), 6.57 (d, *J* = 7.8 Hz, 1H), 6.12 (d, *J* = 7.8 Hz, 1H), 3.97 (s, 3H), 2.91 - 2.82 (m, 2H), 2.82 - 2.74 (m, 2H), 2.44 (s, 3H), 2.23 (s, 3H), 2.08 - 1.96 (m, 2H), 1.88 - 1.79 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 167.1, 149.8, 148.2, 144.0, 140.0, 139.9, 139.7, 137.2, 136.8, 132.9, 132.4, 130.2(2×CH), 129.5(2×CH), 129.4, 129.3(2×CH), 128.4(2×CH), 125.0, 122.7, 120.1, 52.4, 35.8, 27.0, 25.7, 25.3, 21.6, 21.5. ESI-HRMS: m/z calcd for $C_{30}H_{28}O_2$ [M+H]⁺: 421.2162; found: 421.2160.

2-methyl-5-(m-tolyl)-10-(p-tolyl)-6,7,8,9-tetrahydrobenzo[a]azulene (3aj): yellow solid, 37.5 mg, yield: 50%, melting point: 161°C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.37 - 7.27 (m, 5H), 7.23 - 7.13 (m, 3H), 6.96 (s, 1H), 6.59 (d, *J* = 7.9 Hz, 1H), 6.19 (d, *J* = 7.9 Hz, 1H), 2.91 - 2.84 (m, 2H), 2.81 - 2.75 (m, 2H), 2.43 (s, 3H), 2.39 (s, 3H), 2.23 (s, 3H), 2.06 - 1.97 (m, 2H), 1.87 - 1.78 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 150.3, 144.9, 143.8, 139.9, 139.2, 138.4, 137.0, 136.3, 133.3, 132.7, 129.5(2×CH), 129.2(2×CH), 128.8, 128.7, 128.5, 125.2, 124.8, 122.7, 119.9, 36.2, 26.9, 25.7, 25.5, 21.6(2×CH₃), 21.5. ESI-HRMS: m/z calcd for $C_{29}H_{28}$ [M+H]⁺: 377.2264; found: 377.2266. GC-MS m/z: 376

5-(2-fluorophenyl)-2-methyl-10-(*p*-tolyl)-6,7,8,9-tetrahydrobenzo[a]azulene (3ak): yellow solid, 22 mg, yield: 29%, melting point: 187°C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.43 - 7.28 (m, 6H), 7.22 - 7.16 (m, 2H), 6.95 (s, 1H), 6.60 (d, *J* = 7.9 Hz, 1H), 6.15 (d, *J* = 7.9 Hz, 1H), 2.87 - 2.72 (m, 4H), 2.43 (s, 3H), 2.23 (s, 3H), 2.09 - 1.99 (m, 2H), 1.89 - 1.78 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 159.2 (d, *J* = 246.2 Hz), 144.1, 143.2, 140.8, 139.8, 137.1, 136.7, 133.0, 132.4 (d, *J* = 21.6 Hz), 130.7, 130.6, 129.6 (d, *J* = 7.6 Hz), 129.5(2×CH), 129.3(2×CH), 125.0, 124.5, 124.5, 122.2, 120.1, 116.3 (d, *J* = 21.8 Hz), 35.0, 26.7, 25.6, 25.2, 21.6, 21.5. ESI-HRMS: m/z calcd for C₂₈H₂₅F [M+H]⁺: 381.2013; found: 381.2015.

GC-MS m/z: 380

7-methyl-4,9-di-*p*-tolyl-2,3-dihydro-1H-fluorene (3ba): yellow solid, 58 mg, yield: 80%, melting point: 125°C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.39 (d, *J* = 8.0 Hz, 2H), 7.34 - 7.21 (m, 6H), 7.09 (s, 1H), 6.73 (d, *J* = 7.7 Hz, 1H), 6.65 (d, *J* = 7.7 Hz, 1H), 2.79 - 2.73 (m, 2H), 2.69 (t, *J* = 5.9 Hz, 2H), 2.43 (s, 3H), 2.41 (s, 3H), 2.27 (s, 3H), 2.00 - 1.91 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 145.2, 144.1, 139.2, 137.8, 136.7, 136.7, 135.6, 135.3, 134.8, 132.6, 131.8, 129.4(2×CH), 129.2 (2×CH), 129.0(2×CH), 128.2(2×CH), 124.6, 122.4, 119.8, 34.8, 24.8, 24.1, 21.8, 21.5, 21.4. ESI-HRMS: m/z calcd for $C_{28}H_{26}$ [M+H]⁺: 363.2107; found: 363.2107. GC-MS m/z: 362

2-fluoro-10-(4-fluorophenyl)-5-(*p***-tolyl)-6,7,8,9-tetrahydrobenzo[a]azulene 3ca**: yellow solid, 32 mg, yield: 42%, melting point: 187 °C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.45 - 7.37 (m, 2H), 7.28 (s, 4H), 7.23 - 7.15 (m, 2H), 6.85 - 6.78 (m, 1H), 6.54 - 6.46 (m, 1H), 6.39 - 6.36 (m, 1H), 2.94 - 2.88 (m, 2H), 2.79 (t, *J* = 6.0 Hz, 2H), 2.48 (s, 3H), 2.09 - 2.00 (m, 2H), 1.91 - 1.82 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 162.3 (d, J = 246.6 Hz, 2×C), 152.0, 145.2 (d, J = 8.2 Hz), 141.8, 141.3, 138.2, 138.1, 137.5, 131.6, 131.1 (d, J = 7.9 Hz, 2×CH, C), 129.6 (2×CH), 128.1 (2×CH), 123.9 (d, J = 8.6 Hz), 115.7 (d, J = 21.3 Hz, 2×CH), 110.5 (d, J = 22.5 Hz), 106.0 (d, J = 23.6 Hz), 36.3, 26.7, 25.7, 25.3, 21.5. ESI-HRMS: m/z calcd for C₂₇H₂₂F₂ [M+H]⁺: 385.1762; found: 385.1764.

7-fluoro-9-(4-fluorophenyl)-4-(*p***-tolyl)-2,3-dihydro-1H-fluorene 3da**: yellow solid, 63 mg, yield: 85%, melting point: 202 °C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.45 - 7.38 (m, 2H), 7.32 - 7.24 (m, 4H), 7.19 - 7.11 (m, 2H), 6.91 (d, *J* = 9.3 Hz, 1H), 6.80 - 6.72 (m, 1H), 6.57 - 6.49 (m, 1H), 2.78 - 2.68 (m, 4H), 2.44 (s, 3H), 2.03 - 1.93 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 162.7 (d, J = 243.8 Hz), 162.1 (d, J = 246.5 Hz), 147.0, 145.7 (d, J = 8.5 Hz), 138.6, 138.2, 137.6, 134.3, 133.3 (d, J = 1.7 Hz), 130.9 (d, J = 2.9 Hz), 130.5 (d, J = 7.9 Hz, 2×CH), 130.1, 129.5 (2×CH), 128.0(2×CH), 123.6 (d, J = 8.9 Hz), 115.6 (d, J = 21.3 Hz, 2×CH), 110.3 (d, J = 22.8 Hz), 106.1 (d, J = 23.9 Hz), 34.8, 24.6, 24.1, 21.5.

ESI-HRMS: m/z calcd for $C_{26}H_{20}F_2$ [M+H]⁺: 371.1606; found: 371.1607.

2-chloro-10-(4-chlorophenyl)-5-(*p***-tolyl)-6,7,8,9-tetrahydrobenzo[a]azulene 3ea**: yellow solid, 32 mg, yield: 38%, melting point: 165 °C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.45 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.3 Hz, 2H), 7.25 (s, 4H), 7.06 (d, *J* = 2.0 Hz, 1H), 6.77 - 6.73 (m, 1H), 6.26 (d, *J* = 8.3 Hz, 1H), 2.92 - 2.86 (m, 2H), 2.79 - 2.73 (m, 2H), 2.45 (s, 3H), 2.04 - 1.97 (m, 2H), 1.88 - 1.79 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 153.5, 144.6, 141.8, 141.1, 138.3 (2×C), 137.2, 134.1, 133.4, 133.4, 132.3, 130.8 (2×CH), 129.7(2×CH), 129.0(2×CH), 128.1(2×CH), 124.0, 123.8, 118.9, 36.5, 26.7, 25.7, 25.3, 21.5.

ESI-HRMS: m/z calcd for C₂₇H₂₂Cl₂ [M+H]⁺: 417.1171; found: 417.1170.

7-chloro-9-(4-chlorophenyl)-4-(*p***-tolyl)-2,3-dihydro-1H-fluorene 3fa**: yellow solid, yield: 66% or 85% when use 2.4 eq. iodonium salt, melting point: 204 °C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.46 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 8.3 Hz, 2H), 7.33 - 7.26 (m, 4H), 7.20 (s, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 6.76 (d, *J* = 8.1 Hz, 1H), 2.79 - 2.71 (m, 4H), 2.46 (s, 3H), 2.04 - 1.96 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 148.3, 145.0, 138.5, 138.4, 137.6, 134.4, 133.3, 133.1, 133.0, 132.8, 132.5, 130.3 (2×CH), 129.5 (2×CH), 128.9 (2×CH), 128.0 (2×CH), 123.8, 123.5, 118.9, 34.9, 24.5, 24.0, 21.5. ESI-HRMS: m/z calcd for C₂₆H₂₀Cl₂ [M+H]⁺: 403.1015; found: 403.1017.

2-bromo-10-(4-bromophenyl)-5-(*p*-tolyl)-6,7,8,9-tetrahydrobenzo[a]azulene 3ga: yellow solid, 36 mg, yield: 36%, melting point: 198 °C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.30 - 7.19 (m, 7H), 6.90 (dd, *J* = 8.2, 4.1 Hz, 1H), 6.21 (d, *J* = 8.2 Hz, 1H), 2.91 - 2.85 (m, 2H), 2.79 - 2.73 (m, 2H), 2.44 (s, 3H), 2.05 - 1.96 (m, 2H), 1.87 - 1.78 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 153.8, 144.8, 141.6, 141.1, 138.4, 138.3, 137.2, 134.5, 133.9, 131.9 (2×CH), 131.2 (2×CH), 129.7 (2×CH), 128.1 (2×CH), 126.9, 124.2, 121.8, 121.6, 120.5, 36.5, 26.6, 25.7, 25.3, 21.5. ESI-HRMS: m/z calcd for C₂₇H₂₂Br₂ [M+H]⁺: 507.0142; found: 507.0141.

7-bromo-9-(4-bromophenyl)-4-(*p***-tolyl)-2,3-dihydro-1H-fluorene 3ha**: yellow solid, 63 mg, yield: 64%, melting point: 197 °C.

¹H NMR (301 MHz, CHLOROFORM-D) δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.36 - 7.24 (m, 7H), 6.96 (d, *J* = 8.2 Hz, 1H), 6.69 (d, *J* = 8.2 Hz, 1H), 2.79 - 2.66 (m, 4H), 2.44 (s, 3H), 2.03 - 1.87 (m, 2H).

¹³C NMR (76 MHz, CHLOROFORM-D) δ 148.6, 145.2, 138.5, 138.4, 137.5, 134.5, 133.7, 133.0 (2×C), 131.9 (2×CH), 130.6 (2×CH), 129.5 (2×CH), 128.0 (2×CH), 126.7, 123.9, 121.8, 121.3, 121.0, 34.9, 24.5, 24.0, 21.5.

ESI-HRMS: m/z calcd for $C_{26}H_{20}Br_2$ [M+H]⁺: 492.9986; found: 492.9988.

methy9-(4-(methoxycarbonyl)phenyl)-4-(p-tolyl)-2,3-dihydro-1H-fluorene-7-carb oxylate 3ia: yellow solid, 17 mg, yield: 19%, melting point: 173 °C. ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.17 (d, J = 8.1 Hz, 2H), 7.91 (s, 1H), 7.62 - 7.55(m, 3H), 7.31 (q, J = 8.1 Hz, 4H), 6.91 (d, J = 8.1 Hz, 1H), 3.96 (s, 3H), 3.85 (s, 3H), 2.85 - 2.75 (m, 4H), 2.46 (s, 3H), 2.06 - 1.97 (m, 2H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 167.6, 167.2, 150.7, 143.1, 139.9, 138.7, 138.6, 138.3, 137.9, 134.9, 133.7, 130.0(2×CH), 129.6(2×CH), 129.0(2×CH), 128.9, 128.4, 128.0(2×CH), 126.0, 122.4, 119.7, 52.3, 52.1, 35.2, 24.4, 24.1, 21.6. ESI-HRMS: m/z calcd for C₃₀H₂₆O₄ [M+H]⁺: 451.1904; found: 451.1905.

5-fluoro-9-(2-fluorophenyl)-4-(p-tolyl)-2,3-dihydro-1H-fluorene 3ja: yellow solid, 27 mg, yield: 36%, melting point: 192 °C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.47 - 7.34 (m, 2H), 7.32 - 7.19 (m, 6H), 7.15 - 7.08 (m, 1H), 6.93 (d, *J* = 7.4 Hz, 1H), 6.68 - 6.61 (m, 1H), 2.82 (t, *J* = 5.9 Hz, 2H), 2.66 (s, 2H), 2.44 (s, 3H), 2.06 - 1.95 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 160.3 (d, J = 247.3 Hz), 157.2 (d, J = 254.0 Hz), 149.5, 146.8 (d, J = 6.2 Hz), 140.6 (d, J = 4.5 Hz), 139.5, 137.8, 133.4 (d, J = 4.6 Hz), 131.5 (d, J = 3.8 Hz), 129.3 (d, J = 8.0 Hz), 128.9 (d, J = 1.9 Hz), 128.6 - 128.3 (multi-peaks), 124.1 (d, J = 3.4 Hz), 122.8 (d, J = 16.4 Hz), 119.4 (d, J = 14.9 Hz), 116.2 (d, J = 22.3 Hz), 115.1, 112.3 (d, J = 23.8 Hz), 35.6, 24.2 (d, J = 2.3 Hz), 23.8, 21.5.

ESI-HRMS: m/z calcd for C₂₆H₂₀F₂ [M+H]⁺: 371.1606; found: 371.1607.

7-methyl-4,9-di-p-tolyl-1,3-dihydroindeno[2,1-c]pyran (3la): orange solid, 47.5 mg, yield: 65%, melting point: 105°C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.39 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.31 - 7.25 (m, 4H), 7.18 (s, 1H), 7.02 (d, J = 7.7 Hz, 1H), 6.75 (d, J = 7.7 Hz, 1H), 4.85 (s, 2H), 4.57 (s, 2H), 2.44 (s, 3H), 2.42 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CHLOROFORM-D) δ 143.8, 141.1, 139.0, 137.5, 137.4, 134.2, 134.0, 132.7, 131.6, 131.1, 130.8, 129.6(2×CH), 129.5(2×CH), 128.8(2×CH), 128.6(2×CH), 125.3, 122.5, 120.6, 69.8, 64.6, 21.9, 21.6, 21.5. ESI-HRMS: m/z calcd for C₂₇H₂₄O [M+H]⁺: 365.1900; found:365.1901. GC-MS m/z: 364

dimethyl 7-methyl-4,9-di-p-tolyl-1H-fluorene-2,2(3H)-dicarboxylate (3ma): yellow solid, 18 mg, yield: 19%, melting point: 70°C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 7.43 - 7.36 (m, 4H), 7.33 - 7.25 (m, 4H), 7.04 (s, 1H), 6.73 (d, *J* = 7.8 Hz, 1H), 6.67 (d, *J* = 7.8 Hz, 1H), 3.70 (s, 6H), 3.35 (s, 2H), 3.27 (s, 2H), 2.44 (s, 3H), 2.43 (s, 3H), 2.26 (s, 3H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 171.2(2×C), 144.5, 140.5, 138.2, 137.8, 137.3, 137.2, 137.1, 134.7, 131.9, 131.5, 131.1, 129.4(4×CH), 128.9(2×CH), 128.3(2×CH), 125.1, 122.5, 120.2, 56.9, 53.0(2×CH3), 40.1, 29.9, 21.7, 21.6, 21.5. ESI-HRMS: m/z calcd for $C_{32}H_{30}O_4$ [M+H]⁺: 479.2217; found: 479.2217.

methyl 4,9-di-p-tolyl-2,3-dihydro-1H-fluorene-7-carboxylate 30a: yellow solid, melting point: 147 °C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.14 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.07 (s, 1H), 6.75 (d, *J* = 7.8 Hz, 1H), 6.68 (d, *J* = 7.8 Hz, 1H), 3.95 (s, 3H), 2.81 - 2.75 (m, 2H), 2.74 - 2.69 m, 2H), 2.44 (s, 3H), 2.28 (s, 3H), 2.03 - 1.94 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 167.2, 146.7, 143.4, 140.6, 138.9, 138.1, 137.2, 136.9, 135.2, 134.0, 131.7, 129.8(2×CH), 129.4(2×CH), 129.1(2×CH), 128.6, 128.1(2×CH), 124.9, 122.6, 119.6, 52.3, 34.8, 24.7, 24.2, 21.8, 21.5. ESI-HRMS: m/z calcd for $C_{29}H_{26}O_2$ [M+H]⁺: 407.2006; found: 407.2008.

7-methoxy-9-(4-methoxyphenyl)-4,6-di-p-tolyl-2,3-dihydro-1H-fluorene 4na:

yellow solid, yield: 22% or 48% when 2.0 eq. iodonium salt was used, melting point: 186 $^{\rm o}{\rm C}.$

¹H NMR (600 MHz, CHLOROFORM-D) δ 7.46 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 7.26 - 7.22 (m, 4H), 7.10 (d, *J* = 7.9 Hz, 2H), 7.04 (d, *J* = 8.6 Hz, 2H), 6.91 (s, 1H), 6.86 (s, 1H), 3.88 (s, 3H), 3.73 (s, 3H), 2.77 (t, *J* = 6.3 Hz, 2H), 2.72 (t, *J* = 5.9 Hz, 2H), 2.39 (s, 3H), 2.33 (s, 3H), 2.01 - 1.95 (m, 2H).

¹³C NMR (151 MHz, CHLOROFORM-D) δ 158.8, 156.3, 144.7, 144.6, 139.0, 138.0, 136.4(2×C), 135.9, 135.2, 134.3, 130.2(2×CH), 129.4(2×CH), 129.3(2×CH), 128.6(2×CH), 128.3(2×CH), 127.9, 127.3, 125.7, 125.1, 114.1(2×CH), 102.8, 56.0, 55.5, 34.5, 24.8, 24.3, 21.4, 21.3.

ESI-HRMS: m/z calcd for $C_{35}H_{32}O_2$ $[M+H]^+$: 485.2475; found: 485.2478.

7-methyl-4,6,9-tri-p-tolyl-2,3-dihydro-1H-fluorene (4ba): yellow solid, 9 mg, yield: 10 % or 54% when 2.4 eq. iodonium salts were used

¹H NMR (600 MHz, CHLOROFORM-D) δ 7.42 (d, J = 7.6 Hz, 2H), 7.34 (d, J = 7.6 Hz, 2H), 7.30 (d, J = 7.6 Hz, 2H), 7.20 (d, J = 7.6 Hz, 2H), 7.18 (s, 1H), 7.12 - 7.04 (m, 4H), 6.83 (s, 1H), 2.78 (t, J = 6.1 Hz, 2H), 2.71 (t, J = 5.7 Hz, 2H), 2.43 (s, 3H), 2.36 (s, 3H), 2.35 (s, 3H), 2.23 (s, 3H), 1.97 (dt, J = 13.2, 6.5 Hz, 2H).

¹³C NMR (151 MHz, CHLOROFORM-D) δ 145.5, 142.9, 139.8, 138.9, 138.0, 137.3, 136.8, 136.0, 135.8, 135.5, 134.6, 134.0, 132.7, 132.4, 129.4(2×CH), 129.3(4×CH), 129.0(2×CH), 128.7(2×CH), 128.3(2×CH), 124.4, 121.0, 34.7, 24.7, 24.2, 21.5, 21.4, 21.3, 21.2.

ESI-HRMS: m/z calcd for C₃₅H₃₂ [M+H]⁺: 453.2577; found: 453.2576.

methyl 4-(7-methyl-4,6-di-p-tolyl-2,3-dihydro-1H-fluoren-9-yl)benzoate 40a: yellow solid, melting point: 213 °C.

¹H NMR (400 MHz, CHLOROFORM-D) δ 8.16 (d, *J* = 8.3 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 7.8 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 7.15 (s, 1H), 7.12 (d, *J* = 7.9 Hz, 2H), 7.05 (d, *J* = 7.9 Hz, 2H), 6.84 (s, 1H), 3.96 (s, 3H), 2.82 - 2.70 (m, 4H), 2.37 (s, 3H), 2.36 (s, 3H), 2.24 (s, 3H), 2.03 - 1.95 (m, 2H).

¹³C NMR (101 MHz, CHLOROFORM-D) δ 167.2, 146.9, 142.2, 140.7, 139.6, 138.7, 138.2, 137.6, 137.5, 135.9, 135.4, 134.2, 133.8, 132.3, 129.9(2×CH), 129.3(4×CH), 129.1(2×CH), 128.7(2×CH), 128.6(2×CH), 128.2, 124.5, 120.8, 52.2, 34.7, 24.7, 24.3, 21.5, 21.3, 21.2.

ESI-HRMS: m/z calcd for C₃₆H₃₂O₂ [M+H]⁺: 497.2475; found: 497.2473.

7. NMR spectra of polycyclic products

3aa

¹H NMR (400 MHz, CDCl₃) (up) and ¹³C NMR (101 MHz, CDCl₃) (down)

¹H NMR (400 MHz, CDCl₃) (up) and ¹³C NMR (101 MHz, CDCl₃) (down)

3ac

 ^1H NMR (400 MHz, CDCl₃) (up) and ^{13}C NMR (101 MHz, CDCl₃) (down)

3ad

 ^1H NMR (400 MHz, CDCl₃) (up) and ^{13}C NMR (101 MHz, CDCl₃) (down)

 ^1H NMR (400 MHz, CDCl₃) (up) and ^{13}C NMR (101 MHz, CDCl₃) (down)

¹H NMR (400 MHz, CDCl₃) (up) and ¹³C NMR (101 MHz, CDCl₃) (down)

 ^1H NMR (400 MHz, CDCl₃) (up) and ^{13}C NMR (101 MHz, CDCl₃) (down)

 ^1H NMR (400 MHz, CDCl₃) (up) and ^{13}C NMR (101 MHz, CDCl₃) (down)

 ^1H NMR (400 MHz, CDCl₃) (up) and ^{13}C NMR (101 MHz, CDCl₃) (down)

 ^1H NMR (400 MHz, CDCl₃) (up) and ^{13}C NMR (101 MHz, CDCl₃) (down)

¹H NMR (400 MHz, CDCl₃) (up) and ¹³C NMR (101 MHz, CDCl₃) (down)

 ^1H NMR (400 MHz, CDCl_3) (up) and ^{13}C NMR (101 MHz, CDCl_3) (down)

S 57

¹H NMR (400 MHz, CDCl₃) (up) and ¹³C NMR (101 MHz, CDCl₃) (down)

 ^1H NMR (400 MHz, CDCl_3) (up) and ^{13}C NMR (101 MHz, CDCl_3) (down)

¹H NMR (600 MHz, CDCl₃) (up) and ¹³C NMR (151 MHz, CDCl₃) (down)

 ^1H NMR (600 MHz, CDCl_3) (up) and ^{13}C NMR (151 MHz, CDCl_3) (down)

4ba-600M-H-H-COSY

4ba-600M-C-H-HMBC

8. X-ray single crystallographic data of compound 3ae

Single crystals suitable for X-ray analysis were obtained by slow evaporation of its solution in EA/ n-hexane. Formula: $C_{28}H_{26}$, M = 362.20, yellow crystal, a = 20.325(14), b = 11.622(2), c = 8.5200(17) Å, α = 90.00°, β = 90.00°, γ = 90.00°, V = 2012.6(7) Å3, ρ (calcd) = 1.196 g/cm3, μ = 0.067 mm-1, Z = 4, Orthorhombic, space group P c a 21, λ =0.71073 Å, T = 173±2 K. Theta (max) = 27.4606°, R (reflections) = 0.0547(3962), wR2 (reflections) = 0.1625(4122). CCDC number: 1471734

9. References

1 (a) C. Cheng, C. Chang, Y. Hsu, T. Lee, L. Chang, S. Liu and Y. Wu, *Eur. J. Org. Chem.*, 2010, 672. (b) M. K. Thorson, K. L. Klinkel, J. Wang and T. J. Williams, *Eur. J. Inorg. Chem.*, 2009, **2009**, 295.

2 B. M. Zhu and B. Olofsson, *Adv. Synth. Catal.*, 2007, **349**, 2610; M. Bielawski, D. Aili and B. Olofsson, *J. Org. Chem.*, 2008, **73**, 4602.