Supplementary Material to the paper

$\left\{T c(N O)(C p)\left(\mathrm{PPh}_{3}\right)\right\}^{+}$- A Novel Technetium(I) Core

Janine Ackermann, Adelheid Hagenbach, Ulrich Abram
Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, D-14196 Berlin, Germany

1. Procedures and analytical data
1.1. $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN})\right]$
1.2. $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Cl}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$
1.3. $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$
1.4. $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{CO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$
1.5. [Tc(NO)(Cp)(Ph) $\left.\left(\mathrm{PPh}_{3}\right)\right]$
1.6. $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$
2. Crystal Structure Determinations
2.1. [Tc(NO)Br(Cp)(PPh $\left.\left.{ }_{3}\right)\right]$
2.1.1. Table S1: Structure Determination and Refinement Parameters
2.1.2. Fig. S 1 : Ellipsoid plot of $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$
2.1.3. Table S2: Selected bond lengths and angles
2.2. $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{CO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$
2.2.1. Table S3: Structure Determination and Refinement Parameters
2.2.2. Fig. S2: Ellipsoid plot of $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$
2.2.3. Table S4: Selected bond lengths and angles
2.3. $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{Ph}^{2}\right)\left(\mathrm{PPh}_{3}\right)\right]$
2.3.1. Table S5: Structure Determination and Refinement Parameters
2.3.2. Fig. S3: Ellipsoid plot of $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{Ph}^{2}\right)\left(\mathrm{PPh}_{3}\right)\right]$
2.3.3. Table S6: Selected bond lengths and angles
2.4. $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$
2.4.1. Table S7: Structure Determination and Refinement Parameters
2.4.2. Fig. S4: Ellipsoid plot of $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$
2.4.3. Table S8: Selected bond lengths and angles
3. IR spectra

1. Procedures and Analytical Data

Materials: All chemicals were reagent grade and used without further purification. Solvents were dried and used freshly distilled unless otherwise stated. The synthesis of $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN})\right]$ was prepared by the procedure of Blanchard et al. (Inorg. Chim. Acta 1996, 244, 121) and $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{4}(\mathrm{MeOH})\right]$ was prepared by the standard procedure of Orvig et al. (J. Labelled Compd. Radiopharm. 1981, 18, 148). The synthesis of KCp was performed by the procedure of Roesky et al. (Organometallics 2003, 22, 877).

Physical Measurements: Infrared spectra were measured as KBr pellets on a Shimadzu FTIRspectrometer between 400 and $4000 \mathrm{~cm}^{-1}$. NMR spectra were recorded on a JEOL-400MHz spectrometer. Tc values were determined by liquid scintillation counting. EPR spectra have been measured on a Miniscope MS400 spectrometer (Magnetech).

$1.1\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN})\right]$

$\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{4}(\mathrm{MeOH})\right](231 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(393 \mathrm{mg}, 1.50 \mathrm{mmol})$ were dissolved in 20 mL MeCN . The red solution was heated under reflux for 5 h . The sparingly soluble red precipitate formed was filtered off, washed with diethylether and dried under vacuum. Yield 83 \% (235 mg).

Elemental analysis: Calcd. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Br}_{2} \mathrm{Tc}$: Tc, 11.6 \%. Found: Tc, 10.8%. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3424 (w), 3055 (m), 2916 (w), 1721 (vs), 1572 (w), 1481 (m), 1435 (s), 1366 (w), 1315 (w), 1188 (m), 1161 (w), 1119 (w), 1092 (m), 1074 (w), 1028 (m), 997 (m), 847 (w), 746 (s), 696 (s), 619 (w), 598 (w), 519 (s), 498 (m), 543 (m).

1.2. $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]$:

$\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN})\right](618 \mathrm{mg}, 0.81 \mathrm{mmol})$ was suspended in 5 mL toluene. KCp (208 mg , 2.00 mmol) was dissolved in 5 mL toluene and added to the yellow-orange suspension. The reaction mixture was heated under reflux for 2 h . The solvent was removed under vacuum and the red residue was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and filtered over a 2 cm layer of silica gel. Hexane (2 mL) was added and the solvents were slowly evaporated, which resulted in the formation of a red solid of crude $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]$, which was isolated by filtration, washed with hexane and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane. Yield 73% (291 mg).

Elemental analysis: Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20}$ NOPCITc: Tc, 20.1%. Found: Tc, 19.5%. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3075 (w), 3053 (w), 2961 (w), 2922 (w), 1682 (vs), 1478 (m), 1433 (s), 1310 (w), 1183 (m), 1157 (w), 1094 (s), 1070 (w), 1026 (w), 999 (m), 833 (w), 810 (m), 748 (m), 694 (s), 583 (m), 527 (s), 503 (m), 434 (w).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 7.48-7.52(\mathrm{~m}, 9 \mathrm{H}), 7.40-7.42(\mathrm{~m}, 6 \mathrm{H}), 5.12(\mathrm{~s}, 5 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}): 29.5 .{ }^{99} \mathrm{Tc}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right):-231, \Delta \mathrm{pp}=7170 \mathrm{~Hz}$.

1.3. $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right) \mathrm{Br}\right]$

Method a). [$\left.\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN})\right](256 \mathrm{mg}, 0.3 \mathrm{mmol})$ was suspended in 5 mL toluene. KCp $(62.4 \mathrm{mg}, 0.6 \mathrm{mmol})$ was dissolved in 5 mL toluene and added to the red suspension. The reaction mixture was heated under reflux for 2 h . The solvent was removed under vacuum and the red residue was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and filtered over a 2 cm layer of silica gel. Hexane (2 mL) was added and the solvents were slowly evaporated, which resulted in the formation of a red precipitate of crude $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]$, which was isolated by filtration and washed with hexane. A pure product and single crystals for X-ray diffraction were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane (1:5, v/v). Yield $60 \%(97 \mathrm{mg}$).

Method b). [$\left.\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right](49 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dissolved in $2 \mathrm{mLCH} \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{HBr}(0.1 \mathrm{~mL}, 48 \%)$ was added and the red reaction mixture was stirred at room temperature for 2 h . The solvent was concentrated to 1 mL and filtered over a 2 cm layer of silica gel. The resulting solution was overlayered with diethylether. Red crystals were obtained after slow diffusion of the solvents. Yield: 38 \% (21 mg).

Method c). $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right](25 \mathrm{mg}, 0.05 \mathrm{mmol})$ was dissolved in $1 \mathrm{mLCH} \mathrm{Cl}_{2}$ and $\mathrm{Me}_{3} \mathrm{SiBr}(1 \mathrm{~mL})$ was added. The mixture was stirred for 2 h at room temperature. The reaction mixture was filtered over 2 cm silica gel. The red solution was concentrated and covered with a layer of diethylether (2 mL). Red crystals were obtained upon diffusion of the solvents. Yield: $24 \%(7 \mathrm{mg}$).
Elemental analysis: Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20}$ NOPBrTc: Tc, 18.5%. Found Tc, 18.2%. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3073(w), 3053 (w), 2918 (w), 2851 (w), 1684 (vs), 1479 (m), 1435 (s), 1310 (w), 1261 (m), 1182 (w), 1159 (w), 1119 (w), 1094 (s), 1028 (w), 999 (m), 897 (w), 835 (w), 810 (m), 745 (m), 694 (s), 581 (m), 527 (s), $498(m), 446(w), 434(w) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 7.64-7.69(\mathrm{~m}, 9 \mathrm{H}), 7.40-7.55(\mathrm{~m}, 6 \mathrm{H}), 5.11(\mathrm{~s}, 5 \mathrm{H})$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 29.7 .{ }^{99} \mathrm{Tc}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right):-350, \Delta \mathrm{pp}=6500 \mathrm{~Hz}$.

1.4. $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\right] \mathrm{BF}_{4}$

[$\left.\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right](25 \mathrm{mg}, 0.05 \mathrm{mmol})$ was dissolved in $2 \mathrm{mLCH} \mathrm{Cl}_{2}$ and treated with a solution of $\mathrm{AgBF}_{4}(19 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2} / \mathrm{MeOH}(2 / 1, \mathrm{v} / \mathrm{v})$. CO gas was bubbled through the red solution for 1 h . The solution was filtered and the solvent was removed under vacuum. The redbrown residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and covered with n-hexane (4 mL). Red crystals were obtained by slow diffusion of the solvents. Yield 36% (11 mg).

Elemental analysis: Calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{PBF}_{4} \mathrm{Tc}$: Tc, 17.3%. Found $\mathrm{Tc}, 17.1 \%$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3112(\mathrm{w})$, 2920 (w), 2851 (w), 2037 (vs), 1776 (vs), 1477 (m), 1473 (m), 1096 (s), 1065 (s), 1047 (s), 997 (m), 845 (w), 754 (m), $694(\mathrm{~s}), 615(\mathrm{w}), 583(\mathrm{~m}), 522(\mathrm{~s}), 453(\mathrm{w}), 420(\mathrm{w}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 7.53-7.61$ ($\mathrm{m}, 9 \mathrm{H}$), $7.25-7.33(\mathrm{~m}, 6 \mathrm{H}), 5.81(\mathrm{~s}, 5 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 63.8$ (very broad). ${ }^{99} \mathrm{Tc} \mathrm{c}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right):-1753, \Delta \mathrm{pp}=3900 \mathrm{~Hz}$.

1.5. $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)(\mathrm{Ph})\right]$

[CuBr(SMe 2)] ($0.7 \mathrm{~mL}, 0.66 \mathrm{mmol}, 1.0 \mathrm{M}$ in diethylether) was suspended 2 mL THF and cooled to $0^{\circ} \mathrm{C}$. Phenylmagnesiumbromide ($123 \mathrm{mg}, 0.68 \mathrm{mmol}$) was slowly added to the suspension and stirred for 30 min at room temperature. $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right](49 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $2 \mathrm{mLCH} \mathrm{Cl}_{2}$ was added to the yellow suspension and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The mixture was filtered and the solvent was removed under vacuum. The orange-red residue was dissolved in $0.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered over a 2 cm layer of silica gel. The solution was concentrated to 1 mL and covered with $3 \mathrm{~mL} n$-hexane. An orange-red solid was obtained after slow diffusion of the solvents. Single crystals for X-ray diffraction were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane ($1: 5, \mathrm{v} / \mathrm{v}$). Yield 44% (25 mg).

Elemental analysis: Calcd. for $\mathrm{C}_{29} \mathrm{H}_{25}$ NOPTc: Tc, 18.5 \%, found: Tc, 18.5%. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3262 (w), 3046 (w), 2959 (w), 2920 (w), 2851 (w), 1651 (vs), 1639 (vs), 1560 (m), 1545 (m), 1477 (m), 1462 (m), $1435(\mathrm{~m}), 1308(\mathrm{~m}), 1260(\mathrm{~m}), 1242(\mathrm{~m}), 1180(\mathrm{w}), 1092(\mathrm{~m}), 1013(\mathrm{~m}), 997(\mathrm{w}), 834(\mathrm{w}), 820(\mathrm{~m}), 804$ (m), 736 (m), $698(\mathrm{~s}), 637(\mathrm{~m}), 584(\mathrm{~m}), 557(\mathrm{~m}), 526(\mathrm{~s}), 500(\mathrm{~m}), 447(\mathrm{w}), 424(\mathrm{w}) .{ }^{1 \mathrm{H}}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}): \delta=7.25-7.33(\mathrm{~m}, 15 \mathrm{H}), 7.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.7(\mathrm{~m}, 3 \mathrm{H}), 5.10(\mathrm{~s}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}^{\left(\mathrm{CDCl}_{3},\right.}$ ppm): $\delta=142.0\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{q}-\mathrm{C}-\mathrm{Ph}\right.$), $135.3\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{o}-\mathrm{C}-\mathrm{Ph}\right.$), $134.8\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{q}-\mathrm{C}-\mathrm{PPh}_{3}\right), 133.6(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 6 \mathrm{C}$, m-C-PPh ${ }_{3}$), 129.9 ($\mathrm{s}, 3 \mathrm{3C}, \mathrm{p}-\mathrm{C}-\mathrm{PPh}_{3}$), 128.1 ($\mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}, 6 \mathrm{C}, \mathrm{o}-\mathrm{C}-\mathrm{PPh}_{3}$), 125.9 ($\mathrm{s}, 2 \mathrm{C}, \mathrm{m}-\mathrm{C}-\mathrm{Ph}$), 120.7 (s , 1C, p-C-Ph), 94.1 (s, 5C, Cp). ${ }^{31}$ P\{1 $\left.{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right): 58.0$ (broad). ${ }^{99} \mathrm{Tc}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right):-1201$, $\Delta \mathrm{pp}=8820 \mathrm{~Hz}$.

1.6. $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$

$\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp}) \mathrm{Br}\left(\mathrm{PPh}_{3}\right)\right](27 \mathrm{mg}, 0.05 \mathrm{mmol})$ was dissolved in 1 mL benzene. The red solution was treated with $\mathrm{Br}_{2}(0.025 \mathrm{mmol})$ in 0.5 mL benzene. A purple solid precipitated from the dark solution. It was isolated by filtration and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. Red crystals. Yield 40% (18 mg). Elemental analysis: Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{Br}_{3} \mathrm{Tc}$: $\mathrm{Tc}, 10.7 \%$, found: $\mathrm{Tc}, 10.3 \%$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3059 (w), 2963 (w), 2918 (w), 2851 (w), 1769 (vs), 1481 (w), 1435 (m), 1317 (w), 1188 (w), 1092 (m), 1020 (m), $951(\mathrm{~m}), 826(\mathrm{w}), 740(\mathrm{~m}), 702(\mathrm{~m}), 691(\mathrm{~m}), 621(\mathrm{w}), 594(\mathrm{w}), 520(\mathrm{~m}), 496(\mathrm{~m}), 449(\mathrm{w})$.
EPR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \mathrm{g}_{0}=2.056 \pm 0.001, a_{0}^{T c}=147.93 \pm 1.0 \cdot 10^{-4} \mathrm{~cm}^{-1}$.
 $\pm 1.0 \cdot 10^{-4} \mathrm{~cm}^{-1}$

2. Crystal Structure Determinations

The intensities for the X-ray determinations of $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Cl}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$, $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$ and $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$ were collected on a D8 Venture Bruker instrument at 100 K with Mo K α radiation $\left(\lambda=0.71073 \AA\right.$) using a TRIUMPH monochromator. The data for $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$ were measured on a STOE IPDS at $T=200 \mathrm{~K}$. Standard procedures were applied for data reduction and absorption correction. Structure solution and refinement were performed with SHELXS14 and SHELXL14. Hydrogen atom positions were calculated for idealized positions and treated with the 'riding model' option of SHELXL. Additional information on the structure determinations has been deposited with the Cambridge Crystallographic Data Centre.

2.1. $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$

2.1.1. Table S1: Structure Determination and Refinement Parameters

	[$\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)$]
Formula	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrNOPTc}$
Mw	535.28
Crystal system	monoclinic
a/ Å	22.001(1)
b/ \AA	13.607(1)
c/ \AA	17.541(1)
$\beta /{ }^{\circ}$	126.91(1) ${ }^{\circ}$
V / \AA^{3}	4198.8(6)
Space group	C2/c
Crystal size/mm ${ }^{3}$	$0.45 \times 0.18 \times 0.05$
Z	8
$\mathrm{D}_{\text {cal }} / \mathrm{g} \mathrm{cm}^{-3}$	1.694
μ / mm^{-1}	2.679
No. of reflections	61770
No. of independent, $\mathrm{R}_{\text {int }}$	5012, 0.0542
No. parameters	262
R1/wR2	0.0481/0.0945
GOF	1.299
CCDC	1491441

2.1.2. Fig. S1: Ellipsoid plot of [$\left.\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$

2.1.3. Table S2: Selected bond lengths and angles in $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$

Bond lengths (Å)			
Tc-C1	$2.268(4)$	Tc-Cp (centroids)	$1.937(2)$
Tc-C2	$2.287(4)$	Tc-Br	$2.471(9)$
Tc-C3	$2.282(4)$	Tc-N10	$1.869(9)$
Tc-C4	$2.283(4)$	Tc-P	$2.369(8)$
Tc-C5	$2.276(4)$	N10-O10	$1.03(1)$
Angles (${ }^{\circ}$)			
Tc-N10-O10	$171.9(9)$		

2.2. $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{CO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$

2.2.1. Table S3: Structure Determination and Refinement Parameters

	$\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{CO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$
Formula	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{PBF}_{4} \mathrm{Tc}$
Mw	570.19
Crystal system	monoclinic
a/ A	$9.270(1)$
b/ A	$17.374(1)$
c/ A	$14.270(1)$
$\beta /^{\circ}$	$100.29(1)^{\circ}$
V/ A ${ }^{3}$	$2261.3(3)$
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
Crystal size/mm ${ }^{3}$	$0.40 \times 0.07 \times 0.01$
Z	4
D cal $^{\circ}$ g cm	
μ / mm^{-3}	1.675
No. of reflections	0.763
No. of independent, $\mathrm{R}_{\text {int }}$	47238
No. parameters	$4651,0.0554$
R1/wR2	307
GOF	$0.0268 / 0.0622$
CCDC	1.044

2.2.2. Fig. 2: Ellipsoid plot of $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{CO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$

2.2.3. Table S4: Selected bond lengths and angles in $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{CO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{BF}_{4}$

Bond lengths (Å)			
Tc-C1	$2.261(3)$	Tc-N10	$1.832(2)$
Tc-C2	$2.276(3)$	Tc-C20	$1.903(2)$
Tc-C3	$2.311(3)$	Tc-P	$2.401(6)$
Tc-C4	$2.271(3)$	$\mathrm{N} 10-\mathrm{O} 10$	$1.155(3)$
Tc-C5	$2.298(3)$	C20-O20	$1.133(3)$
Tc-Cp (centroid)	$1.944(1)$		
Angles (${ }^{\circ}$)		$96.5(1)$	
Tc-N10-O10	$170.7(8)$		
Tc-C20-O20	$178.9(2)$		

2.3. $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})\left(\mathrm{Ph}^{(1)}\left(\mathrm{PPh}_{3}\right)\right]\right.$

2.3.1. Table S5: Structure Determination and Refinement Parameters

	[$\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})(\mathrm{Ph})\left(\mathrm{PPh}_{3}\right)$]
Formula	$\mathrm{C}_{29} \mathrm{H}_{25}$ NOPTc
Mw	532.47
Crystal system	monoclinic
a/ Å	9.179(1)
b/ Å	13.937(1)
c/ \AA	10.048(7)
$\alpha /{ }^{\circ}$	90°
$\beta /{ }^{\circ}$	112.89(2) ${ }^{\circ}$
$\gamma /{ }^{\circ}$	90°
V/ \AA^{3}	1184(2)
Space group	$\mathrm{P} 2_{1}$
Crystal size/mm ${ }^{3}$	$0.25 \times 0.16 \times 0.12$
Z	2
$\mathrm{D}_{\text {cal }} / \mathrm{g} \mathrm{cm}^{-3}$	1.493
μ / mm^{-1}	0.698
No. of reflections	46079
No. of independent, $\mathrm{R}_{\text {int }}$	5631, 0.0220
No. parameters	298
R1/wR2	0.0141/0.0358
GOF	0.714
Flack	-0.006(4)
CCDC	1491443

2.3.2. Fig. S3: Ellipsoid plot of [$\left.\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})(\mathrm{Ph})\left(\mathrm{PPh}_{3}\right)\right]$

2.3.3. Table S6: Selected bond lengths and angles in $\left[\mathrm{Tc}(\mathrm{NO})(\mathrm{Cp})(\mathrm{Ph})\left(\mathrm{PPh}_{3}\right)\right]$

Bond lengths (Å)			
Tc-C1	$2.296(3)$	Tc-Cp (centroid)	$1.972(2)$
Tc-C2	$2.326(3)$	Tc-N10	$1.758(2)$
Tc-C3	$2.343(3)$	Tc-C41	$2.149(2)$
Tc-C4	$2.316(2)$	Tc-P	$2.357(1)$
Tc-C5	$2.294(2)$	N10-O10	$1.198(2)$
Angles $\left(^{\circ}\right)$			
Tc-N10-O10	$174.2(2)$	N10-Tc-C41	$95.5(1)$

2.4. $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$

2.4.1. Table S7: Structure Determination and Refinement Parameters

	[$\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}$] x $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula	$\mathrm{C}_{36.50} \mathrm{H}_{31} \mathrm{Br}_{3} \mathrm{ClNO}_{3} \mathrm{P}_{2} \mathrm{Tc}$
Mw	966.74
Crystal system	Monoclinic
a/ A	12.551(1)
b/ Å	14.394(1)
c/ \AA	44.488(4)
$\alpha /{ }^{\circ}$	90°
$\beta /{ }^{\circ}$	97.55(1) ${ }^{\circ}$
$\gamma /{ }^{\circ}$	90°
V/ \AA^{3}	7967.5(11)
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
Crystal size/mm ${ }^{3}$	$0.1 \times 0.08 \times 0.06$
Z	8
$\mathrm{D}_{\text {cal }} / \mathrm{g} \mathrm{cm}^{-3}$	1.612
μ / mm^{-1}	1.612
No. of reflections	47263
No. of independent, $\mathrm{R}_{\text {int }}$	13834, 0.1777
No. parameters	881
R1/wR2	0.0673/0.1388
GOF	0.867
CCDC	1491444

2.3.2. Fig. S4: Ellipsoid plot of $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$

2.3.3. Table S8: Selected bond lengths and angles in $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$

Bond lengths (Å)			
Tc-N10	$1.77(1)$	Tc-O1	$2.076(8)$
Tc-Br1	$2.500(2)$	Tc-O2	$2.016(9)$
Tc-Br2	$2.505(2)$	$\mathrm{N} 10-\mathrm{O} 10$	$1.07(1)$
Tc-Br3	$2.484(2)$		
Angles (${ }^{\circ}$)		N10-Tc-O2	$99.3(4)$
N10-Tc-Br1	$91.4(3)$	Tc-N10-O10	$175(1)$
N10-Tc-Br2	$91.3(3)$		
N10-Tc-Br3	$92.1(3)$		

3. IR spectra

$\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{Br}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$

Table S9: Comparison of the $v(N O)$ bands in $\left[T C(N O) X(C p)\left(\mathrm{PPh}_{3}\right)\right]$ and $\left[\mathrm{Tc}(\mathrm{NO}) \mathrm{X}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$ complexes

	$\left[\mathrm{M}(\mathrm{NO}) \mathrm{Cl}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$	$\left[\mathrm{M}(\mathrm{NO}) \mathrm{Br}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$	$\left[\mathrm{M}(\mathrm{NO}) \mathrm{Ph}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$	$\left[\mathrm{M}(\mathrm{NO})(\mathrm{CO})(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right]$
Tc	1682	1684	1651	1776
Re	$1674^{\mathrm{a})}$	$1673^{\mathrm{a})}$	$1633^{\mathrm{b})}$	1760^{c}

 G.-Y. Lin, W.-K. Wong, W.A. Kiel, V.K. Wong, J.A. Gladysz, J. Am. Chem. Soc. 1982, 104, 141. ${ }^{\text {c) S.K. }}$ Agbossou, G.S. Bodner, A.T.Patton, J.A. Gladysz, Organometallics 1990, 9, 1184,

