Supporting Information

A microporous Cu-MOF with optimized open metal sites and pore

spaces for high gas storage and active chemical fixation of CO₂

Contents

S1. Materials and Methods

- S2. Supplementary tables and figures
- S3. The NMR spectrums

S4. References

S1. Materials and Methods

All the chemicals were obtained from commercial sources, and were used as received except H_4L . The organic ligand H_4L was synthesized by 3, 5-dimethyl-bromobenzene and dimethyldichlorosilane. Deionized water was used for all experiments. Elemental analyses (C, H and N) were measured on a Perkin-Elmer 2400 CHN elemental analyzer, Thermogravimetric analysis (TGA) was made using a SDT 2960 Simultaneous DSC-TGA of TA instruments up to 800 °C, and the heating rate was 10 °C min⁻¹ under an air flow. Powder X-ray power diffraction (XRD) patterns were performed on a D8 Focus (Bruker) diffractometer with Cu K radiation Field-emission ($\lambda = 0.15405$ nm, continuous, 40 kV, 40 mA, increment = 0.02°).

S1.1 Synthesis of bis(3,5-dimethylphenyl)dimethylsilane

n-BuLi (2.5M in heaxanes, 43.23 mL, 108.07 mmol) was added to a solution of 3,5-dimethyl – bromobenzene (20.00 g, 108.07 mmol) in 120 mL Et₂O at 0 °Cand stirred for 3 hours. Then dimethyldichlorosilane (6.83 g, 52.96 mmol, 6.39 mL) was dissolved with 20 mL Et₂O and added dropwise at 0 °C. The reaction mixture was slowly warmed to room temperature and stirred overnight. After being quenched with 100 mL of H₂O, the organic layer was separated, washed with brine, and dried over anhydrous Mg₂SO₄. Removal of the solvents under vacum to give yellow oil, which was purified by silica gel column to give pure product (13.50 g, 94.9%). ¹HNMR (CDCl₃, 400MHz) δ /ppm: 7.13 (s, 4H, ArH), 7.00 (s, 2H, ArH), 2.30 (s, 12H, Ar-CH₃), 0.50 (s, 6H, Si-CH₃).

S1.2 Synthesis of 5,5'-(dimethylsilanediyl) diisophthalic acid

A 1L three-neck round flask was charged with bis(3,5-dimethylphenyl)dimethylsilane (8 g, 22.31 mmol), 70 ml of water and 200 ml pyridine. The mixture was heated to reflux and KMnO₄ (126.92 g, 0.80mol) was partly added, and then the reaction mixture was stirred for 24h. The reaction mixture was cooled to room temperature and 150 mL of CH₃OH was added slowly to decompose unreacted KMnO₄. Manganese dioxide was removed by vacuum filtration and the solid was washed with hot water. The filtrate was concentrated on a hot-plate to about 30 ml and concentrated HCl was added until the pH was 1. The resulting white solid was dissolved in dilute aqueous NaOH. The solution was filtered and reacidified with concentrated HCl. The new solid was collected and dried: 6.70 g (55.8%). ¹HNMR (CDCl₃, 400MHz) δ /ppm: 13.33 (s, 2H), 8.49 (t, J = 1.6 Hz, 1H), 8.26 (d, J = 1.6 Hz, 2H), 0.67 (s, 3H).

S1.3 Synthesis of compound 1

A solution of $CuCl_2 \cdot 4H_2O$ (21 mg, 0.10 mmol) and H_4L (17 mg, 0.05 mmol) in a mixture of DMF (3 mL) and H_2O (3 mL) in a capped 20 mL glass vial was heated at 70 $^{\circ}C$ for 3 days, affording green hexagon crystals in a ca. 70% yield based on H_4L .

Elemental analysis for C₂₄H₃₄O₁₄N₂Cu₂Si: C, 40.27%; H, 4.78%; N, 1.96%. Found: C, 40.23%; H, 4.81%; N, 1.93%. Selected IR data (cm⁻¹, Fig. S, ESI): 2935 (w), 1655 (s), 1621 (s), 1409 (s), 1354 (s), 1251 (m), 1197 (w), 1087 (m), 881 (m), 814 (m), 766 (m), 725 (m), 649 (w).

The agreement between the experimental and simulated PXRD patterns indicated the phase purity of the as-synthesized product.

S1.4 Single Crystal X-ray Structure Determination

Suitable single crystal of 1 was selected for single-crystal X-ray diffraction analysis. Crystallographic data collections were performed on collected a Bruker Apex II CCD diffractometer with graphite monochromated Mo-Ka radiation (λ = 0.71073 Å) at 293 K. Data processing was accomplished with the SAINT processing program.¹ The structure was solved by the direct methods and refined by full-matrix least-squares fitting on F² using the SHELXTL crystallographic software package.² Non-hydrogen atoms were refined with anisotropic displacement parameters during the final cycles. All hydrogen atoms of the organic molecule were placed by geometrical considerations and were added to the structure factor calculation. The guest molecules were disordered and could not be modelled properly, the diffused electron densities resulting from them were removed by the SQUEEZE routine in PLATONS3 and the results were appended in the CIF file. The reported refinements are of the guest-free structures using the *.hkp files produced using the SQUEEZE routine. The final formula of 1 was determined by single-crystal X-ray diffraction, thermogravimetric and elemental analyses. Crystallographic data for 1 (1483155) has been deposited with Cambridge Crystallographic Data Centre. Data can be obtained free of charge upon request at www.ccdc.cam.ac.uk/data request/cif. Crystal data and structure refinement is summarized in Table S1. Topology information for 1 was calculated by TOPOS 4.0.3

S1.5 Gas adsorption measurements

The N₂, H₂, CH₄ and CO₂ adsorption measurements were performed on automatic volumetric adsorption equipment (Quantachrome Autosorb-iQ). Prior to gas adsorption measurements, the as-synthesized samples were immersed in methanol for 3 days; during the exchange the methanol was refreshed three times remove the non-volatile DMF solvates. The resulting methanol-exchanged sample of **1** was transferred as a suspension to a Buchner funnel and the solvent was decanted. Then the samples were degassed under a dynamic vacuum at 100 °C for 10 hours. A colour changed from bright-blue to deep purple-blue is a typical feature for Cu paddlewheel to generate open Cu sites.

S1.6 Fitting of pure component isotherms

Experimental data on pure component isotherms for CO_2 , CH_4 , N_2 and H_2 were fitted by dualsite Langmuir-Freundlich (DSLF) adsorption model⁴. The DSLF model is described as:

$$N = \frac{N_1 b_1 P^{l/n1}}{1 + b_1 P^{l/n1}} + \frac{N_2 b_2 P^{l/n2}}{1 + b_2 P^{l/n2}} \quad (1)$$

In equation (1), *P* is the pressure of bulk gas at equilibrium with adsorbed phase; N_1 and N_2 are the maximum loading in sites 1 and 2; b_1 and b_2 are the affinity constants of sites 1 and 2; n_1 and n_2 are used to characterize the deviation from the single Langmuir equation. The fits are excellent for all components over the entire pressure range.

S1.7 IAST calculations of adsorption selectivities

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2 can be formally defined as:

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$
 (2)

In equation (2), q_1 and q_2 are the absolute component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculate the values of q_1 and q_2 using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz.⁵

S1.8 The isosteric heats of adsorption

The isosteric heat of adsorption, Q_{st} , defined as:

$$Qst = RT^2 \left(\frac{\partial \ln P}{\partial T}\right)_q (3)$$

The equation (3) was determined using the pure component isotherm fits using the Clausius-Clapeyron equation, where *P* is pressure, *T* is temperature, *q* is the amount adsorbed, *R* is the gas constant, and Q_{st} denotes the heat of adsorption.

S1.9 Cycloaddition of CO₂ to Styrene Oxide

The conversion was calculated from ¹H NMR according to the following equation.

Ha
$$R$$
 $CO_2, TBAB$
 R Hb R Hb

· · ·	
Name	1
Empirical formula	$C_{24}H_{34}O_{14}N_2Cu_2Si$
Formula weight	729.7
Temperature (K)	173(2)
Wave length (Å)	0.71073
Crystal system	Hexagonal
Space group	P6 ₃ /mmc
a (Å)	18.5185(5)
b (Å)	18.5185(5)
c (Å)	19.1215(11)
α(deg)	90
β(deg)	90
γ(deg)	120
Volume (ų)	5678.9(4)
Z, D _{calc} (Mg/m ³)	6, 0.953
Absorption coefficient (mm ⁻¹)	1.184
F (000)	1632
Crystal size (mm ³)	0.180 x 0.140 x 0.120
heta range (deg)	1.66 to 26.06
index range (deg)	-22<=h<=20, -22<=k<=22, -23<=l<=17
Reflections collected / unique	34876 / 2125 [R(int) = 0.0735]
Data / restraints / parameters	2125 / 0 / 80
Goodness-of-fit on F ²	0.996
R_1 , w R_2 (<i>I</i> > 2 σ (<i>I</i>))	0.0419, 0.1199
R ₁ , wR ₂ (all data)	0.0561, 0.1278
Largest diff. peak and hole (e Å ⁻³)	0.385, -0.289

S2. Tables and figures Table S1. Crystal data and structure refinement for **1**.

 $R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| \cdot wR_{2} = \left[\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]\right]^{1/2}$

Figure S1 5,5'-(dimethylsilanediyl) diisophthalic acid ligand with dihedral angle in 1.

Figure S2 Space-filling view of the structure of **1** showing pores along the *c*-axis. For clarity the hydrogen atoms have been omitted.

Figure S3 The simulated, as-synthesized and activated powder X-ray (PXRD) patterns for 1.

Figure S4 Powder X-ray diffraction patterns of as-synthesized **1**, samples obtained after immersing in various solvents for 24h and the ones exposed to air for one year.

Figure S5 A colour change from green to blue in case of activation.

Figure S6 Thermogravimetric analysis (TGA) curves for the as-synthesized and activated samples of **1**. The curve of fresh samples show a weight loss of 37.12 % between room temperature and 300 °C, corresponding to the loss of coordinated H₂O molecules, guest H₂O and DMF molecules.

Figure S7 The infrared spectrum of 1.

Figure S8 The N_2 sorption isotherm at 77K ($P_0 = 101$ KPa).

Figure S9 The pore size distribution calculated using the BJH method.

Temperatur	Car	Adsorption amount (at saturation)					
е	Gas	cm ³ g ⁻¹ cm ³ cm ⁻³		mmol g ⁻¹	wt%		
ע בר	N ₂	392.7	404.1	17.5	49.1		
//K	H ₂	303.6	312.4	13.6	2.7		
87K	H ₂	209.5	215.5	9.4	1.9		
273К	CO ₂	149	153.3	6.7	29.3		
	CH ₄	69	71.0	3.1	4.9		
298K	CO ₂	115.4	118.8	5.2	22.7		
	CH ₄	18	18.5	0.8	1.3		

Table S2 Gas adsorption data of 1a.

To predict the CO_2 separation behaviour of **1a** at 298K, ideal adsorbed solution theory (IAST)⁵ theory were employed for binary gas adsorption selectivity. The calculated CO_2/CH_4 and CO_2/N_2 selectivities are 8-11 and 25-35 from 1-100 KPa, respectively. The selectivity of **1a** for CO_2 over CH_4 and N_2 under these conditions is comparable to the majority of MOFs reported to date.⁶

Figure S10. (a) CO_2 , CH_4 and N_2 adsorption isotherms at 298 K along with the Dual-site Langmuir Freundich (DSLF) fits. (b) Gas mixture adsorption selectivities from equimolar CO_2/CH_4 and CO_2/N_2 mixtures predicted by IAST at 298K from 1- 100 kPa for **1a**.

Figure S11. (a) CO_2 adsorption isotherms for **1a** fitted by the Langmuir-Freundlich equation. (b) Isosteric heat of CO_2 for **1a** calculated from the CO_2 adsorption isotherms at 273 and 298 K, employing the Clausius-Clapeyron equation.

Figure S12. (a) H_2 adsorption isotherms for **1a** fitted by the Langmuir-Freundlich equation. (b) Isosteric heat of H_2 for **1a** calculated from the H_2 adsorption isotherms at 77 and 87 K, employing the Clausius-Clapeyron equation.

Compounds	SA_{BET} (m ² g ⁻¹)	H ₂ uptake (wt%)	References	
[Cu(Me-4py-trz-	1473	3.07	7	
PCN-12	1943	3.05	8	
UTSA-20	1156	2.92	9	
1a	1145.9	2.7	This work	
NOTT-103	2929	2.63	10	
In-soc-MOF	N.A.	2.60	11	
NOTT-100	1670	2.59	10	
L _{Cu'}	1952	2.57	11	
PCN-11	1931	2.55	13	
NOTT-101	2247	2.52	10	
NOTT-105	2387	2.52	14	
Cu(peip)	1560	2.51	15	
JLu-Liu21	2080	2.5	16	
PMOF-3	1879	2.47	17	
NOTT-115	3394	2.42	18	
NOTT-113	2970	2.39	18	
PCN-10	1407	2.34	13	
JLU-Liu20	1807	2.3	16	
PMOF-2(Cu)	3730	2.29	19	
Cu-BTT	1710	2.25	20	
Mn-BTT	2100	2.42	20	
MOF-74(Mg)	1510	2.2	21	
UMCM-150	2300	2.1	22	

N.A.: Not Available. The article does not list the data.

Table S3 The reported porous MOFs which exhibit over 2.0 wt% $\rm H_2$ uptake at 77 K and 1 bar.

MOFs	CH ₄ uptake (cm ³ g ⁻¹)	Temperature(K)	References	
10	18	298	This work	
13	69	273		
	31	273	20	
JLO-LIU-20	18	298	20	
	37	273	16	
JLO-LIU-21	22	298	10	
	36.97	273	10	
L _{Cu} ,	23.52	1.68	12	
CPM-33b	41.3	273	22	
	26.5	26.5 298		

 Table S4 Methane adsorption of 1a and some reported MOFs at 1 bar.

Compounds	CO₂ uptake (wt%)	Temperature (K)	References
SNU-5	38.5	273	24
1a	29.3	273	This work
Dy(BTC)	27.2	273	27
Cu ₂ (EBTC)(H ₂ O) ₂	25.9	273	29
SNU-4	20.6	273	24
Mg-MOF-74	27.5	298	25
CPO-27-Mg	27.2	298	26
HKUST-1 (4 wt% H ₂ O)	27	298	28
Co-MOF-74	24.9	298	26
CPM-33b	24.8	298	23
Ni-MOF-74	23.9	298	25
1a	22.7	298	This work
PCN-6	18.9	298	29
HKUST-1 (8 wt% H ₂ O)	17.4	298	28
CPM-33c	17.4	298	23

 $\label{eq:spectral} \textbf{Table S5} \ \textbf{CO}_2 \text{-uptake capacities of } \textbf{1a} \ \textbf{and some reported MOFs only with open metal sites at } \textbf{1bar}.$

$$\begin{array}{c} O \\ R \end{array} \xrightarrow{CO_2, TBAB} \\ \hline \\ catalyst, T, P \\ R \end{array}$$

Entry	Substrate	Time (h)	conversion (%)	TON	TOF
1	₿∽он	2	>99	2000	1000
2	گ^ _{CI}	2	95.2	1904	952
	3	2	65.8	1316	658
3		4	86.2	1724	431
		6	>99	2000	333
4	2	31.3	626	313	
		4	58.8	1176	294
	Ť	6	64.1	1282	214

Reaction conditions: epoxide (20 mmol), catalyst (0.01 mmol, based on $[Cu_2(CO_2)_4]$ cluster), and TBAB (0.3 mmol) under carbon dioxide (1 MPa) at 373 K. The yields were determined by ¹H NMR analysis.

Table S6 1a-catalyzed coupling of epoxides with CO_2 .

Figure S13 Histogram of recyclibility study (three cycles) for catalytic acitivities of 1a in coupling of glycidol with CO_2

Figure S14 The proposed mechanism for the cycloaddition reaction of epoxide and CO_2 into cyclic carbonate catalyzed by **1a** (cyan sphere: open Cu site; L⁺ = tetra-n-butylammonium).

The MOF displays a high catalytic activity on CO_2 chemical fixation on account of its exposed Lewis-acid metal sites. As shown in the scheme, the coupling reaction is initiated by binding the epoxide with Lewis acidic copper site in the activated MOF **1**. Once binding with copper, the C-O bond of epoxide is weakened due to part of electron transfer from the oxygen atom to copper. Subsequently, the less-hindered carbon atom of epoxide is attacked by the Br⁻ generated from nBu_4NBr to open the epoxy ring as a consequence of its lower steric effect and higher positive charge. This is followed by the interaction of oxygen atom from CO_2 with the positively charged carbon and that of O atom of epoxide with the C atom of CO_2 . The succedent ring closure gives the production of cyclic carbonate.

Entry	Cata.	T (°C)	P (MPa)	T (h)	TON	TOF	Ref.
1	1a	100	1.0	2	1904	952	This work
2	Gea-MOF-1	120	2.0	6	593	99	31
3	CHB (M)	120	1.2	6	44.6	7.4	34
4	Ni(salphen)-MOF	80	2.0	4	300	75	32
5	MOF-5	50	0.1	12	22.3	1.9	35
6	[Cu4(L1)]n	25	0.1	48	425	8.9	36

Table S7 Comparison with different MOF catalysts in the cycloaddition of CO₂ and epichlorohydrin.

Entry	Cata.	T (°C)	P (MPa)	T (h)	TON	TOF	Ref.
1	1a	100	1.0	6	2000	333	This work
2	Ni-TCPE1	100	1.0	12	2000	167	30
3	Ni(salphen)-MOF	80	2.0	4	196.4	49.1	32
4	CHB (M)	120	1.2	6	44	7.3	33
5	MOF-5	50	0.1	3	13.4	4.5	35

Table S8 Comparison with different MOF catalysts in the cycloaddition of CO_2 and 1,2-epoxy-3-phenoxypropane.

Entry	Cata.	т (°С)	P (MPa)	T (h)	TON	TOF	Ref.
1	1a	100	1.0	6	1282	214	This work
2	Ni-TCPE1	100	1.0	12	2000	166.7	30
3	Ni-TCPE2	100	1.0	12	1720	143.3	30
4	Gea-MOF-1	120	2.0	6	567	94.5	31
5	Ni(salphen)-MOF	80	2.0	4	289.3	72.3	32
6	L _{Cu'}	120	2.0	6	286	47.7	12
7	Co-MOF-74	100	2.0	4	28.8	7.2	33
8	CHB(M)	120	1.2	6	34.7	5.8	34

Table S9 Comparison with different MOF catalysts in the cycloaddition of CO_2 and styrene oxide under heating conditions.

S3. The NMR spectrums

Figure S15 The ¹H NMR spectrum of (3,5-dimethyl-phenyl)-dimethyl-silane (400 MHz, CDCl₃): δ = 7.13 (s, 4H, Ar-H), 7.00 (s, 2H, Ar-H), 2.31 – 2.29 (m, 12H, Ar-CH₃), 0.50 (s, 6H, Si-CH₃).

Figure S16 The ¹H NMR spectrum of H₄L (400 MHz, DMSO): δ = 13.33 (br, 4H,-COOH), 8.49 (t, J = 1.6 Hz, 2H, Ar-H), 8.26 (d, J = 1.6 Hz, 4H, Ar-H), 0.67 (s, 6H, Si-CH₃).

Figure S17 ¹H NMR spectra of glycidol (400 MHz, CDCl₃): δ = 3.94 – 3.99 (m, 1H, HO-CH₂), 3.56 – 3.62 (m, 1H, HO-CH₂), 3.16 – 3.19 (m, 1H, O-CH), 2.83 (t, J = 4.0 Hz, 1H, O-CH₂), 2.76 (q, J = 4.0 Hz, 1H, O-CH₂), 2.52 (t, J = 4.0 Hz, 1H, -OH).

Figure S18 ¹H NMR spectra of the cycloaddition product of cyclopropyl-methanol with CO₂ (400 MHz, CDCl₃): δ = 4.73 – 4.78 (m, 1H, COO-CH), 4.39 – 4.48 (m, 2H, HO-CH₂), 3.91 (dd, J = 12.0 Hz, 4.0 Hz, 1H, COO-CH₂), 3.65 (dd, J = 12.0, 4.0 Hz, 1H, COO-CH₂), 2.73 (br, 1H, -OH).

Figure S20 ¹H NMR spectra of the cycloaddition product of chloromethyl-cyclopropane and CO₂ for 2h (400 MHz, CDCl₃) : δ = 4.88 – 4.93 (m, 1H, COO-CH), 4.53 (t, J = 8.0 Hz, 1H, COO-CH₂), 4.35 (q, J = 8.0 Hz, 1H, COO-CH₂), 3.65 – 3.74 (m, 1H, Cl-CH₂ of product), 3.50–3.52 (m, 0.10H, Cl-CH₂ of chloromethyl-cyclopropane), 3.16 – 3.20 (m, 1H, O-CH₂), 2.83 (d, J = 4.0 Hz, 1H, O-CH₂), 2.63 (q, J = 4.0 Hz, 1H, O-CH₂).

4.5 4.0 f1 (ppm) 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 3. 5 Figure S22 ¹H NMR of the cycloaddition product of 1,2-epoxy-3-phenoxypropane and CO₂ for 2h (400 MHz, CDCl₃): δ = 7.20 – 7.27 (m, 3.12H, Ar-H), 6.88 – 6.97 (m, 1.47H, Ar-H), 6.83 – 6.87 (m, 2.79H, Ar-H), 4.93 – 4.99 (m, 1H, COO-CH), 4.55 (t, J = 8.0 Hz, 1H, COO-CH₂), 4.47 (t, J = 8.0 Hz, 1H, COO-CH₂), 4.19 - 4.13 (m,

1.46H, 1H - ArO-CH₂ of product and 0.46H - ArO-CH₂ of 1,2-epoxy-3-phenoxypropane), 4.07 (dd, J = 8.0 Hz, 4.0 Hz, 1H, ArO-CH₂ of product), 3.90 (q, J = 8.0 Hz, 0.46H, ArO-CH₂ of 1,2-epoxy-3-phenoxypropane), 3.28 – 3.31 (m, 0.46H, O-CH), 2.84 (t, J = 4.0 Hz, 0.46H, O-CH₂), 2.70 (q, J = 4.0 Hz, 0.46H, O-CH₂).

Figure S23 ¹H NMR of the cycloaddition product of 1,2-epoxy-3-phenoxypropane and CO₂ for 4h (400 MHz, CDCl₃) : δ = 7.20 – 7.26 (m, 2.37H, Ar-H), 6.92 – 6.97 (m, 1.04H, Ar-H), 6.83 – 6.88 (m, 2.36H, Ar-H), 4.93 – 4.99 (m, 1H, COO-CH),4.55 (t, J = 8.0 Hz, 1H, COO-CH₂), 4.48 (t, J = 8.0 Hz, 1H, COO-CH₂), 4.13 – 4.19 (m, 1.66H, 1H - ArO-CH₂ of product and 0.16H - ArO-CH₂ of 1,2-epoxy-3-phenoxypropane), 4.07 (dd, J = 8.0 Hz, 4.0 Hz, 1H, ArO-CH₂ of product), 3.90 (q, J = 8.0 Hz, 0.16H, ArO-CH₂ of 1,2-epoxy-3-phenoxypropane), 3.38 – 3.45 (m, 0.16H, O-CH), 2.84 (t, J = 4.0 Hz, 0.16H, O-CH₂), 2.70 (q, J = 4.0 Hz, 0.16H, O-CH₂).

Figure S24 ¹H NMR spectra of the cycloaddition product of 1,2-epoxy-3-phenoxypropane and CO₂ for 6h (400 MHz, CDCl₃): δ = 7.24 (t, J = 8.0 Hz, 2H, Ar-H), 6.95 (t, J = 8.0 Hz, 1H, Ar-H), 6.84 (d, J = 8.0 Hz, 2H, Ar-H), 4.94 – 4.99 (m, 1H, COO-CH), 4.55 (t, J = 8.0 Hz, 1H, COO-CH₂), 4.48 (t, J = 8.0 Hz, 1H, COO-CH₂), 4.18 (dd, J = 8.0Hz, 4.0 Hz, 1H,ArO-CH₂ of product), 4.08 (dd, J = 8.0Hz, 4.0 Hz, 1H,ArO-CH₂ of product).

Figure S25 ¹ H NMR spectra of styrene oxide (400 MHz, CDCl₃): δ = 7.27 – 7.37 (m, 5H, Ar-H), 3.87 (t, J=4.0 Hz, 1H, O-CH), 3.16 (q, J=4.0 Hz, 1H, O-CH₂), 2.81 (q, J = 4.0 Hz, 1H, O-CH₂).

Figure S26 ¹H NMR spectra of the cycloaddition product of styrene oxide and CO₂ for 2h (400 MHz, CDCl₃) : δ =7.28 – 7.39 (m, 8H, Ar-H), 7.18 – 7.25 (m, 8H, Ar-H), 5.60 (t, J = 8.0 Hz, 1H, COO-CH), 4.72 (t, J = 8.0 Hz, 1H,COO-CH₂), 4.27 (t, J = 8.0 Hz, 1H,COO-CH₂), 3.79 (t, J = 8.0 Hz, 2.20H, O-CH), 3.07 (q, J = 4.0 Hz, 2.20H, O-CH₂), 2.73 (q, J = 4.0 Hz, 2.20H, O-CH₂).

Figure S27 ¹H NMR spectra of the cycloaddition product of styrene oxide and CO₂ for 4h (400 MHz, CDCl₃): δ =7.29 – 7.38 (m, 5H, Ar-H), 7.19 – 7.26 (m, 2.58H, Ar-H), 5.60 (t, J = 8.0 Hz, 1H, COO-CH), 4.73 (t, J = 8.0 Hz, 1H, COO-CH₂), 4.27 (t, J = 8.0 Hz, 1H, COO-CH₂), 3.79 (q, J = 4.0 Hz, 0.70H, O-CH), 3.08 (q, J = 4.0 Hz, 0.70H, O-CH₂), 2.73 (q, J = 4.0 Hz, 0.70H, O-CH₂).

Figure S28 ¹H NMR spectra of the cycloaddition product of styrene oxide and CO₂ for 6h (400 MHz, CDCl₃): δ = 7.29 - 7.40 (m, 5.08H, Ar-H), 7.18 - 7.26 (m, 2.62H, Ar-H), 5.60 (t, J = 8.0 Hz, 1H, COO-CH), 4.72 (t, J = 8.0

Hz, 1H, COO-CH₂), 4.27 (t, J = 8.0 Hz, 1H, COO-CH₂), 3.78 (q, J = 4.0 Hz, 0.54H, O-CH), 3.07 (q, J = 4.0 Hz, 0.54H, O-CH₂), 2.73 (q, J = 4.0 Hz, 0.54H, O-CH₂).

S4. References

References

- SMART and SAINT software package, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1996.
- (a) O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. J. Puschmann, Appl. Cryst. 2009, 42, 339-341. (b) G.M. Sheldrick, Acta Cryst. A, 2008, 64, 112-122. (c) G.M. Sheldrick, Acta Cryst. C, 2015, 71, 3-8.
- 3. V. A. Blatov, Struct. Chem. 2012, 23, 955-963.
- 4. D. M. Ruthven, Principles of Adsorption and Adsorption Processes; Wiley: New York, 1984.
- 5. A. L. Myers and J. M. Prausnitz, A.I.Ch.E.J., 1965, 11, 121–127.
- 6. J.-R. Li, J. Sculley, H.-C. Zhou, *Chem. Rev.* 2012, **112**, 869–932.
- D. Lässig, J. Lincke, J. Moellmer, C. Reichenbach, A. Moeller, R. Gläser, G. Kalies, K. A. Cychosz, M. Thommes, R. Staudt, H. Krautscheid, *Angew. Chem., Int. Ed.* 2011, 50, 10344-10348.
- X.-S. Wang, S.Q. Ma, P. M. Forster, D. Q. Yuan, J. Eckert, J. J. LÓpez, B. J. Murphy, J. B. Parise and H.-C. Zhou, *Angew. Chem.* 2008, **38**, 7373-7376 ; *Angew. Chem. Int. Ed.* 2008, **47**, 7263-7266.
- Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. OKeeffe, B. Chen, Angew. Chem. 2011, 123, 3236-3239; Angew. Chem. Int. Ed. 2011, 50, 3178-3181.
- 10. X. Lin, J. Jia, X. Zhao, K. M. Thomas, A. J. Blake, G. S. Walker, N. R. Champness, P. Hubberstey, M. Schröder, *Angew. Chem. Int. Ed.* 2006, **45**, 7358-7364.
- 11. Y. L. Liu, J. F. Eubank, A. J. Cairns, J. Eckert, V. C. Kravtsov, R. Luebcke, M. Eddaoudi, *Angew. Chem. Int. Ed.*, 2007, **46**, 3278-3283.
- 12. D. De, T. K. Pal, S. Neogi, S. Senthilkumar, D. Das, S. S. Gupta and P. K. Bharadwaj, *Chem. Eur. J.* 2016, **22**, 3387-3396.
- X. S. Wang, S. Q. Ma, K. Rauch, J. M. Simmons, D. Q. Yuan, X. P. Wang, T. Yildirim, W. C. Cole, J. J. López, A. D. Meijere, and H. C. Zhou, *Chem. Mater.*, 2008, **20**, 3145-3152.
- X. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R. Champness, M. Schröder, J. Am. Chem. Soc. 2009, 131, 2159-2171.
- 15. X. Liu, M. Oh, M. S. Lah, Inorg. Chem. 2011, 50, 5044-5053.
- 16. B. Liu, S. Yao, C. Shi, G. Li, Q. Huo and Y. Liu, Chem. Commun., 2016, 52, 3223-3226.
- 17. P. Zhang, B. Li, Y. Zhao, X. Meng, T. Zhang, Chem. Commun. 2011, 47, 7722-7724.
- 18. Y. Yan, A. J. Blake, W. Lewis, S. A. Barnett, A. Dailly, N. R. Champness, M. Schröder, *Chem. Eur. J.* 2011, **17**, 11162-11170.
- 19. S. Hong, M. Oh, M. Park, J. W. Yoon, J. S. Chang, M. S. Lah, *Chem. Commun.* 2009, **45**, 5397-5399.
- 20. M. Dincă, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann and J. R. Long, *J. Am. Chem. Soc.*, 2006, **128**, 16876-16883.
- 21. K. Sumida, C. M. Brown, Z. R. Herm, S. Chavan, S. Bordiga, J. R. Long, Chem. Commun.

2011, **47**, 1157-1159.

- 22. A. G. W.-Foy, O. Lebel, A. J. Matzger, J. Am. Chem. Soc. 2007, 129, 15740-15741.
- 23. X. Zhao, X.Bu, Q.-G. Zhai, H. Tran and P. Feng, J. Am. Chem. Soc. 2015, 137, 1396-1399.
- 24. Y.-G. Lee, H. R. Moon, Y. E. Cheon, M. P. Suh, Angew. Chem. Int. Ed. 2008, 47, 7741-7745.
- A. O. Yazaydin, R. Q. Snurr, T.-H. Park, K. Koh, J. Liu, M. D. LeVan, A. I. Benin, P. Jakubczak, M. Lanuza, D. B. Galloway, J. L. Low, R. R. Willis, *J. Am. Chem. Soc.* 2009, **131**, 18198-18199.
- 26. Z. Bao, L. Yu, Q. Ren, X. Lu, S. Deng, J. Colloid Interface Sci. 2011, 353, 549-556.
- 27. X. Guo, G. Zhu, Z. Li, F. Sun, Z. Yang, S. Qiu, Chem. Commun. 2006, 3172-3174.
- A. O. Yazaydin, A. I. Benin, S. A. Faheem, P. Jakubczak, J. L. Low, R. R. Willis, R. Q. Snurr, Chem. Mater. 2009, 21, 1425-1430.
- 29. Y. Hu, S. Xiang, W. Zhang, Z. Zhang, L. Wang, J. Bai, B. Chen, *Chem. Commun*. 2009, 7551-7553.
- 30. Z. Zhou, C. He, J. Xiu, L. Yang and C. Duan, J. Am. Chem. Soc. 2015, 137, 15066-15069.
- V. Guillerm, Ł. J. Weseliński, Y. Belmabkhout, A. J. Cairns, V. D'Elia, Ł. Wojtas, K. Adil, M. Eddaoudi, *Nature Chem.* 2014, 6, 673–680.
- Y. W. Ren, Y. C. Shi, J. X. Chen, S. R. Yang, C. R. Qi and H. F. Jiang, *RSC Adv.* 2013, 3, 2167–2170.
- 33. H. Y. Cho, D. A. Yang, J. Kim, S. Y. Jeong, W. S. Ahn, Catal. Today 2012, 185, 35-40.
- 34. A. C. Kathalikkattil, D. W. Kim, J. Tharun, H. G. Soek, R. Roshan, D. W. Park, *Green Chem*. 2014, **16**, 1607–1616.
- 35. J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang, B. Han, Green Chem., 2009, 11, 1031–1036.
- 36. P.-Z. Li, X.-J. Wang, J. Liu, J.S. Lim, R. Zou, Y. Zhao, J. Am. Chem. Soc. 2016, **138**, 2142–2145.