Visible-light photocatalytic N-radical cascade of hydrazones for the

synthesis of dihydropyrazole-fused benzosultams

Quan-Qing Zhao,^a Xiao-Qiang Hu,^a Meng-Nan Yang,^a Jia-Rong Chen,*^a and Wen-Jing Xiao*^{ab} ^a CCNU-uOttawa Joint Research Centre on Synthesis and Catalysis, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China

^b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

chenjiarong@mail.ccnu.edu.cn; wxiao@mail.ccnu.edu.cn

Table of Contents

1. General Information
2. Preparation and Spectral Data of the Substrates
2.1 General procedure for the preparation of β , γ -unsaturated hydrazones 1a-p and 1r-1v S3
2.2 Spectral data of the substrates 1a-f, 1h-p and 1r-1v, 3c
3. General Procedure and Spectral Data of the Products
3.1 General procedure for the synthesis of 3a
3.2 General procedure for the synthesis of benzosultam 2
3.3 Spectral data of the desired products 2a-v, 3a and 4
4. Optimization of the Reaction Conditions
4.1 The effect of additives
4.2 The effect of photocatalysts and bases
4.3 The effect of cobalt catalysts
5. Mechanistic Studies
5.1 Luminescence quenching experiments
5.2 Trapping of the C-radical intermediate
5.3 Detecting the byproduct H ₂
5.4 The control experiments
6. X-Ray Structures of 2a and 3a
7. NMR Spectra of the Substrates 1a-f, 1h-p, 1r-v, 3c and Products 2a-v, 3a, and 4

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on 400/600 MHz spectrophotometers. Chemical shifts are reported in delta (δ) units in parts per million (ppm) relative to the singlet (0 ppm) for tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on Varian Mercury 400 (100 MHz) with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm). HRMS was recorded on Bruker ultrafleXtreme MALDITOF/TOF mass spectrometer.

2. Preparation and Spectral Data of Substrates

2.1 General procedure for preparation of β , γ -unsaturated hydrazones 1a-q, 1r-v.

To a stirred solution of β , γ -unsaturated ketone (20 mmol, 1.0 eq.) in MeOH (30 mL), *p*-toluenesulfonyl hydrazide (22 mmol, 1.1 eq.) was added at room temperature. Then, the mixture was stirred at 40 °C until the reaction was completed, as monitored by TLC. Then, the solvent was removed and the residue was purified by flash column chromatography to give compound **1a** as a white solid (3.4 g, 50% yield). Other β , γ -unsaturated hydrazones **1b-q**, **1r-v** were prepared according to the above procedure. ^[1-2]

References: [1] X.-Q. Hu, J.-R. Chen, Q. Wei, F.-L. Liu, Q.-H. Deng, A. M. Beauchemin and W.-J. Xiao, *Angew. Chem. Int. Ed.*, 2014, 53, 12163-12167.
[2] X.-Q. Hu, X. Qi, J.-R. Chen, Q.-Q. Zhao, Q. Wei, Y. Lan and W.-J. Xiao, *Nat. Commun.*, 2016, 7: 11188.

2.2 Spectral data of the substrates 1a-f, 1h-p, 1r-1v, 3c

Substrate 1a

Ts ¹H NMR (400 MHz, CDCl₃) δ = 7.75 (d, *J* = 8.2 Hz, 2H), 7.36 (t, *J* = 6.3 Hz 3H), 7.31 (d, ΗŃ、 J = 8.0 Hz, 2H), 6.92 (s, 1H), 6.80 – 6.78 (m, 2H), 5.71 (dd, J = 17.3, 10.6 Hz, 1H), 4.94 (d, J = 10.5 Hz, 1H), 4.82 (d, J = 17.3 Hz, 1H), 2.46 (s, 3H), 1.15 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ = 162.7, 143.6, 143.6, 135.0, 131.2, 129.1, 129.1, 128.9, 127.6, 127.4, 112.9, 44.4, 25.2, 21.7. M.P.: 112.5 – 113.5. IR (in KBr): 1630, 1387, 1334, 1157, 1093, 545 cm⁻¹. HRMS (EI): m/z [M + H] ⁺ calcd for C₁₉H₂₃N₂O₂S: 343.1474; found: 343.1475.

Substrate 1b

¹H NMR (600 MHz, CDCl₃) δ = 7.78 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.1 Hz, 1H), 7.34 Ts ΗŃ., (d, J = 7.8 Hz, 2H), 6.93 (s, 2H), 6.73 (d, J = 8.0 Hz, 1H), 5.71 – 5.66 (dd, J = 17.4, CI 10.6 Hz, 1H), 5.01 (d, J = 10.6 Hz, 1H), 4.85 (d, J = 17.4 Hz, 1H), 2.47 (s, 3H), 1.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 159.8, 143.9, 143.2, 134.8, 133.7, 133.4, 131.1, 131.0, 129.4, 129.3, 127.7, 127.1, 113.8, 44.5, 25.2, 21.7. M.P.: 173.3 – 173.9 °C. IR (in KBr): 1629, 1390, 1333, 1156, 1096, 549 cm⁻¹. HRMS (EI): $m/z [M + H]^+$ calcd for C₁₉H₂₁Cl₂N₂O₂S: 411.0695; found: 411.0691.

Substrate 1c

¹H NMR (400 MHz, CDCl₃) δ = 7.78 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.33 Ts ΗŃ、 CI

(d, J = 8.2 Hz, 2H), 6.91 (s, 1H), 6.79 (d, J = 8.4 Hz, 2H), 5.70 (dd, J = 17.4, 10.6 Hz,1H), 4.98 (d, J = 10.5 Hz, 1H), 4.84 (d, J = 17.4 Hz, 1H), 2.46 (s, 3H), 1.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 161.3, 143.8, 143.4, 135.4, 135.0, 129.6, 129.3, 129.2, 129.0, 127.7, 113.4, 44.5, 25.2, 21.7. M.P.: 143.2 - 143.5 °C. IR (in KBr): 1630, 1391, 1334, 1155, 1091, 547 cm⁻¹. HRMS (EI): $m/z [M + H]^+$ calcd for $C_{19}H_{22}ClN_2O_2S$: 377.1095; found: 377.1085.

Substrate 1d

NMR (100 MHz, CDCl₃) $\delta = 161.5$, 144.0, 143.6, 135.1, 132.4, 129.4, 129.4, 127.9, 123.8, 113.6, 44.4,

25.1, 21.6. M.P.: 142.0 - 143.2 °C. IR (in KBr): 1629, 1389, 1335, 1159, 1095, 547 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₁₉H₂₂N₂O₂SBr: 421.0586; found: 421.0580.

Substrate 1e

Ts HNMR (600 MHz, CDCl₃) δ = 7.78 (d, *J* = 7.7 Hz, 2H), 7.33 (d, *J* = 7.7 Hz, 2H), 7.09 (t, *J* = 8.2 Hz, 2H), 6.93 (s, 1H), 6.84 (d, *J* = 5.3 Hz, 2H), 5.70 (dd, *J* = 17.3, 10.6 Hz, 1H), 4.97 (d, *J* = 10.5 Hz, 1H), 4.83 (d, *J* = 17.4 Hz, 1H), 2.46 (s, 3H), 1.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.7 (d, *J* = 248.0 Hz), 161.6, 143.8, 143.6, 135.1, 129.7 (d, *J* = 8.1 Hz), 129.2, 127.7, 127.1 (d, *J* = 3.4 Hz), 116.2 (d, *J* = 21.4 Hz) 113.3, 44.6, 25.4, 25.1, 21.7. M.P.: 142.0 – 142.7 °C. IR (in KBr): 1630, 1386, 1335, 1083, 547 cm⁻¹. HRMS (EI): m/z [M + H] ⁺ calcd for C₁₉H₂₂FN₂O₂S: 361.1381; found: 361.1386.

Substrate 1f

^{Ts} ^{HN}N ^N ^{HNN}N ^S ¹H NMR (600 MHz, CDCl₃) $\delta = 7.79$ (d, J = 8.1 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), ^{7.34} (d, J = 8.0 Hz, 2H), 7.00 (d, J = 7.9 Hz, 2H), 6.84 (s, 1H), 5.71 (dd, J = 17.4, 10.6 ^{Hz}, 1H), 5.00 (d, J = 10.6 Hz, 1H), 4.85 (d, J = 17.4 Hz, 1H), 2.47 (s, 3H), 1.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 161.1$, 144.2, 143.4, 135.3, 135.1, 131.6 (q, J = 32.8 Hz), 129.5, 128.4, 127.9, 126.1 (q, J = 3.7 Hz), 123.5 (q, J = 271.0 Hz), 113.8, 44.5, 25.1, 21.6. M.P.: 153.0 – 154.5 °C. IR (in KBr): 1630, 1409, 1332, 1161, 1102, 545 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₂₀H₂₂F₃N₂O₂S: 411.1349; found: 411.1347.

Substrate 1h

1173, 1026, 551 cm⁻¹. HRMS (EI): $m/z [M + H]^+$ calcd for $C_{20}H_{25}N_2O_3S$: 373.1570; found: 373.1580.

Substrate 1i

Ts ΗŃ、 CI

¹H NMR (600 MHz, CDCl₃) δ = 7.79 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.0 Hz, 1H), 7.35 -7.33 (m, 3H), 6.93 (s, 1H), 6.80 (s, 1H), 6.75 (d, J = 7.3 Hz, 1H), 5.70 (dd, J = 17.5, 10.6 Hz, 1H), 4.99 (d, J = 10.6 Hz, 1H), 4.85 (d, J = 17.4 Hz, 1H), 2.47 (s, 3H), 1.16 (s,

6H). ¹³C NMR (151 MHz, CDCl₃) δ = 161.1, 144.0, 143.4, 135.0, 134.9, 133.1, 130.4, 129.5, 129.4, 127.8, 127.5, 125.9, 113.6, 44.3, 25.0, 21.5. M.P.: 106.7 – 107.2 °C. IR (in KBr): 1630, 1595, 1565, 1409, 1385, 1333, 1159, 1095, 508 cm⁻¹. HRMS (EI): $m/z [M + H]^+$ calcd for $C_{19}H_{22}ClN_2O_2S$: 377.1081; found: 377.1085.

Substrate 1j

¹H NMR (600 MHz, CDCl₃) δ = 7.86 (d, J = 8.2 Hz, 2H), 7.78 (t, J = 7.4 Hz, 3H), Ts ΗŃ、 7.58 - 7.53 (m, 2H), 7.35 (d, J = 7.9 Hz, 2H), 7.30 (s, 1H), 6.98 (s, 1H), 6.90 (d, J =8.3 Hz, 1H), 5.81 (dd, J = 17.4, 10.6 Hz, 1H), 4.99 (d, J = 10.6 Hz, 1H), 4.87 (d, J = 17.4 Hz, 1H), 2.48 (s, 3H), 1.22 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 162.7, 143.7, 135.1, 132.9, 132.6, 129.2, 129.0, 128.7, 128.0, 127.8, 127.6, 127.1, 127.1, 127.0, 126.7, 124.6, 113.1, 44.7, 25.4, 21.8. M.P.: 148.9 – 149.8 °C. IR (in KBr): 1631, 1388, 1333, 1157, 1092, 548 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₂₃H₂₅N₂O₂S: 393.1631; found: 393.1620.

Substrate 1k

¹H NMR (400 MHz, CDCl₃) δ = 7.75 (d, J = 8.2 Hz, 2H), 7.48 (s, 1H), 7.41 – 7.39 (m, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.06 – 7.03 (m, 1H), 6.79 – 6.78 (m, 1H), 5.70 (dd, J = 17.4, 10.5 Hz, 1H), 4.97 (d, J = 10.5 Hz, 1H), 4.81 (d, J = 17.4 Hz, 1H), 2.43 (s, 3H), 1.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 155.4, 143.8, 143.4, 134.8, 129.2, 128.9, 128.6, 128.1, 127.7, 127.2, 113.9, 44.9, 25.5, 21.7. M.P.: 62.9 – 63.4 °C. IR (in KBr): 1630, 1386, 1335, 1082, 548 cm⁻¹. HRMS (EI): m/z $[M + H]^+$ calcd for C₁₇H₂₁N₂O₂S₂: 349.1039; found: 349.1039.

Substrate 11

¹H NMR (400 MHz, CDCl₃) δ = 8.01 (s, 1H), 7.83 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 5.62 (dd, J = 17.4, 10.6 Hz, 1H), 4.92 (dd, J = 22.7, 10.6 Hz, 2H), 2.42 (s, 3H), 2.10 (q, J = 7.6 Hz, 2H), 1.12 (s, 6H), 0.96 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta =$ 164.5, 143.8, 143.5, 134.8, 129.0, 127.7, 112.8, 45.3, 24.6, 21.6, 19.9, 10.1. M.P.: 100.3 - 101.3 °C. IR (in KBr): 1629, 1385, 1340, 1167, 1094, 884, 557 cm⁻¹. HRMS (EI): m/z [M + Na]⁺ calcd for C₁₅H₂₂N₂O₂S: 317.1287; found: 317.1294.

Substrate 1m

^{Ts} ^{HN}N ^{Ph} ^{HN}N ^R ^{HI}N ^{HI}

Substrate 1n

Ts HNNR (400 MHz, CDCl₃) $\delta = 7.75$ (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.1 Hz, 2H), 7.21 – 7.16 (m, 3H), 7.08 – 7.06 (m, 2H), 7.04 (s, 1H), 5.68 (dd, J = 17.3, 10.5 Hz, 1H), 4.99 (dd, J = 18.7, 14.0 Hz, 2H), 2.69 – 2.65 (m, 2H), 2.42 (s, 3H), 2.39 – 2.35 (m, 2H), 1.16 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 163.2$, 144.1, 143.7, 140.3, 134.8, 129.1, 128.6, 128.1, 128.0, 126.4, 113.2, 45.4, 31.0, 28.9, 24.7, 21.5. M.P.: 112.8 – 113.3 °C. IR (in KBr): 1628, 1404, 1338, 1156,

1098, 683, 581, 550 cm⁻¹. HRMS (EI): $m/z [M + H]^+$ calcd for $C_{21}H_{27}N_2O_2S$: 371.1789; found: 371.1788.

Substrate 1o

¹H NMR (400 MHz, CDCl₃) δ = 7.94 (s, 1H), 7.81 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 5.67 (dd, *J* = 17.4, 10.5 Hz, 1H), 4.78 (d, *J* = 10.5 Hz, 1H), 4.63 (d, *J* = 17.4 Hz, 1H), 2.41 (s, 3H), 1.20 (s, 6H), 0.99 - 0.97 (m, 1H), 0.84 - 0.81 (m, 2H), 0.60 - 0.57 (m, 2H). ¹³C

NMR (100 MHz, CDCl₃) δ = 161.0, 145.4, 143.7, 135.3, 129.2, 127.8, 112.2, 44.9, 26.1, 21.4, 8.6, 4.9. M.P.: 76.0 – 77.2 °C. IR (in KBr): 1633, 1411, 1159, 1087, 552 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₁₆H₂₃N₂O₂S: 307.1475; found: 307.1475.

Substrate 1p

¹H NMR (600 MHz, CDCl₃) δ = 7.82 (d, *J* = 8.1 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.17 (s, 1H), 5.66 (dd, *J* = 17.5, 10.6 Hz, 1H), 5.01 (d, *J* = 10.6 Hz, 1H), 4.92 (d, *J* = 17.5 Hz, 1H), 2.43 (s, 3H), 1.81 (s, 2H), 1.67 – 1.60 (m, 7H), 1.11 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ

= 164.9, 143.9, 143.6, 134.7, 129.0, 127.8, 113.2, 46.1, 38.7, 28.4, 27.0, 24.9, 21.6. M.P.: $83.0 - 83.9^{\circ}$ C. IR (in KBr): 1630, 1600, 1384, 1364, 1337, 1171, 1091, 586, 582, 545 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₁₈ H₂₇N₂O₂S: 335.1781; found: 335.1788.

Substrate 1r

¹H NMR (400 MHz, CDCl₃) δ = 7.90 – 7.84 (m, 2H), 7.60 (t, *J* = 7.3 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 3.1 Hz 3H), 6.95 (s, 1H), 6.79 – 6.76 (m, 2H), 5.69 (dd, *J* = 17.3, 10.5 Hz, 1H), 4.94 (d, *J* = 10.5 Hz, 1H), 4.82 (d, *J* = 17.3 Hz, 1H), 1.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.3, 143.8, 138.2, 133.1, 131.4, 129.6, 129.2, 128.8, 127.9, 127.6,

113.3, 44.5, 25.2. M.P.: 115.2 – 115.8 °C. IR (in KBr): 1631, 1386, 1340, 1167, 1093, 560 cm⁻¹. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{18}H_{20}N_2O_2S$: 351.1134; found: 351.1138.

Substrate 1s

¹H NMR (600 MHz, CDCl₃) $\delta = 8.56$ (d, J = 8.2 Hz, 1H), 8.37 (d, J = 7.5 Hz, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.65 – 7.51(m, 3H), 7.38 (t, J = 7.5 Hz, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.21 (s, 1H), 6.57 (d, J = 7.1 Hz, 2H), 5.46 (dd, J = 17.4, 10.6 Hz, 1H), Ph 4.80 (d, J = 10.7 Hz, 1H), 4.63 (d, J = 17.4 Hz, 1H), 0.97 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 162.8$, 143.6, 134.6, 134.0, 133.5, 131.1, 129.3, 129.0, 128.3, 128.1, 127.7, 126.8, 124.7, 124.2, 113.0, 44.3, 25.0. M.P.: 76.5 – 77.0 °C. IR (in KBr): 1629, 1412, 1337, 1108, 627 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₂₂H₂₃N₂O₂S: 349.1475; found: 349.1477.

Substrate 1t

o≈ÿ

ΗŃ

^{CI} ¹H NMR (600 MHz, CDCl₃) δ = 7.85 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.44 – 7.40 (m, 3H), 6.99 (s, 1H), 6.85 (dd, *J* = 6.6, 3.2 Hz, 2H), 5.75 (dd, *J* = 17.4, 10.6 Hz, 1H), 4.99 (d, *J* = 10.5 Hz, 1H), 4.87 (d, *J* = 17.4 Hz, 1H), 1.17 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.5, 143.7, 139.6, 136.8, 131.3, 129.5, 129.4, 129.2, 129.1, 127.6, 113.3,

44.5, 25.2. M.P.: 132.2 - 132.9 °C. IR (in KBr): 1629, 1385, 1338, 1163, 1085, 581 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₁₈H₂₀ClN₂O₂S: 363.0929; found: 363.0931.

Substrate 1u

129.2, 127.6, 116.0 (J = 22.7 Hz), 113.3, 44.5, 25.2. M.P.: 123.2 – 123.9 °C. IR (in KBr): 1629, 1411, 1385, 1336, 1152, 1092, 545 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₁₈H₂₀FN₂O₂S: 347.1224; found: 347.1220.

Substrate 1v

¹H NMR (400 MHz, CDCl₃) δ = 7.80 (d, *J* = 8.8 Hz, 2H), 7.36 – 7.34 (m, 3H), 6.97 (d, *J* = 8.7 Hz, 2H), 6.92 (s, 1H), 6.79 – 6.78 (m, 2H), 5.72 (dd, *J* = 17.3, 10.5 Hz, 1H), 4.95 (d, *J* = 10.5 Hz, 1H), 4.83 (d, *J* = 17.3 Hz, 1H), 3.88 (s, 3H), 1.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 166.1, 162.8, 137.3, 130.2, 123.0, 128.4, 128.3, 127.9, 127.7, 114.4,

112.5, 72.0, 55.6, 51.3, 28.1, 26.8, 20.5. M.P.: 90.0 – 90.9 °C. IR (in KBr): 1632, 1597, 1344, 1162, 1095, 1024, 555 cm⁻¹. HRMS (EI): $m/z [M - H]^+$ calcd for $C_{19}H_{21}N_2O_3S$: 357.1268; found: 357.1278.

Substrate 3c

¹H NMR (600 MHz, CDCl₃) δ = 7.64 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 6.90 (m, 1H), 5.37 (s, 1H), 3.93 (dd, *J* = 12.3, 2.9 Hz, 1H), 3.48 (s, 1H), 2.90 - 2.78 (m, 2H), 1.84 (m, 1H), 1.73 (s, 3H), 1.65 (q, *J* = 12.6 Hz, 1H), 1.41 (s, 3H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 163.8, 136.3, 136.0,

131.7, 130.6, 129.1, 128.8, 128.7, 120.8, 72.5, 51.0, 35.4, 32.5, 31.2, 23.5, 22.6, 18.5. M.P.: 130.2 – 130.9 °C. IR (in KBr): 1631, 1402, 1385, 1158, 1091, 543 cm⁻¹. HRMS (EI): $m/z [M + H]^+$ calcd for $C_{19}H_{22}N_2O_2S$: 377.1085; found: 377.1087.

3. General Procedure and Spectral Data of the Products

3.1 General procedure for the synthesis of 3a

1a (68.5 mg, 0.2 mmol), $Ir(ppy)_2(bpy)PF_6$ (3.2 mg, 0.004 mmol), K_2CO_3 (41.5 mg, 0.3 mmol), were dissolved in CH₃CN (3.0 mL). Then, the resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times) under argon atmosphere. After that, the solution was stirred at a distance of ~5 cm from a 3W blue LEDs (450-460 nm) at room temperature about 12 h until the reaction was completed, as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 10:1~3:1) directly to give the desired product **3a** in 85% isolated yield as a white solid.

3.2 General procedure for the synthesis of benzosultam 2

1a (68.5 mg, 0.2 mmol), Ru(bpy)₃Cl₂·6H₂O (3.0 mg. 0.004 mmol), K₂CO₃ (41.5 mg, 0.3 mmol) , $[Co^{III}(dmgH)_2PyCI]$ (6.5 mg, 0.016 mmol) were dissolved in CH₃CN (3.0 mL). Then, the resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times) under argon atmosphere. After that, the solution was stirred at a distance of ~5 cm from a 3 W blue LEDs (450-460 nm) at room temperature about 24 h until the reaction was completed, as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 10:1~3:1) directly to give the desired product **2a** in 73% isolated yield as a white solid.

3.3 Spectral data of the desired products 2a-2v, 3a and 4

Product 2a

Yield of **2a** : 73% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ = 7.84 (d, *J* = 7.9 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.26 (s,

1H), 7.08 (s, 1H), 4.38 – 4.36 (m, 1H), 3.22 (dd, J = 15.9, 7.2 Hz, 1H), 3.03 (dd, J = 15.9, 4.3 Hz, 1H), 2.38 (s, 3H), 1.55 (s, 3H), 1.36 (s, 3H). ¹³C NMR (100MHz, CDCl₃) $\delta = 165.9$, 143.4, 134.9, 132.8, 130.0, 129.8, 129.2, 128.1, 127.5, 125.4, 72.0, 51.3, 27.8, 26.8, 21.7, 20.5. M.P.: 169.2 – 170.6 °C. IR (in KBr): 1631, 1411, 1340, 1081, 984, 546 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₁₉H₂₁N₂O₂S: 341.1318; found: 341.1317.

Product 2b

Yield of **2b** : 46% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.81 (d, *J* = 8.0 Hz, 1H), 7.49 (s, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.05 (s, 1H), 4.37 – 4.34 (m, 1H), 3.21 (dd, *J* = 16.0, 7.0 Hz, 1H), 3.02 (dd, *J* = 15.8, 4.9 Hz, 1H), 2.38 (s, 3H), 1.53 (s, 3H), 1.36 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ

= 163.6, 143.7, 134.6, 134.2, 132.7, 132.5, 130.2, 129.8, 129.3, 129.2, 128.4, 126.6, 125.5, 72.1, 51.1, 27.8, 26.6, 21.7, 20.5. M.P.: 189.3 – 190.1 °C. IR (in KBr): 1632, 1465, 1318, 1081, 678, 570 cm⁻¹. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{19} H_{18}N_2 O_2SCl_2$: 431.0361; found: 431.0358.

Product 2c

Yield of 2c : 77% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.79 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 6.9 Hz, 3H), 7.05 (s, 1H), 4.34 (dd, J = 6.7, 5.2 Hz, 1H), 3.20 (dd, J = 15.9, 7.0 Hz, 1H), 3.02 (dd, J = 15.9, 5.0 Hz, 1H), 2.36 (s, 3H), 1.52 (s, 3H), 1.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

= 164.7, 143.5, 135.9, 134.7, 132.7, 129.2, 128.8, 128.4, 128.4, 128.2, 125.4, 72.0, 51.2, 27.8, 26.7, 21.7, 20.5. M.P.: 157.2 - 158.0 °C. IR (in KBr): 1631, 1413, 1345, 1187, 1077, 983, 576 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₁₉H₂₀N₂O₂SCI: 375.0938; found: 375.0929.

Product 2d

Yield of 2d : 51% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.80 (d, J = 8.0 Hz, 1H), 7.42 – 7.40 (m, 2H), 7.29 – 7.27 (m, 2H), 7.22 (s, 1H), 7.05 (s, 1H), 4.34 (dd, J = 7.1, 5.0 Hz, 1H), 3.20 (dd, J = 15.9, 7.1 Hz, 1H), 3.02 (dd, J = 15.9, 5.0 Hz, 1H), 2.37 (s, 3H), 1.52 (s, 3H), 1.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)

δ = 165.0, 143.7, 134.9, 133.0, 131.6, 129.4, 129.2, 129.0, 128.5, 125.7, 124.6, 72.1, 51.1, 27.7, 26.6, 21.6, 20.4. M.P.: 137.1 - 138.4 °C. IR (in KBr): 1632, 1415, 1317, 1078, 988, 687, 575 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₁₉H₁₉N₂O₂SBr: 419.0435; found: 419.0423.

Product 2e

Yield of 2e : 54% as a white solid. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.81$ (d, J = 7.9 Hz, 1H), 7.40 (dd, J = 8.5, 5.4 Hz, 2H), 7.24 (d, J = 7.6 Hz 1H), 7.06 (s, 1H), 6.97 (t, J = 8.5 Hz, 2H), 4.34 (dd, J = 6.8, 5.2 Hz, 1H), 3.20 (dd, J = 15.9, 7.0 Hz, 1H), 3.02 (dd, J = 15.9, 5.1 Hz, 1H), 2.37 (s, 3H), 1.53 (s, 3H), 1.35 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ = 165.1, 163.7 (d, *J* = 249.6 Hz), 143.7, 134.9, 133.0, 129.7 (d, *J* = 8.5 Hz), 129.3, 128.4, 126.3 (d, *J* = 3.4 Hz), 125.7, 115.6, 115.4, 71.9, 51.2, 27.7, 26.6, 21.6, 20.4. M.P.: 199.5 – 200.2 °C. IR (in KBr): 1631, 1387, 1336, 1161, 1075, 673, 547 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₁₉H₂₀N₂O₂FS: 359.1221; found: 359.1224.

Product 2f

Yield of **2f** : 34% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.81 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 1.1 Hz, 4H), 7.26 (s, 1H), 7.06 (s, 1H), 4.39 (dd, *J* = 7.2, 4.8 Hz, 1H), 3.23 (dd, *J* = 16.0, 7.2 Hz, 1H), 3.03 (dd, *J* = 15.9, 4.7 Hz, 1H), 2.38 (s, 3H), 1.56 (s, 3H), 1.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 164.7,

143.9, 134.8, 133.7, 133.0, 131.7 (q, J = 32.6 Hz), 129.4, 128.5, 128.0, 127.2, 125.7, 125.3 (q, J = 3.7 Hz), 123.7 (q, J = 271.0 Hz), 72.2, 51.2, 27.7, 26.6, 21.6, 20.3. M.P.: 176.9 – 177.5 °C. IR (in KBr): 1630, 1411, 1387, 1332, 1074, 984, 576 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₂₀H₂₀N₂O₂F₃S: 409.1194; found: 409.1192.

Product 2g

Yield of 2g : 56% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ = 7.83 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.6 Hz, 1H), 7.10 (d, J = 7.8 Hz, 2H), 7.06 (s, 1H), 4.35– 4.33 (m, 1H), 3.20 (dd, J = 15.9, 7.1 Hz, 1H), 3.02 (dd, J = 15.9, 4.8 Hz, 1H), 2.37 (s, 3H), 2.33 (s, 3H), 1.54 (s, 3H), 1.36 (s, 3H). ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta = 166.0, 143.6, 140.3, 135.1, 133.0, 129.3, 129.0, 128.3, 127.6, 127.3, 125.7, 71.9, 51.2, 27.7, 26.7, 21.6, 21.3, 20.4. \text{ M.P.: } 185.1 - 185.9 \,^{\circ}\text{C.IR} (in \text{ KBr}): 1632, 1463, 1314, 1147, 1079, 987, 613 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₂₀H₂₃N₂O₂S: 355.1472; found: 355.1475.$

Product 2h

Yield of **2h** : 46% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.81 (d, J = 7.9 Hz, 1H), 7.40 (d, J = 8.8 Hz, 2H), 7.21 (s, 1H), 7.04 (s, 1H), 6.79 (d, J = 8.9 Hz, 2H), 4.31 (dd, J = 6.9, 5.3 Hz, 1H), 3.78 (s, 3H), 3.18 (dd, J = 15.9, 6.9 Hz, 1H), 3.02 (dd, J = 15.9, 5.2 Hz, 1H), 2.36 (s, 3H), 1.54 (s, 3H), 1.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 165.6, 161.0, 143.5, 135.0, 133.1, 129.4, 129.2, 128.3, 125.7, 122.5, 113.7, 71.8, 55.3, 51.1, 27.7, 26.6, 21.5, 20.5. M.P.: 180.1 – 181.7 °C. IR (in KBr): 2973, 1632, 1141, 1081, 988, 568 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₂₀H₂₃N₂O₃S: 371.1422; found: 371.1424.

Product 2i

Yield of **2i** : 58% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ = 7.84 (d, *J* = 7.9 Hz, 1H), 7.38 (s, 1H), 7.33 (dd, *J* = 11.7, 8.6 Hz, 2H), 7.28 (s, 1H), 7.24 (d, *J* = 7.8 Hz, 1H), 7.08 (s, 1H), 4.39 – 4.35 (m, 1H), 3.22 (dd, *J* = 15.8, 7.0 Hz, 1H), 3.03 (dd, *J* = 16.0, 4.4 Hz, 1H), 2.39 (s, 3H), 1.54 (s, 3H), 1.36 (s, 3H). ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta = 164.6, 143.6, 134.7, 134.1, 132.7, 131.7, 129.9, 129.5, 129.3, 128.3, 127.6, 125.5, 72.1, 51.3, 27.8, 26.7, 21.7, 20.5. M.P.: 148.3 - 148.9 °C. IR (in KBr): 1631, 1412, 1342, 1079, 984, 576 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₁₉H₂₀N₂O₂SCI: 375.0933; found: 375.0929.$

Product 2j

Yield of **2j** : 56% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.89 (s, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 9.3 Hz, 2H), 7.73 (d, *J* = 8.6 Hz, 1H), 7.57 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.48 – 7.45 (m, 2H), 7.26 – 7.24 (m, 1H), 7.06 (s, 1H), 4.39 (dd, *J* = 6.9, 5.3 Hz, 1H), 3.23 (dd, *J* = 15.9, 7.0 Hz, 1H), 3.07 (dd, *J* = 15.9,

5.2 Hz, 1H), 2.37 (s, 3H), 1.64 (s, 3H), 1.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 165.8, 143.6, 135.0, 133.7, 133.1, 132.5, 129.4, 128.4, 128.3, 128.1, 127.6, 127.3, 127.1, 126.5, 125.6, 124.9, 72.0, 51.2, 27.7, 26.7, 21.5, 20.5. M.P.: 217.7 – 218.8 °C. IR (in KBr): 1632, 1415, 1317, 1078, 988, 575 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₂₃H₂₃N₂O₂S: 391.1484; found: 391.1475.

Product 2k

Yield of $2\mathbf{k}$: 34% as a yellow solid. ¹H NMR (400 MHz, cdcl₃) $\delta = 7.79$ (d, J = 8.0Hz, 1H), 7.36 (d, J = 3.6 Hz, 1H), 7.32 (d, J = 5.0 Hz, 1H), 7.20 (d, J = 7.8 Hz, 1H), 7.05 (s, 1H), 7.00 – 6.97 (m, 1H), 4.32 (t, J = 6.2 Hz, 1H), 3.19 (dd, J = 15.9, 6.7 Hz, 1H), 3.06 (dd, J = 15.9, 5.7 Hz, 1H), 2.36 (s, 3H), 1.54 (s, 3H), 1.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 160.9$, 143.6, 134.7, 133.3, 132.6, 129.4, 128.6, 128.5, 128.0, 127.3, 125.6, 71.4, 51.4, 27.9, 26.5, 21.6, 20.6. M.P.: 239.4 – 240.2 °C. IR (in KBr): 1631, 1412, 1344, 1078, 985, 550 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₁₇H₁₉N₂O₂S₂: 347.0882; found: 347.0882.

Product 21

Yield of **21**: 45% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ = 7.79 (d, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 7.9 Hz, 1H), 7.07 (s, 1H), 4.21 – 4.16 (m, 1H), 3.16 (dd, *J* = 15.9, 7.1 Hz, 1H), 2.93 (dd, *J* = 15.9, 4.8 Hz, 1H), 2.38 (s, 3H), 2.23 – 2.17 (m, 1H), 2.12 – 2.06 (m, 1H), 1.27 (s, 3H), 1.17 (s, 3H), 1.00 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 171.0, 143.4, 135.1, 133.1, 129.2, 128.3, 125.8, 70.2, 51.5, 27.9, 25.8, 21.6, 19.6, 19.6, 10.8. M.P.: 99.3 – 100.8 ^oC. IR (in KBr): 1630, 1413, 1386, 1340, 1187, 1077, 564 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₁₅H₂₁N₂O₂S: 293.1315; found: 293.1318.

Product 2m

Yield of **2m** : 53% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.81 (d, *J* = 7.9 Hz, 1H), 7.28 (d, *J* = 7.7 Hz, 1H), 7.10 (t, *J* = 7.2 Hz, 1H), 7.02 (t, *J* = 7.4 Hz, 2H), 6.87 (s, 1H), 6.64 (d, *J* = 7.4 Hz, 2H), 4.29 (dd, *J* = 8.3, 2.1 Hz, 1H), 3.60 (d, *J* = 14.5 Hz, 1H), 3.34 (d, *J* = 14.5 Hz, 1H), 3.18 (dd, *J* = 15.8, 8.3 Hz, 1H), 2.71 (dd, *J* = 15.8, 2.0 Hz, 1H), 2.38 (s, 3H), 1.21 (s, 3H), 0.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 167.5, 143.7, 135.4, 135.3, 132.1, 129.4, 128.2, 128.2, 126.4, 126.1, 71.0, 51.8, 32.7, 27.2, 27.0, 21.6, 20.2. M.P.: 130.5 – 131.8 °C. IR (in KBr): 1631, 1386, 1344, 1075, 724, 549 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₂₀H₂₃N₂O₂S: 355.1483; found: 355.1475.

Product 2n

Yield of 2n : 61% as a white solid. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.77$ (d, J = 7.9 Hz, 1H), 7.21 - 7.17 (m, 3H), 7.14 (d, J = 7.0 Hz, 1H), 7.05 (d, J = 8.2 Hz, 3H), Ph 4.18 (dd, J = 6.8, 5.1 Hz, 1H), 3.15 (dd, J = 15.8, 7.1 Hz, 1H), 2.91 (dd, J = 15.9, 4.9 Hz, 1H), 2.80 - 2.71 (m, 2H), 2.50 - 2.42 (m, 2H), 2.38 (s, 3H), 1.22 (s, 3H), 1.13 (s, 3H). ¹³C NMR (100 MHz, CDCl3) $\delta = 169.1$, 143.4, 141.0, 135.0, 132.9, 129.2, 128.3, 128.3, 128.1, 126.0, 125.6, 70.0, 51.6, 32.1, 28.0, 27.8, 25.5, 21.5, 19.4. M.P.: 138.6 - 139.0 °C. IR (in KBr): 1631, 1412, 1387, 1080, 984, 546 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: $C_{21}H_{25}N_2O_2S$: 369.1623; found: 369.1631.

Product 2o

Yield of **2o** : 42% as a white solid. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.72$ (d, J = 7.9 Hz, 1H), 7.19 (d, J = 7.9 Hz, 1H), 7.05 (s, 1H), 4.18 (dd, J = 7.0, 4.9 Hz, 1H), 3.15 (dd, J = 15.8, 7.1 Hz, 1H), 2.91 (dd, J = 15.8, 4.8 Hz, 1H), 2.38 (s, 3H), 1.33 (s, 3H), 1.24 (s, 3H), 0.97 – 0.93 (m, 1H), 0.81 – 0.66 (m, 3H), 0.35 – 0.29 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 172.2$, 143.3, 135.2, 133.1, 129.2, 128.2, 125.8, 70.5, 51.7, 27.9, 26.0, 21.6, 19.8, 9.1, 7.5, 6.8. M.P.: 147.0 – 147.9 °C. IR (in KBr): 1629, 1604, 1412, 1386, 1080, 983, 578, 546 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₁₆H₂₁N₂O₂S: 305.1303; found: 305.1318.

Product 2p

Yield of $2\mathbf{p}$: 31% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ = 7.77 (d, J = 7.9 Hz, 1H), 7.22 (d, J = 7.8 Hz, 1H), 7.07 (s, 1H), 4.20 (dd, J = 7.0, 4.3 Hz, 1H), 3.17 (dd, J = 15.7, 7.3 Hz, 1H), 2.90 (dd, J = 15.8, 4.0 Hz, 1H), 2.48 – 2.43 (m, 1H), 2.38 (s, 3H), 1.81 – 1.59 (m, 6H), 1.47 – 1.43 (m, 2H), 1.26 (s, 3H), 1.19 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ = 173.3, 143.3, 135.3, 133.0, 129.1, 128.1, 125.9, 70.6, 51.6, 37.1, 32.4, 31.9, 27.7, 26.1, 25.3, 25.1, 21.5, 19.8. M.P.: 156.9 – 157.5 °C. IR (in KBr): 1631, 1416, 1311, 1140, 1074, 981, 681, 576 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₁₈H₂₅N₂O₂S: 333.1616; found: 333.1631.

Product 2q

Yield of $2\mathbf{q}$: 34% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ = 7.79 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 7.9 Hz, 2H), 7.27 (s, 1H), 7.17 (d, J = 7.7 Hz, 2H), 3.89 – 3.84 (m, 1H), 3.15 (dd, J = 16.8, 10.6 Hz, 1H), 2.74 (dd, J = 16.8, 9.8 Hz, 1H),

2.37 (d, J = 6.7 Hz, 6H), 1.62 (d, J = 6.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 158.6$, 143.8, 141.1, 134.6, 132.5, 129.8, 129.1, 128.5, 127.6, 127.0, 126.0, 60.1, 41.9, 34.0, 21.6, 21.4, M.P.: 150.4 – 152.0 °C. IR (in KBr): 1632, 1412, 1385, 1083, 811, 573, 547 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for: C₁₈H₂₁N₂O₂S: 329.1310; found: 329.1318.

Product 2r

Yield of $2\mathbf{r}$: 48% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ = 7.97 (d, *J* = 7.2 Hz, 1H), 7.52 - 7.46 (m, 2H), 7.36 - 7.35 (m, 3H), 7.29 (t, J = 6.7 Hz, 3H), 4.41 (dd, J = 7.2, 4.3 Hz, 1H), 3.28 (dd, J = 15.8, 7.4 Hz, 1H), 3.07 (dd, J = 15.9, 4.2 Hz, 1H), 1.56 (s, 3H), 1.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 166.4, 135.7, 135.2, 132.9, 130.0, 123.0, 128.8, 128.3, 127.7, 127.6, 125.8, 72.1, 51.3, 27.6, 26.9, 20.4. M.P.: 163.9 – 164.8 °C. IR (in KBr): 1630, 1388, 1343, 1179, 1074, 982, 719, 576 cm⁻¹. HRMS (EI): $m/z [M + H]^+$ calcd for: $C_{18}H_{19}N_2O_2S$: 327.1167; found:

Product 2s

327.1162.

Yield of **2s** : 35% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ = 8.94 (d, J = 8.7 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.70 – 7.68 (m, 1H), 7.59 – 7.56 (m, 3H), 7.38 (t, J = 7.3 Hz, 1H), 7.34 – 7.30 (m, 3H), 4.36 (dd, J = 8.3, 5.6 Hz, 1H), 3.39 (dd, J = 16.3, 8.3 Hz, 1H), 3.21 (dd, J = 16.3, 5.6 Hz, 1H), 1.58 (s, 3H), 1.44

(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 165.9, 134.6, 133.1, 132.7, 131.8, 130.1, 128.5, 128.3, 128.3, 127.6, 126.7, 126.0, 124.9, 69.8, 51.8, 29.5, 25.5, 20.1. M.P.: 212.0 – 212.9 °C. IR (in KBr): 1628, 1413, 1336, 1112, 987, 624 cm⁻¹. HRMS (EI): $m/z [M + H]^+$ calcd for $C_{22}H_{21}N_2O_2S$: 377.1318; found: 377.1316.

Product 2t

Yield of **2t** : 47% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ = 7.90 (d, J = 8.3 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 7.7 Hz, 3H), 7.31 (dd, J = 14.0, 6.4 Hz, 3H), 4.42 (dd, J = 7.7, 4.0 Hz, 1H), 3.26 (dd, J = 16.1, 7.7 Hz, 1H), 3.03 (dd, J = 16.1, 4.1 Hz, 1H), 1.56 (s, 3H), 1.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ =

166.4, 139.0, 137.1, 134.2, 130.2, 129.9, 128.8, 128.4, 128.1, 127.7, 127.4, 72.1, 51.4, 27.5, 26.9, 20.6. M.P.: 197.0 – 197.9 °C. IR (in KBr): 1629, 1411, 1351, 1095, 620 cm⁻¹. HRMS (EI): $m/z [M + H]^+$ calcd for C₁₈H₁₈ClN₂O₂S: 361.0772; found: 361.0775.

Product 2u

Yield of $2\mathbf{u}$: 57% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ = 7.98 (dd, J = 8.7, 5.4 Hz, 1H), 7.39 – 7.36 (m, 3H), 7.30 (t, J = 7.6 Hz, 2H), 7.16 (t, J = 8.1 Hz, 1H), 7.00 (dd, J = 8.7, 2.4 Hz, 1H), 4.43 (dd, J = 7.7, 4.0 Hz, 1H), 3.28 (dd, J = 16.1, 7.7 Hz, 1H), 3.05 (dd, J = 16.0, 4.0 Hz, 1H), 1.56 (s, 3H), 1.37 (s, 3H), ¹³C NMR

(100 MHz, CDCl₃) δ = 166.4, 164.8 (*J* = 256.2), 138.4 (*J* = 8.8 Hz), 131.9 (*J* = 3.3 Hz), 130.2, 129.9, 128.7 (*J* = 9.6 Hz), 128.4, 127.7, 115.9 (*J* = 22.8 Hz), 115.1 (*J* = 22.7 Hz), 72.1, 51.4, 27.8, 26.9, 20.5. M.P.: 187.0 – 187.9 °C. IR (in KBr): 1628, 1412, 1387, 1114, 987, 624 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₁₈H₁₈FN₂O₂S: 345.1068; found: 345.1068.

Product 2v

Yield of $2\mathbf{v}$: 57% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.86 (d, J = 8.6 Hz, 1H), 7.40 – 7.29 (m, 4H), 7.24 (d, J = 7.6 Hz, 1H), 6.90 (d, J = 8.5 Hz, 1H), 6.74 (s, 1H), 4.37 – 4.34 (m, 1H), 3.82 (s, 3H), 3.23 (dd, J = 15.8, 7.2 Hz, 1H), 3.01 (dd, J = 15.8, 4.5 Hz, 1H), 1.54 (s, 3H), 1.35 (s, 3H). ¹³C NMR (100

MHz, CDCl₃) $\delta = 166.1$, 162.8, 137.3, 130.2, 130.0, 128.4, 128.3, 127.9, 127.7, 114.4, 112.5, 72.0, 55.6, 51.3, 28.1, 26.8, 20.5. M.P.: 172.0 – 173 °C. IR (in KBr): 1631, 1387, 1342, 1076, 561 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₁₉H₂₁N₂O₃S: 357.1269; found: 357.1267.

Product 3a

Yield of **3a** : 85% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ = 7.68 (d, *J* = 7.2 Hz, 2H), 7.41 – 7.36 (m, 3H), 6.90 (s, 1H), 5.37 (s, 1H), 3.95 (d, *J* = 12.1 Hz, 1H), 3.48 (s, 1H), 2.90 – 2.78 (m, 2H), 1.83 (d, *J* = 12.8 Hz, 1H), 1.72 (s, 3H), 1.70 – 1.63 (m, 1H),

1.43 (s, 3H), 1.25 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.9, 136.3, 131.5, 130.6, 130.5, 129.9, 128.3, 127.5, 120.8, 72.4, 51.1, 35.3, 32.5, 31.1, 23.5, 22.6, 18.5. M.P.: 175.0 – 176.5 °C. IR (in KBr): 1633, 1411, 1323, 1079, 983, 543 cm⁻¹. HRMS (EI): m/z [M + H]⁺ calcd for C₁₉H₂₃N₂O₂S: 343.1482; found: 343.1475.

Product 4

Yield of 4 : 75% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.77 (d, J = 8.2 Hz, 2H), 7.58 – 7.55 (m, 2H), 7.36 – 7.28 (m, 5H), 4.59 (dd, J = 10.2, 4.6 Hz, 1H), 4.28 (t, J = 10.1 Hz, 1H), 3.34 (dd, J = 9.9, 4.6 Hz, 1H), 2.41 (s, 3H), 1.52 - 1.47 (m, 5H), 1.45 (s, 3H), 1.28 – 1.23 (m, 7H), 1.21 (s, 3H), 1.08 (d, J = 11.6 Hz, 6H). ¹³C NMR (100 MHz, $CDCl_3$) $\delta = 164.8, 144.0, 130.6, 130.2, 129.5, 129.0, 128.7, 128.1, 127.4, 75.3, 69.9, 59.7, 51.8, 39.8,$ 39.5, 33.5, 32.5, 26.1, 21.6, 20.3, 20.2, 20.0, 17.1. M.P.: 138.2 – 139.6 °C. IR (in KBr): 1630, 1413, 1340, 1076, 605 cm⁻¹. HRMS (EI): $m/z [M + H]^+$ calcd for C₂₈H₄₀N₃O₃S: 498.2795; found: 498.2785.

 PF_6

0

0

4. Optimization of the Reaction Conditions

4.1The effect of additives^[a]

9[e]

^[a] Reaction conditions: 1a (0.2 mmol), Ir(ppy)₂bpyPF₆ (2 mol%), K₂CO₃ (0.3 mmol), additive (1.5 equiv) for **I-A**, **I-B**, **I-C**, **I-D** or (8 mol%) for **I-E**, 3.0 mL solvent, under argon atmosphere, 3 W blue LEDs and room temperature. ^[b] Isolated yields. ^[c] Without visible light irradiation. ^[d] Without photocatalyst. ^[e] Without base.

CH₃CN

CH₃CN

Ir(ppy)₂bpy PF₆

4.2 The effect of photocatalysts and bases^[a]

Ts HN Ph	Photocata Base (1.5 eq), [Co 3 W blue LED (4 1a	alyst (2 mol%), ^{III} (dmgH) ₂ PyCl] (8 I50-460 nm), rt. 24	$\frac{1}{1} \frac{1}{1} \frac{1}$	2a
Entry	Photocatalyst	Solvent	Base	Yield (%) ^[b]
1	Ir(ppy) ₂ bpyPF ₆	CH ₃ CN	K ₂ CO ₃	58
2	$Ir(ppy)_2(dtbbpy)PF_6$	CH ₃ CN	K_2CO_3	Trace
3	$Ru(bpz)_3(PF_6)_2$	CH ₃ CN	K_2CO_3	Trace
4	$Ru(bpm)_3(BArF)_2$	CH ₃ CN	K_2CO_3	25
5	$[Ru(phen)_3]Cl_2$	CH ₃ CN	K_2CO_3	37
6	$Ru(bpy)_3 (PF_6)_2$	CH ₃ CN	K_2CO_3	65
7	Ru(bpy) ₃ Cl ₂ ·6H ₂ O	CH ₃ CN	K ₂ CO ₃	73
8	Ru(bpy) ₃ Cl ₂ .6H ₂ O	DMF	K_2CO_3	26
9	Ru(bpy) ₃ Cl ₂ .6H ₂ O	CHCl ₃	K_2CO_3	nd
10	Ru(bpy) ₃ Cl ₂ .6H ₂ O	THF	K_2CO_3	nd
11	Ru(bpy) ₃ Cl ₂ .6H ₂ O	DMSO	K_2CO_3	nd
12	Ru(bpy) ₃ Cl ₂ .6H ₂ O	CH ₃ CN	Li ₂ CO ₃	Trace
13	Ru(bpy) ₃ Cl ₂ .6H ₂ O	CH ₃ CN	KH ₂ PO ₄	Trace
14	Ru(bpy) ₃ Cl ₂ .6H ₂ O	CH ₃ CN	NaHCO ₃	69
15	Ru(bpy) ₃ Cl ₂ .6H ₂ O	CH ₃ CN	Cs_2CO_3	57
16	Ru(bpy) ₃ Cl ₂ .6H ₂ O	CH ₃ CN	KO- ^t Bu	Trace
17 ^[c]	Ru(bpy) ₃ Cl ₂ .6H ₂ O	CH ₃ CN	K_2CO_3	Trace
18	_	CH ₃ CN	K_2CO_3	Trace
19	Ru(bpy) ₃ Cl ₂ .6H ₂ O	CH ₃ CN	_	Trace

^[a] Reaction conditions: **1a** (0.2 mmol), photocatalyst (2 mol%), base (1.5 equiv.), solvent (3 mL), under argon atmosphere, 3 W blue LEDs and room temperature. ^[b] Isolated yields. ^[c] Without visible light irradiation. nd = not detected; DMF = N,N-dimethylformamide.

4.3 The effect of cobalt catalysts^[a]

Ts HN、N Ph	Ru(bpy) ₃ Cl ₂ · 6H ₂ O (2 mol%), K ₂ CO ₃ (1.5 equiv.), Cobalt catalyst (8 mol%) 3 W blue LED (450-460 nm) CH ₃ CN(3 mL), rt, 24 h	O=S N-N Ph
1a		2 a
Entry	Cobalt catalyst	Yield (%) ^[b]
1	$[Co^{III}(dmgH)_2Cl_2]$	60
2	$[Co^{III}(dpgH)_2Cl_2]$	41
3	[Co ^{III} (dmgH) ₂ (4-NMe ₂ Py)Cl]	33
4	[Co ^{III} (dmgH) ₂ (4-COOMePy)Cl]	40
5	$[Co^{II}(bpy)_{3}Cl_{2}]$	Trace

^[a] Reaction conditions: **1a** (0.2 mmol), Ru(bpy)₃Cl₂·6H₂O (2 mol%), K₂CO₃ (1.5 equiv.), CH₃CN (3 mL), under argon atmosphere, 3 W blue LEDs and room temperature. ^[b] Isolated yields.

5. Mechanistic Studies

5.1 Luminescence quenching experiments

0.03

0.04

0.05

0.02

5

0.00

0.01

Fluorescence spectra were collected on Cary Eclipse Fluorescence Spectrophotometer. All the Ru(bpy)₃Cl₂·6H₂O solutions were excited at 452 nm and the emission intensity at 616 nm was observed.In a typical experiment, the emission spectrum of a 1×10^{-5} M solution of Ru(bpy)₃Cl₂·6H₂O in CH₃CN was collected. The decrease of Ru(bpy)3²⁺ luminescence couldn't be observed in the presence of substrate **1a** (Figure S1). Under basic condition, a significant decrease of Ru(bpy)3²⁺ luminescence was successfully observed in the presence of **1a** using K₂CO₃ as base (Figure S2). *These results suggested that it was the nitrogen anion of β*,*γ*-unsaturated hydrazone instead of C=C double bond that quenched the excited photocatalyst *Ru(bpy)3²⁺.

5.2 Trapping of the C-radical intermediate

1a (68.5 mg, 0.2 mmol), Ru(bpy)₃Cl₂·6H₂O (3.0 mg, 0.004 mmol), K₂CO₃ (41.5 mg, 0.3 mmol), $[Co^{III}(dmgH)_2PyCI]$ (6.5 mg, 0.016 mmol) and TEMPO (46.9 mg, 0.3 mmol) were dissolved in CH₃CN (3.0 mL). Then, the resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times) under argon atmosphere. After that, the solution was stirred at a distance of ~5 cm from a 3 W blue LEDs (450-460 nm) at room temperature about 33 h until the reaction was completed, as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 30:1~10:1) directly to give the desired product **4** in 75% isolated yield as a white solid. *The result showed that terminal C-centred radical does work as the intermediate in the reaction system*

5.3 Detecting the byproduct H₂

1b (75.4 mg, 0.2 mmol), Ru(bpy)₃Cl₂·6H₂O (3.0 mg, 0.004 mmol), K₂CO₃ (41.5 mg, 0.3 mmol), $[Co^{III}(dmgH)_2PyCI]$ (6.5 mg, 0.016 mmol) were dissolved in CH₃CN (3.0 mL). Then, the resulting mixture was degassed via 'freeze-pump-thaw' procedure (3 times) under argon atmosphere. After that, the solution was stirred at a distance of ~5 cm from a 3W blue LEDs (450-460 nm) at room temperature for 45 h. Then, H₂ was detected by SHIMADZU GC-2014. Packed column: Part Nbr: 19808; Serial Nbr: C36880-14; Shincarbon ST 100/120; 2m 1mmID 1/16 OD Silco. The peak of H₂ appeared, as follows. *The result suggested that H₂ was produced in the reaction system, which supported the mechanism we proposed.*

5.4 Control experiments

The control experiments revealed that that cyclised products 3a and 3c cannot be transformed into the final aromatization products 2a and 2c when using the cobalt complex alone. In contrast, subjection of them to the standard condition resulted in 2a and 2c in moderate yield, implying that 3a and 3c might also be involved as the possible intermediates. These results are in accordance with the optimization studies and highlight the uniquely enabling impact of photoredox cobalt catalysis.

6. X-Ray Structures of 2a and 3a

7. NMR Spectra of the Substrates 1a-f, 1h-p, 1r-v, 3c and Products 2a-v, 3a and 4a ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of substrates 1a

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of substrate 1b

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of substrate 1c

S28

¹H NMR (600 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectrum of substrate 1e

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of substrate 1h

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of substrate 1i

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of substrate 1j

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of substrate 1k

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of substrate 11

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of substrate 1m

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of substrate 1n

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of substrate 10

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of substrate 1p

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of substrate 1s

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of substrate 1v

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of product 3c

NMR Spectra of the Products 2a-v, 3a and 4 ¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2a

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2b

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2c

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2d

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2e

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2g

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of product 2i

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 21

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2m

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2n

-0.5

1.0 10.5 10.0

9.5

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2r

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2s

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2t

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 2u

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectrum of product 2v

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of product 3a

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of product 4

