Accelerated hydration reaction of an unsymmetrical tolan evidenced by a Hg(II)-trapped macrocycle and its application as a Hg(II)-selective indicator

Jung-Ho Hong, Sathish Kurapati, Yunhee Jo, June-Ho Shin, and Dong-Gyu Cho*

Department of Chemistry, Inha University, 253 Yonghyundong, Namgu, Incheon 402-751, Republic of Korea

dgcho@inha.ac.kr

Contents

General Experimental	S2
Structural supporting data for 2b	S2
Stacked ¹ H NMR spectra of unreactive 1	S 3
Fluorescence studies of tolans	S4
LC-MS studies	S6
Stacked ¹ H NMR spectra of 2 , 2a , 2b , and crude sample $(2 + Hg(II))$)) S7
X-ray structural data of 2b	S8
Synthetic Experimental	S11
NMR Spectra	S13

General Experiments

Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields of synthesized compounds were measured after chromatographic purification. Stock solutions of all of the compounds studied were made up in CH₃CN with the final concentrations being between 2×10^{-5} M and 2×10^{-6} M. ACS grade solvents were purchased and used without purification. The stock solutions were appropriately diluted with HPLC water (or HEPES buffer) for the ensuing studies.

Structural supporting data for 2b $\begin{pmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$

Figure S1. Partial ¹H NMR spectrum (400 MHz) of **2b** recorded in CDCl₃.

Figure S2. Observed high mass spectrum of **2b** (m/z, $[2b - Cl^-]^+ = 1239.2800$). The value was obtained by high-resolution ESI mass spectrometry.

Figure S3. ¹H NMR spectra of **1** (2 mM in 20% D_2O containing CH₃CN-d3) recorded before and 48 h after the addition of 2 equiv of Hg(II).

Fluorescence studies of tolans

Figure S4. Fluorescence spectra of **2** (2 μ M) and final diluted solution obtained from reaction depicted in Figure 1, excited at 323 nm at 25 °C.

Figure S5. Plot of observed fluorescence ratio (F/F_0) of each tolan $(2 \ \mu M)$ in CH₃CN/water (1:1, v/v) at 428 nm as a function of time (F₀: the emission intensity of each tolan, F: the emission intensity of each tolan in the presence of 2 equiv of Hg(II)).

Figure S6. Plots of observed fluorescence ratio (F/F_0) of **3** (0.2 μ M) at 428 nm as a function of time in various percentages of water and CH₃CN (v/v) (F₀: the emission intensity of each tolan, F: the emission intensity of **3** in the presence of 2 equiv of Hg(II)).

Figure S7. Plots of observed fluorescence ratio of **3** (0.2 μ M) at 423nm as a function of time in various pH in 10 mM 90% HEPES buffer congaing CH₃CN (F₀: the emission intensity of each tolan, F: the emission intensity of **3** in the presence of 2 equiv of Hg(II)).

LC-MS Spectroscopy

All LC-MS spectra were generated by Shimadzu LCMS-2020 (column; Sim-pack GIS C18, CN ($100 \times 3.0 \text{ mm}$, 3 µm); mobile phase flow; 0.8000 mL/min; mobile phase conditions (gradient A:B = water (0.1%TFA):acetonitrile) as shown above).

Figure S8. Obtained peak in the liquid chromatograms that undergo change upon the addition of Hg(II) (2 equiv) to a solution of indicator **2** (20 μ M in CH₃CN-water (80:20, v/v) and resulted peak from pure **2b** (20 μ M in CH₃CN-water (80:20, v/v) without Hg(II).

Stacked ¹H NMR spectra of 2, 2a, 2b, and crude sample (2 + Hg(II))

Figure S9. Stacked ¹H NMR spectra of **2**, **2a**, **2b**, and crude sample $(\mathbf{2} + \text{Hg(II)})$ obtained after the hydration reaction for 10 min and extraction with CH₂Cl₂ in CDCl₃

X-ray structural data of 2b

 Table S1. Crystal data and structure refinement for 2b.

Identification code	2b		
Empirical formula	C ₂₅ H ₂₅ ClHgN ₂ O ₃		
Formula weight	637.51		
Temperature/K	296.15		
Crystal system	triclinic		
Space group	P-1		
a/Å	9.4629(2)		
b/Å	11.3500(2)		
c/Å	12.3473(3)		
α/°	103.8430(10)		
β/°	109.6160(10)		
$\gamma/^{\circ}$	99.7450(10)		
Volume/Å ³	1166.86(4)		
Z	2		
$\rho_{calc}g/cm^3$	1.814		
μ/mm^{-1}	6.739		
F(000)	620.0		
Crystal size/mm ³	$0.435 \times 0.283 \times 0.22$		
Radiation	MoKa ($\lambda = 0.71073$)		
2⊖ range for data collection/°	3.7 to 56.54		
Index ranges	-12 $\leq h \leq$ 12, -15 $\leq k \leq$ 15, -16 $\leq l \leq$ 16		
Reflections collected	21104		
Independent reflections	5748 [$R_{int} = 0.0418$, $R_{sigma} = 0.0363$]		
Data/restraints/parameters	5748/0/291		
Goodness-of-fit on F ²	1.065		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0250, wR_2 = 0.0589$		
Final R indexes [all data]	$R_1 = 0.0259, wR_2 = 0.0593$		
Largest diff. peak/hole / e Å-3	2.25/-1.39		

Atom	x	У	z	U(eq)
Hg1	1149.55(12)	1721.74(9)	6479.58(9)	13.04(5)
Cl1	2120.4(10)	515.7(8)	5225.4(8)	23.80(17)
O3	801(3)	4798(2)	7761(2)	18.2(4)
01	6961(3)	2476(3)	8154(2)	34.4(7)
O2	-1503(3)	6517(2)	4577(2)	22.9(5)
N2	-729(3)	5657(3)	6097(2)	17.5(5)
N1	3560(3)	2890(3)	8534(2)	14.5(5)
C21	1004(6)	8350(5)	7551(4)	50.4(14)
C19	-576(4)	6573(3)	5574(3)	17.9(6)
C1	5644(4)	2553(4)	7941(3)	23.4(7)
C14	-2823(4)	2438(3)	5733(3)	15.5(6)
C7	1322(4)	3125(3)	8982(3)	14.2(6)
C12	-147(3)	3748(3)	7233(3)	12.6(5)
C5	3931(4)	3754(3)	10635(3)	16.1(6)
C6	2958(4)	3257(3)	9376(3)	14.0(6)
C8	732(4)	3462(3)	9850(3)	19.4(6)
C22	2489(5)	9396(4)	8297(3)	31.4(8)
C17	-3371(4)	4351(3)	4751(3)	22.1(7)
C23	2617(9)	10171(6)	9502(5)	83(2)
C15	-4252(4)	2265(3)	4821(3)	21.4(7)
C3	6122(4)	3494(3)	10129(3)	19.9(6)
C13	-1636(3)	3562(3)	6189(3)	12.5(5)
C9	1692(4)	3954(3)	11095(3)	22.3(7)
C10	3267(4)	4115(3)	11488(3)	20.3(7)
C11	210(4)	2667(3)	7658(3)	13.1(6)
C16	-4525(4)	3230(3)	4345(3)	25.4(7)
C20	879(5)	7650(4)	6331(3)	30.7(9)
C4	5545(4)	3886(3)	10988(3)	19.5(6)
C18	-1916(4)	4529(3)	5661(3)	14.5(6)
C2	5077(4)	2999(3)	8908(3)	17.4(6)
C25	-2596(9)	-490(5)	8421(5)	67.0(18)
C24	-2305(10)	355(7)	-332(5)	81(2)

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for y2. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Synthetic experimental

Synthetic procedures for Unsymmetrical tolans

N-(2-((2-formylquinolin-8-yl)ethynyl)phenyl)heptanamide (2)

N-(2-ethynylphenyl)heptanamide (81 mg, 0.35 mmol), PPh₃(4.6 mg, 0.175 mmol), Pd(PPh₃)₂Cl (12.4 mg, 0.018 mmol), and Cu(OAc)₂ (7 mg, 0.035 mmol) were added to a well-stirred solution of 8-iodoquinoline-2-carbaldehyde (100 mg, 0.35 mmol) in dry DMF (4 mL) and DIEA (0.24 mL, 1.40 mmol). The resulting mixture was heated at 65 °C for 3 h. After cooling to room temperature, the reaction mixture was extracted with EtOAc/water. The combined organic layers were dried over anhydrous Na₂SO₄ and then filtered. The filtrate was concentrated under reduced pressure to obtain the residue. The residue was purified over silica gel to afford **2** (68 mg, 53%).

¹H NMR (400 MHz, Chloroform-*d*) δ 10.52 (d, J = 0.9 Hz, 1H), 8.89 (s, 1H), 8.71 (d, J = 8.4 Hz, 1H), 8.61 (d, J = 8.4 Hz, 1H), 8.34 (d, J = 8.4 Hz, 1H), 8.30 (dd, J = 7.2, 1.4 Hz, 1H), 8.16 (dd, J = 8.3, 1.4 Hz, 1H), 7.93 (dd, J = 8.3, 7.2 Hz, 1H), 7.82 (dd, J = 7.6, 1.5 Hz, 1H), 7.62 (ddd, J = 8.8, 7.6, 1.5 Hz, 1H), 7.33 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 2.60 (t, J = 7.6 Hz, 2H), 1.89 (tt, J = 7.7, 7,7 Hz, 2H), 1.50 – 1.39 (m, 2H), 1.39 – 1.24 (m, 4H), 0.96 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.03, 171.68, 152.89, 147.59, 139.79, 138.31, 134.30, 131.47, 130.40, 130.28, 128.96, 128.71, 124.01, 123.38, 119.83, 118.32, 112.05, 93.57, 92.18, 38.33, 31.49, 28.85, 25.56, 22.43, 13.99. HRMS–EI: m/z [M]⁺ calcd for C₂₅H₂₄N₂O₂: 384.1838; found: 384.1837.

N-(2-((2-methylquinolin-8-yl)ethynyl)phenyl)heptanamide (3)

By following the general procedure, the reaction of 8-iodo-2-methylquinoline (100 mg, 0.37 mmol) yielded **3** (37 mg, 27%). To obtain the product, CuI was used instead of $Cu(OAc)_2$ due to Glazer reaction.

¹H NMR (400 MHz, Chloroform-*d*) δ 9.72 (s, 1H), 9.25 (d, *J* = 8.3 Hz, 1H), 8.88 (d, *J* = 8.8 Hz, 1H), 8.73 (d, *J* = 7.5 Hz, 1H), 8.59 (d, *J* = 7.9 Hz, 1H), 8.35 (d, *J* = 7.7 Hz, 1H), 8.28 (dd, *J* = 7.6, 7.6 Hz, 1H), 8.19 – 8.11 (m, 2H), 8.05 (d, *J* = 1.0 Hz, 1H), 7.87 (dd, *J* = 7.8 Hz, 1H), 3.60 (s, 3H), 3.25 (t, *J* = 7.6 Hz, 2H), 2.47 (tt, *J* = 7.6, 7.6 Hz, 2H), 2.16 – 1.98 (m, 2H), 1.98 – 1.84 (m, 4H), 1.54 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.83, 160.88, 148.56, 140.64, 137.55, 133.98, 131.90, 130.50, 129.42, 127.54, 126.21, 124.04, 123.64, 122.78, 120.74, 113.62, 95.56, 91.55, 38.91, 32.30, 29.69, 26.89, 26.43, 23.24, 14.79. HRMS–EI: m/z [M]⁺ calcd for C₂₅H₂₆N₂O: 370.2045; found: 370.2042.

N-(2-((2-(hydroxymethyl)quinolin-8-yl)ethynyl)phenyl) heptanamide (4)

To a well-stirred solution of **3** (52 mg, 0.135 mmol) in MeOH (3.5 mL) was added NaBH₄(7.7 mg, 0.20 mmol). The reaction mixture was stirred at 0 °C for 0.5 h. After the reaction mixture was quenched by adding one drop of water, MeOH was removed. The residue was extracted with $Et_2O/EtOAc$. The combined organic layers were dried over anhydrous Na₂SO₄ and then filtered. The filtrate was concentrated under reduced pressure to obtain the residue. The residue was purified over silica gel to afford **4** (45 mg, 87%).

¹H NMR (400 MHz, Acetonitrile- d_3) δ 8.61 (s, 1H), 8.31 (d, J = 8.6 Hz, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.00 (dd, J = 7.1, 1.5 Hz, 1H), 7.95 (dd, J = 8.2, 1.4 Hz, 1H), 7.61 (d, J = 8.6 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.39 (ddd, J = 8.6, 7.7, 1.3 Hz, 1H), 7.13 (ddd, J = 7.7, 7,7, 0.9 Hz, 1H), 4.88 (d, J = 5.3 Hz, 2H), 4.07 (t, J = 5.4 Hz, 1H), 2.39 (t, J = 7.5 Hz, 2H), 1.59 (tt, J = 7.6 Hz, 2H), 1.25 – 1.77(m, 2H), 1.17 – 1.01 (m, 4H), 0.72 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Acetonitrile- d_3) δ 172.89, 163.28, 147.59, 140.74, 138.47, 134.60, 132.43, 130.63, 130.22, 128.73, 126.96, 124.60, 122.63, 121.40, 120.81, 114.17, 95.25, 91.16, 65.96, 38.38, 32.26, 29.55, 26.34, 23.18, 14.31. HRMS–EI: m/z [M]⁺ calcd for C₂₅H₂₆N₂O₂: 386.1994; found: 386,1997.

Synthetic procedures for ketones with Hg(II)

N-(2-(2-(2-formylquinolin-8-yl)acetyl)phenyl)heptanamide (2a)

To a well-stirred solution of **2** (20 mg, 0.052 mmol) in CH₃CN/water (20 mL/4 mL) was added HgCl₂ (28 mg, 0.104 mmol). The reaction mixture was stirred at room temperature for 10 min. The reaction mixture was poured into H₂O, and the product was extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄ and then filtered. The filtrate was concentrated under reduced pressure to obtain the residue. To obtain **2a** without **2b**, the same crude was dissolved in DCM (4 mL) and then 0.42 mL of HCl (1.25 M in MeOH, 0.52 mmol) was added to the solution. The reaction was stirred for 10 min. The residue was purified over preparative TLC to afford **2a** (17 mg, 82%).

¹H NMR (400 MHz, Chloroform-*d*) δ 11.48 (s, 1H), 10.02 (d, J = 0.9 Hz, 1H), 8.79 (dd, J = 8.5, 1.2 Hz, 1H), 8.35 (dd, J = 8.1, 1.6 Hz, 1H), 8.32 (dd, J = 8.4, 0.9 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.87 (dd, J = 8.1, 1.6 Hz, 1H), 7.74 (dd, J = 7.1, 1.6 Hz, 1H), 7.68 (dd, J = 8.1, 7.1 Hz, 1H), 7.57 (ddd, J = 8.7, 7.3, 1.6 Hz, 1H), 7.15 (ddd, J = 8.3, 7.3, 1.2 Hz, 1H), 5.05 (s, 2H), 2.31 (t, J = 7.5 Hz, 2H), 1.64 (tt, J = 7.6, 7.6 Hz, 2H), 1.35 – 1.15 (m, 4H), 0.82 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 202.71, 193.68, 172.82, 151.96, 146.16, 141.41, 137.91, 135.76, 135.22, 131.82, 131.39, 130.41, 129.13, 127.54, 122.35, 121.84, 121.07, 117.49, 42.31, 38.74, 31.54, 28.89, 25.51, 22.53, 14.07. HRMS–FAB: m/z [M + H]⁺ calcd for C₂₅H₂₇N₂O₃: 403.2022; found: 403.2024.

(1-(2-formylquinolin-8-yl)-2-(2-heptanamidophenyl)-2-oxoethyl)mercury(II) chloride (2b)

The residue obtained from the reaction of **2** with $HgCl_2$ was directly purified by preparative TLC, which afforded **2a** (2.7 mg, 13%) and **2b** (21.8 mg 66%).

¹H NMR (400 MHz, Chloroform-*d*) δ 11.46 (s, 1H), 10.53 (d, J = 0.9 Hz, 1H), 8.76 (dd, J = 8.5, 1.2 Hz, 1H), 8.51 (dd, J = 8.4, 0.9 Hz, 1H), 8.29 (dd, J = 8.2, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.94 (dd, J = 5.3, 4.4 Hz, 1H), 7.78 – 7.69 (m, 2H), 7.58 (ddd, J = 8.7, 7.4, 1.5 Hz, 1H), 7.18 (ddd, J = 8.1, 7.3, 1.3 Hz, 1H), 5.59 (d, J = 0.5 Hz, 1H), 2.28 (td, J = 7.5, 1.5 Hz, 2H), 1.63 (tt, J = 7.5, 7.5 Hz, 2H), 1.32 – 1.13 (m, 6H), 0.80 (t, J = 6.8 Hz, 3H). HRMS–ESI: m/z [M – Cl^{-]+} calcd for C₅₀H₅₀ClHg₂N4O₆: 1239.2808; found: 1239.2800.

N-(2-(2-(2-methylquinolin-8-yl)acetyl)phenyl)heptanamide (3a)

By following the procedure of 2a, the reaction of 3 (20 mg, 0.054 mmol) yielded 3a (11.1 mg, 53%).

¹H NMR (400 MHz, Chloroform-*d*) δ 11.55 (s, 1H), 8.74 (d, J = 8.7 Hz, 1H), 8.35 (d, J = 9.6 Hz, 1H), 8.02 (d, J = 8.6 Hz, 1H), 7.72 (d, J = 9.2 Hz, 1H), 7.60 (d, J = 7.0 Hz, 1H), 7.52 (ddd, J = 8.6, 7.8, 1.5 Hz, 1H), 7.45 (dd, J = 8.2, 7.2 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H), 7.09 (ddd, J = 8.3, 7.4, 1.3 Hz, 1H), 4.91 (s, 2H), 2.60 (s, 3H), 2.33 (t, J = 7.6 Hz, 2H), 1.65 (tt, J = 7.6 Hz, 2H), 1.33 – 1.16 (m, 6H), 0.84 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 203.86, 172.92, 158.55, 145.89, 141.22, 136.54, 134.78, 134.02, 131.80, 130.60, 127.32, 126.84, 125.58, 122.68, 122.36, 122.24, 120.99, 42.70, 38.88, 31.71, 29.07, 25.71, 25.52, 22.69, 14.23. HRMS–EI: m/z [M]⁺ calcd for C₂₅H₂₈N₂O₂: 388.2151; found: 388.2153.

N-(2-(2-(hydroxymethyl)quinolin-8-yl)acetyl)phenyl)heptanamid (4a)

By following the procedure of **2a**, the reaction of **4** (20 mg, 0.052 mmol) yielded **4a** (9.8 mg, 47%).

¹H NMR (400 MHz, Chloroform-*d*) δ 11.50 (s, 1H), 8.76 (dd, J = 8.6, 1.2 Hz, 1H), 8.22 (dd, J = 8.0, 1.6 Hz, 1H), 8.14 (d, J = 8.5 Hz, 1H), 7.79 (dd, J = 8.1, 1.5 Hz, 1H), 7.66 (dd, J = 7.2, 1.4 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 8.5 Hz, 1H), 7.10 (ddd, J = 8.1, 7.6, 1.1 Hz, 1H), 4.92 (s, 2H), 4.82 (s, 2H), 3.98 (s, 1H), 2.34 (t, J = 7.5 Hz, 2H), 1.65 (tt, J = 7.6 Hz, 2H), 1.36 – 1.17 (m, 6H), 0.83 (t, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 203.04, 172.90, 158.62, 144.81, 141.43, 137.41, 135.18, 133.74, 131.34, 131.04, 127.86, 127.53, 126.32, 122.37, 121.71, 121.17, 118.58, 64.29, 42.97, 38.71, 31.58, 28.92, 25.50, 22.55, 14.09. HRMS–EI: m/z [M]⁺ calcd for C₂₅H₂₈N₂O₃: 404.2100; found: 404.2098.

NMR Spectra

 ^1H NMR spectrum of $\boldsymbol{2}$ recorded in CDCI_3

 $^{\rm 13}{\rm C}$ NMR spectrum of ${\bf 2}$ recorded in ${\rm CDCI}_{\rm 3}$

 ^1H NMR spectrum of 2a recorded in CDCI_3

 $^{\rm 13}{\rm C}$ NMR spectrum of ${\bf 2a}$ recorded in ${\rm CDCI}_{\rm 3}$

¹H NMR spectrum of **2b** recorded in CDCl₃ (#:CH2Cl2, *:EtOAc)

 ^1H NMR spectrum of $\boldsymbol{3}$ recorded in CDCI_3

 $^{\rm 13}{\rm C}$ NMR spectrum of ${\bf 3}$ recorded in ${\rm CDCI}_{\rm 3}$

¹H NMR spectrum of **3a** recorded in $CDCI_3$

 ^{13}C NMR spectrum of 3a recorded in CDCl_3

¹H NMR spectrum of **4** recorded in CD₃CN

 ^{13}C NMR spectrum of 4 recorded in CD_3CN

¹H NMR spectrum of $\mathbf{4a}$ recorded in CDCl₃

 $^{\rm 13}{\rm C}$ NMR spectrum of ${\bf 4a}$ recorded in ${\rm CDCI}_{\rm 3}$