Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Contents

General Experimental	2
Procedures & Characterisation	3
H₃DFOSqOEt	3
H ₃ DFOSqTaur	4
^{nat} ZrDFOSqTaur	5
H₃DFO-p-Ph-SO₃H	6
H₃DFOSq-trastuzumab	6
⁸⁹ Zr-DFOSq-trastuzumab	6
DFO-p-Ph-NCS-trastuzumab & ⁸⁹ Zr-DFO-p-Ph-NCS-trastuzumab	9
Competition study by radio-iTLC (EDTA challenges)	10
MicroPET Imaging	11
⁸⁹ ZrDFOSq-trastuzumab in SKOV3 xenograft-bearing mice	11
Mouse 1/3	11
Mouse 2/3	12
Mouse 3/3	12
⁸⁹ ZrDFO-p-Ph-NCS-trastuzumab in SKOV3 xenograft-bearing mice	13
Mouse 1/3	13
Mouse 2/3	13
Mouse 3/3	13
⁸⁹ ZrDFOSq-trastuzumab in BT474 xenograft-bearing mice	15
Mouse 1/2	15
Mouse 2/2	16
⁸⁹ ZrDFO-p-Ph-NCS-trastuzumab in BT474 xenograft-bearing mice	17
Mouse 1/4	17
Mouse 2/4	17
Mouse 3/4	
Mouse 4/4	
⁸⁹ ZrDFOSq-trastuzumab in LS174T xenograft-bearing mice	19
Mouse 1/3	19
Mouse 2/3	19
Mouse 3/3	20

General Experimental

All reagents and solvents were obtained from standard commercial sources and unless otherwise stated were used as received. ¹H and ¹³C spectra were recorded with a Varian FT-NMR 500, Varian FT-NMR 600, or Bruker Avance III HD 700 spectrometer. ¹H-NMR spectra were acquired at 500, 600 or 700 MHz and ¹³C-NMR spectra were acquired at 125 or 175 MHz. All NMR spectra were recorded at 25°C unless otherwise stated. The reported chemical shifts (in parts per million) are referenced relative to residual solvent signal, except for D₂O solutions which were spiked with acetone and referenced accordingly. ESI-MS were recorded on an Agilent 6510 ESI-TOF LC/MS Mass Spectrometer (Agilent, California USA). Analytical reverse phase HPLC were performed on an Agilent 1100 Series. Protein samples were analysed using an Agilent 6220 ESI-TOF LC/MS Mass Spectrometer coupled to an Agilent 1200 LC system (Agilent, Palo Alto, CA). All data were acquired and reference mass corrected via a dual-spray electrospray ionisation (ESI) source. Acquisition was performed using the Agilent Mass Hunter Acquisition software version B.02.01 (B2116.30). Ionisation mode: Electrospray Ionisation; Drying gas flow: 7 L/min; Nebuliser: 35 psi; Drying gas temperature: 325°C; Capillary Voltage (Vcap): 4000 V; Fragmentor: 300 V; Skimmer: 65 V; OCT RFV: 250 V; Scan range acquired: 300-3200 m/z Internal Reference ions: Positive Ion Mode = m/z = 121.050873 & 922.009798. Protein desalting and chromatographic separation was performed using an Agilent Poroshell C18 2.1 x 75 mm, 5µm column using 5% (v/v) acetonitrile ported to waste (0-5min). Upon desalting of sample the flow was ported back into the ESI source for subsequent gradient elution with (5% (v/v) to 100% (v/v)) acetonitrile / 0.1% formic acid over 8 min at 0.25 mL/min. Analysis was performed using Mass Hunter version B.06.00 with BioConfirm software using the maximum entropy protein

deconvolution algorithm; mass step 1 Da; Baseline factor 3.00; peak width set to uncertainty. For analysis of radioactive samples, size exclusion HPLC was performed on a Shimadzu SCL-10A VP/LC-10 AT VP system with a Shimadzu SPD-10A VP UV detector followed by a radiation detector (Ortec model 276 photomultiplier base with preamplifier, Ortec 925-SCINT ACE mate preamplifier, BIAS supply and SCA, Bicron 1M 11/2 photomultiplier tube). A Biosuite 125 HR SEC 5 µm 7.8 x 300 mm column was used with a flow rate of 0.6 mL/min and Dulbecco's PBS with 5% isopropanol as eluent. Radio-iTLC were analysed using a Raytest Rita-Star TLC scanner.

For HPLC purification and analysis of non-radioactive samples, solvent A = 0.5 % TFA in MilliQ, solvent B = 0.5% TFA in CH₃CN.

SKOV-3, BT-474 and LS174T tumour bearing mice were injected intravenously via a tail vein with ⁸⁹Zr-labelled trastuzumab. At 24 h, 48 h, 96 h and/or 8 days post-injection the animals were anaesthetised in 2.5% isoflurane and 50% O2 in air and placed on the bed of a Philips Mosaic small animal PET scanner. The images were reconstructed using a 3D RAMLA algorithm as described previously. (D. S. Dorow, C. Cullinane, N. Conus, P. Roselt, D. Binns, T. J. McCarthy, G. A. McArthur and R. J. Hicks, Eur. J. Nucl. Med. Mol. Imaging, 2006, 33, 441–452) Quantification was performed using software developed in-house (MARVn). (M. E. Trinkaus, R. Blum, D. Rischin, J. Callahan, M. Bressel, T. Segard, P. Roselt, P. Eu, D. Binns, M. P. MacManus, D. Ball and R. J. Hicks, J. Med. Imaging Radiat. Oncol., 2013, 57, 475–481) All data are presented as mean ± standard error.

Procedures & Characterisation

H₃DFOSqOEt

A mixture of Desferrioxamine B mesylate (0.20 g, 0.31 mmol) and N,Ndiisopropylethylamine (0.05 mL, 0.3 mmol) was stirred in ethanol (6 mL) at 50°C. After 1 h, 3,4-diethoxy-3-cyclobutene-1,2-dione (0.1 mL, 0.7 mmol) in ethanol (9 mL) was added. After a further 30 mins of stirring at 50°C the solvent was removed under reduced pressure, and the residue triturated with ethanol (3 x 10 mL). The product was dried *in vacuo* to give H₃DFOSqOEt as a white powder (0.17 g, 83%). ¹H NMR (d_6 -DMSO, 500 MHz) δ 9.61 (s, 6H), 8.77 (t, J = 5.8 Hz, 1H), 8.58 (t, J = 5.7 Hz, 1H), 7.77 (d, J = 4.7 Hz, 5H), 4.64 (p, J = 6.9 Hz, 5H), 3.45 (t, J = 7.0 Hz, 3H), 3.38 (s, 5H), 3.26 (dd, J = 13.0, 6.6 Hz, 1H), 3.00 (dd, J = 12.7, 6.4 Hz, 10H), 2.56 (d, J = 6.5 Hz, 1H), 2.26 (t, J = 7.2 Hz, 1H), 1.96 (s, 7H), 1.50 (d, J = 6.6 Hz, 3H), 1.42 – 1.31 (m, 3H), 1.24 (ddd, J = 20.2, 14.7, 8.0 Hz, 2H); ¹³C NMR (d_6 -DMSO, 101 MHz) δ 189.4, 189.3, 182.0, 181.8, 176.9, 176.5, 172.6, 172.2, 172.00, 171.3, 170.1, 70.2, 68.8, 68.7, 47.1, 47.0, 46.8, 43.7, 43.4, 39.5, 38.4, 30.1, 29.9, 29.6, 28.8, 27.6, 26.0, 25.8, 23.5, 22.9, 20.3, 15.6; ESI MS [M+H⁺]: 685.3768, calculated for (C₃₁H₅₃N₆O₁₁)⁺: 707.3586.

H₃DFOSqTaur

H₃DFOSqOEt (124 mg, 0.181 mmol) and a large excess of taurine (227 mg, 1.81 mmol) were stirred in a mixture of ethanol/H2O (1:1), and N,N-diisopropylethylamine (204 μL, 1.81 mmol) was added. The mixture was stirred for 6 hours at 60°C, the ethanol removed in vacuo and the aqueous solution filtered. H₃DFOSqTaur was then purified by semi-preperative HPLC (Phenomenex Synergi Max RP 4.6 x mm column, 5-25 % solvent B over 25 minutes) to give a white powder (12.4 mg, 10 %). ESI MS [M+H+]: 764.3411, calculated for (C₃₁H₅₄N₇O₁₃S)⁺: 764.3495. ¹H NMR (500 MHz, dmso) δ 10.99 (br s, 1H), 7.83 – 7.74 (m, 1H), 3.78 (br s, 1H), 3.51 - 3.39 (m, J = 14.7, 7.6 Hz, 1H), 3.36 - 3.27 (m, J = 11.8, 4.6 Hz, 1H), 3.13 - 3.04 (m, J = 16.0, 8.7 Hz, 1H), 3.04 - 2.93 (m, J = 12.4, 6.7 Hz, 1H), 2.31 - 2.22 (m, 1H), 1.65 - 1.55 (m, J = 13.7, 7.6 Hz, 1H), 1.55 - 1.42 (m, 1H), 1.37 (dt, J = 14.7, 7.3 Hz, 1H), 1.33 - 1.12 (m, 1H). ¹³C NMR (176 MHz, DMSO) δ 182.53, 182.28, 173.91, 173.63,

172.06, 172.02, 171.43, 170.83, 170.21, 167.82, 167.52, 158.77, 158.55, 158.33, 158.12, 117.63, 115.99, 114.35, 112.71, 51.78, 50.26, 50.20, 47.13, 47.07, 46.84, 43.21, 42.95, 40.33, 38.48, 38.15, 30.73, 30.44, 30.38, 30.16, 30.06, 29.98, 29.25, 28.84, 28.62, 28.59, 27.64, 26.07, 26.00, 23.54, 23.17, 23.15, 23.06, 22.99, 22.76, 20.38.

ZrDFOSqTaur

ZrDFOSqTaur for NMR analysis was produced by direct addition of 1 eq [ZrCl₄(THF)₂] in d₆-DMSO to the NMR sample of the ligand, and confirmed by ESI MS [M⁺]: 850.2231, calculated for (C₃₁H₅₀N₇O₁₃SZr)⁺: 850.2229. ¹H NMR (700 MHz, DMSO) δ 11.55 – 11.44 $(m, J = 23.5 \text{ Hz}, 2\text{H}), 11.42 \text{ (s, 2H)}, 8.40 - 8.21 \text{ (m, 2H)}, 8.23 - 8.02 \text{ (m, 4H)}, 7.96 - 7.81 \text{ (m, 2H)}, 8.23 - 8.02 \text{ (m, 2H$ 3H), 4.84 (s, 42H), 3.74 (s, 5H), 3.67 - 3.60 (m, 5H), 3.58 (t, J = 5.5 Hz, 13H), 3.49 - 3.44(m, J = 6.0 Hz, 3H), 3.34 - 3.27 (m, 1H), 3.08 (s, 2H), 3.06 - 2.96 (m, 9H), 2.77 - 2.72 (m, 100))6H), 2.68 - 2.61 (m, 2H), 2.60 (s, 2H), 2.58 (s, 1H), 2.51 - 2.49 (m, J = 1.4 Hz, 4H), 2.47 - 2.472.42 (m, J = 5.4 Hz, 1H), 2.42 – 2.36 (m, J = 9.7 Hz, 4H), 2.32 – 2.21 (m, J = 19.1, 12.5 Hz, 3H), 2.17 – 2.09 (m, 3H), 2.06 (s, 3H), 1.97 – 1.93 (m, 1H), 1.75 – 1.71 (m, 14H), 1.68 – 1.58 (m, J = 30.7, 15.4 Hz, 9H), 1.56 - 1.47 (m, 7H), 1.41 - 1.34 (m, 9H), 1.34 - 1.23 (m, 8H).(Note: all ¹H signals are broad). ¹³C NMR (151 MHz, DMSO) δ 182.43, 182.17, 182.03, 177.86, 173.85, 173.57, 172.06, 171.66, 171.00, 170.62, 170.57, 170.19, 168.07, 167.89, 167.80, 165.11, 164.21, 163.12, 158.67, 158.42, 158.16, 157.91, 116.08, 114.17, 67.11, 52.05, 50.72, 50.42, 50.16, 50.10, 50.04, 43.16, 43.04, 40.34, 38.64, 38.45, 38.27, 37.73, 37.62, 37.47, 30.75, 30.45, 30.19, 29.40, 28.94, 28.89, 28.81, 28.59, 28.56, 28.37, 28.11, 26.75, 26.48, 26.42, 26.35, 25.20, 24.69, 24.64, 24.34, 24.23, 23.47, 23.35, 23.26, 23.23, 23.12, 22.92, 22.87, 22.72, 22.67, 16.40.

H₃DFO-p-Ph-SO₃H

DFO-*p*-Ph-SO₃H was prepared from H₃DFO mesylate and 4-isothiocyanatobenzenesulfonic acid using analogous procedures to the synthesis of H₃DFOSqTaur. ESI MS [M+H⁺]: 776.3318, calculated for $(C_{32}H_{54}N_7O_{11}S_2)^+$: 776.3317

H₃DFOSq-trastuzumab

A solution of H₃DFOSqOEt (0.455 mg, 20 eq) in DMSO/H₂O was added to a solution of trastuzumab (5 mg) in pH 9 borate buffer (0.5 M) to give a total volume of 1 mL. The reaction mixture was allowed to stand at room temperature overnight, and was then filtered using Amicon 50 kDa centrifuge filters. The crude product was washed on the filter with NaCl solution (0.9% w/v, $4 \times 400 \mu$ L) and the concentrate collected to give H₃DFOSq-trastuzumab (56 mg/mL). The product was analysed by LC-MS, which indicated a mixture of trastuzumab with 2-7 chelators, and an average of 4.5 chelators/mAb.

⁸⁹Zr-DFOSq-trastuzumab

Aqueous Na₂CO₃ (25 uL, 2 M) was added to a solution of ⁸⁹Zr in 1 M oxalic acid (75 μ L, ca. 56 MBq) until the pH was slightly basic. HEPES buffer (100 μ L, 0.5 M, pH 7.0) was then added and the solution allowed to stand for 5 min. Neutral pH was confirmed, and then a solution of H₃DFOSq-trastuzumab (4 μ L, 225 ug in saline) was added. Reaction progress was monitored by radio-iTLC (Silica infused glass fiber plate, 20 mM pH 5 citrate buffer, product R_f= 0).

After 25 mins reaction time, the crude ⁸⁹ZrDFOSq-trastuzumab was purified on a PD-10 size exclusion column using pH 7 Dulbecco's PBS (20 mM, with 5% sodium gentisate) as eluent. After column loading, flow through was discarded and three fractions were collected (Fraction 1: 1.5 mL, 45 MBq, Fraction 2: 1.0 mL, 11 MBq, Fraction 3: 1.5 mL, 1 MBq).

Fraction 1 was analysed by radio-iTLC and radio-SEHPLC (Figure 1a, product retention time 12.55 min).

Two doses (200 μ L, 6.0 MBq each) of ⁸⁹ZrDFOSq-trastuzumab in PBS with 5% sodium gentisate (prefiltered for injection using a MF Millipore membrane MCE Cathivex GS 0.22 μ m filter unit) were prepared and administered to BT474 tumour-bearing mice via tail vein injection. PET images were taken at intervals of approximately 24 h, 48 h 96 h and 8 days post administration.

(a)

(b)

Figure S1. Radio-SEHPLC traces of (a) H₃DFOSq-trastuzumab following PD10 purification. (b) H₃DFO-*p*-Ph-trastuzumab following PD10 purification. The failure of the signal to return to baseline indicates potential radiolysis of the conjugate in the PBS buffer during elution. (c) H₃DFOSq-trastuzumab after 24 and 96 hours incubation in PBS/gentisate buffer at ambient temperature, with expected retention times for breakdown products indicated.

DFO-p-Ph-NCS-trastuzumab & ⁸⁹Zr-DFO-p-Ph-NCS-trastuzumab

H₃DFO-*p*-PhNCS was purchased from Macrocyclics (Cat. No. B-705). Trastuzumab conjugations and radiolabelling were carried out following reported procedures (M. J. W. D. Vosjan, L. R. Perk, G. W. M. Visser, M. Budde, P. Jurek, G. E. Kiefer and G. A. M. S. van Dongen, *Nature Protocols*, 2010, **5**, 739-743)

Figure S2. Deconvoluted ESI mass spectra of (a) unconjugated trastuzumab, (b) (DFO-p- $Ph)_x$ -trastuzumab conjugate where x=0-2 (average 0.6 chelators/mAb) and (c) (DFOSq)_x-trastuzumab conjugate where x=1-6 (average 3.4 chelators/mAb)

Competition study by radio-iTLC (EDTA challenges)

All ligand challenge experiments were carried out at pH 7.0. Analysis of the mixtures was performed by iTLC using 20 mM citrate buffer (pH 5) as eluent. In the forward direction (⁸⁹ZrDFO derivatives challenged with EDTA), the concentration of the DFO derivative in each reaction mixture was 0.096 mM. 24 hours reaction time was required in these DFO challenges to form a reasonable amount of ⁸⁹ZrEDTA for reliable TLC analysis. In the reverse direction, the two DFO derivatives were able to transchelate the ⁸⁹Zr in reasonable amounts within 20 minutes at DFO and EDTA concentrations of 3.2 mM and 0.27 mM, respectively.

Figure S3. radio-iTLC of the four zirconium-89 complexes used in the competition studies. ⁸⁹ZrDFOSqTaur, ⁸⁹ZrDFO-*p*-Ph-SO₃H and ⁸⁹Zr-DFO mesylate remain at the baseline under these conditions, while ⁸⁹ZrEDTA moves with the solvent front.

 Table 1. Amount of ⁸⁹ZrEDTA formed after 50mM EDTA challenge, 24 hours, given as %

 total ⁸⁹Zr.

	⁸⁹ Zr-DFOSq-Taur	⁸⁹ Zr-DFO-p-Ph-SO ₃ H
Run 1	18	41
Run 2	9	33
Run 3	8	17
Average	12	30
SEM	3.2	7.1

Table 2.	Amount	of ⁸⁹	ZrEDTA	remai	ning a	after	challen	ging a	⁸⁹ ZrE	EDTA	solution	with	each

ligand for 20 min.

	⁸⁹ Zr-DFOSq-Taur	⁸⁹ Zr-DFO-p-Ph-SO ₃ H
% ⁸⁹ Zr bound by EDTA	12	63

MicroPET Imaging

⁸⁹ZrDFOSq-trastuzumab in SKOV3 xenograft-bearing mice

Mouse 1/3

Mouse 2/3

⁸⁹ZrDFO-p-Ph-NCS-trastuzumab in SKOV3 xenograft-bearing mice

Mouse 1/3

Mouse 2/3

Mouse 3/3

⁸⁹ZrDFOSq-trastuzumab in BT474 xenograft-bearing mice

Mouse 1/2

Mouse 2/

⁸⁹ZrDFO-p-Ph-NCS-trastuzumab in BT474 xenograft-bearing mice

Mouse 1/4

Mouse 4/4

⁸⁹ZrDFOSq-trastuzumab in LS174T xenograft-bearing mice

Mouse 2/3

Mouse 3/3

File: p2314 Mouse #: 0	ile: p2314 Mouse #: 07 Model: LS174T Tracer: Zr-Herceptin						464/1
	нт	L ANT	s	HEAD	c	L HEAD	
84						- A. /	
						- 16	
- AL			4		F 4	- AL	
127	БІСНТ	4500	LEFT ONT	-	POS RIGHT	103	LE
- PR /		-				141	
						18	
	1	T POS	418-421 1	FOQT	50-53 1	T FOOT	65-1
: 0 24hr SUVmax: 3.07						Acq. Date: 20	/03/201
	F1	- ANT	s	HEAD	c	- HEAD	
. 6.						Δ.	
100						- 12	
46.	RIGHT	400	LEFT		POF RIGHT	- AB	LEF
725		-		- 7		- 735	
				X		1	
	1	T POS	432-435 1	FOOT	50-53 1	T FOOT	68-1
1 48hr SUVmax: 4.04						Acq. Date: 21	/03/201
	H T	L ANT	s	HERD	C	I HEAD	
- B. I						A	
100						- 52	
- C		1.00	-		H-H	- 10 a	
- 10	RIGHT	•••••	LEFT	-	POS RIGHT	139	LEF
197				×		1997	
	1	T POS	423-426 1	FOOT	49-52 1	T FOOT	67-7
2 96hr SUVmax: 5.65						Acq. Date: 23	/03/201