Supporting information for

Cu(II)/Cu(0)@UiO-66-NH₂: base metal@MOFs as heterogeneous catalysts for olefin

oxidation and reduction

Jian-Cheng Wang, Yu-Hong Hu, Gong-Jun Chen, and Yu-Bin Dong*

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China. E-mail: yubindong@sdnu.edu.cn.

Content

1.	Materials and measurements	.S1
2.	Synthesis and characterization of 1 and 2	.S2
3.	Catalytic properties of 1	53
4.	Catalytic properties of 2	S10
5.	References	.S13

1. Materials and measurements

All the chemicals were obtained from commercial sources and used without further purification. UiO-66-NH₂ was synthesized according to literature method.¹ Infrared (IR) samples were prepared as KBr pellets, and spectra were obtained in the 400-4000 cm⁻¹ range using a Perkin-Elmer 1600 FTIR spectrometer. ¹H NMR data were collected using an AM-300 spectrometer. Chemical shifts are reported in δ relative to TMS. The scanning electron microscopy (SEM) micrographs were recorded on a Gemini Zeiss Supra TM scanning electron microscope. The X-ray diffraction (XRD) experiments were obtained on a D8 ADVANCE X-ray powder diffract to meter with CuK α radiation ($\lambda = 1.5405$ Å). Thermo gravimetric analyses were carried out on a TA Instrument Q5 simultaneous TGA under flowing nitrogen at a heating rate of 10°C/min. ICP-LC was performed on an IRIS InterpidII XSP and NU Atto M. HRTEM (High resolution transmission electron microscopy) analysis was performed on a JEOL 2100 Electron Microscope at an operating voltage of 200 kV. GC analysis was performed on a 7890B gas chromatograph (Agilent Technologies, CA, USA) equipped with a flame ionization detector (FID) and a split/splitless injector. The GC capillary column (DB-WAX, 30 m length × 0.53 mm; HP-5, 30 m length × 0.32 mm) was purchased from the Agilent Technologies. XPS spectra were obtained from THI5300 (PE). ICP measurement was performed on an IRIS Interpid (II) XSP and NU AttoM.

2. Synthesis and characterization of 1 and 2

Synthesis of 1. UiO-66-NH₂ (0.50 mmol, 10.0 g) was dispersed into a EtOH solution (2 mL) of Cu(OAc)₂ (0.02 mol/L) at room temperature for 1 h. The resulting solids were collected by centrifugation, washed with EtOH (3 times) and dried at 80°C to generate **1** as a light green crystalline solid. IR (KBr pellet cm⁻¹): 3346(s), 1569(vs), 1425(s), 1259(vw), 1027(vw), 769(ms), 653(s), 481(w). Elemental Analysis (%): calcd for $C_{52.8}H_{47.2}Zr_6Cu_{1.2}N_6O_{36.8}$: C 32.06, H 2.41, N 4.25; found: C 31.89, H 2.26, N 4.36.

					r		
element	Zr 339.198	Zr 343.823	Zr 257.139	Zr 272.262	Cu 324.754	Cu 327.396	Cu 224.700
unit	mg/L						
average	04 4304	00 0110	70 500 4	70 0005	44 5545	42 40700	40.0000
value	81.4381	80.2119	78.5334	79.8095	11.5515	12.19780	10.0829
sd	1.17903	0.76806	1.19402	0.73362	0.15422	0.22592	0.08217
rsd	1.448	0.958	1.52	0.919	1.335	1.852	0.815
min	0.00057	0.00003	0.00923	0.00757	0.00015	0.00036	0.0024
max	120	120	120	120	12	12	12

Table S1. ICP result for 1

Based on above analysis, the Zr/Cu ratio in **1** is 1 : 0.2, so the formula of **1** can be described as 1.2 $Cu(OAc)_2@UiO-66-NH_2$.

Synthesis of 2.^{2,3} An aqueous solution of NaBH₄ (2 mL, 7.5 mg/mL) was added dropwise to a suspended solution of **1** (150 mg) in EtOH (10 mL)/CH₂Cl₂ (50 mL) at 0°C in N₂ atmosphere. The reaction system was stirred for additional half an hour at room temperature. The resulting solids were collected by centrifugation to generate **2** as a dark cyan crystalline solid. IR (KBr pellet cm⁻¹): 3371(s), 2109(vw), 1571(ms), 1345(vs), 1258(vw), 1007 (ms), 769 (vw), 628(ms). Elemental Analysis (%): calcd for $C_{48}H_{40}Zr_6CuN_6O_{32}$: C 31.61, H 2.21, N 4.61; found: C 31.51, H 2.07, N 4.74.

Fig. S1 Left: XPS spectra of UiO-66-NH₂ and **2**. As shown in the figure, the peaks at 184.0 and 181.5 eV in UiO-66-NH₂ and the peaks at 183.75 and 181.375 eV in compound **2** for $3d^{3/2}and 3d^{5/2}$ are well consistent with those values for Zr(IV) in ZrO₂.^{3b} Right: IR spectra of UiO-66-NH₂ and **2**. These spectra indicated that the UiO-66 framework is stable after copper loading and reduction.

element	Zr 339.198	Zr 343.823	Zr 257.139	Zr 272.262	Cu 324.754	Cu 327.396	Cu 224.700
unit	mg/L						
average value	107.353	107.721	106.35	107.173	13.26450	13.97790	11.6479
sd	0.32739	0.43628	0.30476	0.04525	0.11929	0.00728	0.0664
rsd	0.305	0.405	0.287	0.042	0.899	0.052	0.57
min	0.00057	0.00003	0.00923	0.00757	0.00015	0.00036	0.0024
max	120	120	120	120	12	12	12

Table S2. ICP result for 2

Based on above analysis, the Zr/Cu ratio in **2** is 1 : 0.17, so the formula of **2** can be described as 1.0 Cu(0) $@UiO-66-NH_2$.

Table S3. ICP result for Cu loading based on UiO-66

element	Zr 339.198	Zr 343.823	Zr 257.139	Zr 272.262	Cu 324.754	Cu 327.396	Cu 224.700
unit	mg/L						
average value	107.443	107.521	106.95	107.543	4.57570	4.96867	4.15632
sd	0.35739	0.42528	0.30476	0.04455	0.10819	0.00808	0.0644
rsd	0.396	0.315	0.299	0.040	0.900	0.050	0.55
min	0.00066	0.00002	0.00843	0.00747	0.00013	0.00034	0.0021
max	120	120	120	120	12	12	12

Based on above analysis, the Zr/Cu ratio in UiO-66 is 1 : 0.06, so the formula can be described as 0.36Cu(II)@ UiO-66.

3. Catalytic properties of 1

1 (0.02 mmol, 34.2mg) was added to a solution of cyclohexene (1.0 mmol, 102.0 μ L), TBHP (2.0 mmol, 201.2 μ L). After stirred at room temperature for 5 min., the system was heated at 80°C for 12 h (monitored by GC). After addition of methylene chloride (5 mL), **1** was recovered by centrifugation and directly reused for next catalytic cycle. The product yield was determined by GC-MS.

Fig. S2 GC-MS spectra for three catalytic runs.

Fig. S3 Recycling catalytic test.

Table S4. Summary of the cyclohexene oxidatio	n catalyzed by MOF-type heterogeneous catalysts
---	---

Ref.	Catalyst	Solvent	Cyclohexene	Condition	Oxidant	Conversion	Product type
4	Ti-POM/MIL-101	acetonitrile	0.2 mol	70°C/6 h	H ₂ O ₂	39%	3
5	[Co [#] (BPB)]·3DMF	1,2- dichloroethane	1 mmol	80°C/12 h	TBHP ^a	62%	3
6	[Cu(H₂btec)(bipy)]∞	1,2- dichloroethane	40 mmol	75°C/24 h	ТВНР	64.5%	3
7	MFU-1	Cyclohexene	Neat	70°C/24 h	твнр	27.5%	3
0	MFU-2	Cyclohexene	Neat	70°C/24 h	твнр	16%	3
ð	NHPI@MFU-1	Cyclohexene	Neat	35°C/9 h	oxygen	\sim 20%	3
9	NH_4 [Cu ₃ -(μ_3 -OH)(μ_3 -4- carboxy pyrazolato) ₃]	Cyclohexene	Neat	70℃/24 h	ТВНР	20%	3
10	MIL-47	chloroform	0.1 mmol	50℃/7 h	твнр	60%	4
11	COMOC-3	chloroform	2.75 mmol	50℃/7 h	твнр	38%	4

12	[Cu(H₂btec)(bipy)]∞	1,2- dichloroethane	40 mmol	75℃/24 h	ТВНР	68.4%	3
-	Ni-MOF	Cyclohexene	Neat	80℃/20 h	O2 balloon	13.2%	4
13	Co-MOF	Cyclohexene	Neat	80℃/10 h	O2 balloon	8.1%	4
	Cu-MOF	Cyclohexene	Neat	80℃/10 h	O2 balloon	11.7%	4
14	CZJ-1	acetonitrile	0.1 mmol	r.t./6 h	PhIO ^b	99%	1
15	[Co(H ₂ -DHBDA)(bpe)] _n	acetonitrile	10 mmol	40℃/24 h	H ₂ O ₂	82%	2
16	Cu ²⁺ @COMOC-4	chloroform	61.3 mmol	40℃/7 h	O2 (1atm)	49%	4
17	[Mn(LH)(H ₂ O)] _n	Acetone/ Methanol	1 mmol	0-26℃/24 h	H ₂ O ₂	47%	2
	Cu-MOF-74	acetonitrile	1 mmol	70℃/24 h	ТВНР	90%	5
	Co-MOF-74	acetonitrile	1 mmol	70℃/24 h	ТВНР	71.5%	5
18	Mn-MOF-74	acetonitrile	1 mmol	70℃/24 h	твнр	68.2%	5
	Ni-MOF-74	acetonitrile	1 mmol	70℃/24 h	ТВНР	40%	5
	Zn-MOF-74	acetonitrile	1 mmol	70℃/24 h	ТВНР	5%	5
19	$[Co(L-RR)(H_2O) \cdot H_2O]_{\infty}$	Cyclohexene	Neat	70℃/24 h	твнр	18.6%	1
20	[Cu₂(bipy)₂(btec)]∞	n-decane	1 mmol	75℃/6 h	ТВНР	55%	3
21	UiO-66-sal-MoD	acetonitrile	0.5 mmol	80℃/24 h	твнр	70.3%	2
22	Mo-Sal-Amp-CuBTC	chloroform	8 mmol	61℃/1 h	твнр	87%	1
23	Ti-UiO-66	acetonitrile	2 mmol	50-70℃/24 h	H ₂ O ₂	26.8%	4
24	Co ₃ (OH) ₂ (tpta)	Cyclohexene	Neat	70℃/7 h	ТВНР	73.6%	3
	Ni-MOF-74	Cyclohexene	Neat	80℃/20 h	O2 balloon	37.2%	4
25	Co/Ni-MOF-74-1	Cyclohexene	Neat	80℃/20 h	O2 balloon	39.2%	4
	Co/Ni-MOF-74-4	Cyclohexene	Neat	80℃/20 h	O2 balloon	54.7%	4
26	PW-MOF	acetonitrile	1 mmol	50℃/6 h	H ₂ O ₂	80%	2
27	[Co₃(pimdc)₂(H₂O)₅]·5H₂O	Cyclohexene	Neat	70℃/20 h	ТВНР	70.6%	3
28	CuLa-MOF	Cyclohexene	Neat	120℃/24 h	O2(5atm)	77%	3
29	[Cu ₂ (PDA) ₂ (Ald) ₂ (H ₂ O) ₂]·8H ₂ O	1,2- dichloroethane	0.2 mmol	55℃/3 h	ТВНР	65%	1
30	Mn-TPP@ZIF-8	acetonitrile	250 mmol	80℃/24 h	ТВНР	96%	2
31	ZrP⊂HKUST-1	Cyclohexene	Neat	80℃/20 h	O2 balloon	59.5%	4
This work	1	Cyclohexene	Neat	80℃/12 h	ТВНР	97.4%	2

Fig. S4 Left: XRPD patterns of UiO-66-NH₂, **1** and **1** after three catalytic runs. Middle: SEM-EDS spectra of **1** after three catalytic runs. Right: XPS spectrum of **1** after three catalytic runs.

Fig. S5 Reaction time examination (black line) and leaching test (red line) for olefin oxidation catalyzed by **1**. The result demonstrated that **1** is responsible for the catalytic activity.

element	Zr 339.198	Zr 343.823	Zr 257.139	Zr 272.262	Cu 324.754	Cu 327.396	Cu 224.700
unit	mg/L						
average value	81.8441	79.8368	78.1417	79.4977	10.83129	12.06824	9.85398
sd	0.25922	0.08839	0.09539	0.18533	0.0632	0.07649	0.02176
rsd	0.317	0.111	0.122	0.233	0.772	0.914	0.302
min	0.00057	0.00003	0.00923	0.00757	0.00015	0.00036	0.0024
max	120	120	120	120	12	12	12

Table S5. ICP result for 1 after three catalytic runs

Based on above analysis, the leaching amount of copper in **1** after three catalytic runs is only 3.0 %.

Fig. S6 GC-MS spectra of the cyclohexene oxidation catalyzed by UiO-66-NH₂, indicating that the encapsulated Cu(II) species is responsible for the catalytic activity.

4. Catalytic properties of 2

2 (10 mg, 4 % mmol) was added to a solution of styrene (0.14 mmol, 16 μ L), N₂H₄·H₂O (80 wt %, 20 μ L), NH₃·H₂O (18 wt %, 10 μ L) was stirred at room temperature for 15 min (monitored by GC). After reaction, **2** was recovered by centrifugation and directly reused in next catalytic run.

entry	T (h)	conv. (%)ª	select. (%) ^a	TOF [h ⁻¹] ^b
1	0.25	> 99	100	100
2	0.25	> 99	100	100
3	0.25	> 99	100	100
4	0.25	> 99	100	100
5	0.25	> 99	100	100

Table S6. Styrene hydrogenation catalyzed by **2**.

Fig. S7 GC spectra of the standard samples and reaction system (five catalytic runs).

alamant	Zr	Zr	Zr	Zr	Cu	Cu	Cu
element	339.198	343.823	257.139	272.262	324.754	327.396	224.700
unit	mg/L						
average	E6 0E24	50 21/2	E2 1726	EA 2404	6 24005	6 41019	E 4E222
value	50.0554	59.2145	55.1720	54.5494	0.24995	0.41018	5.45555
sd	0.88636	0.9903	1.38961	1.23447	0.10667	0.07888	0.10408
rsd	1.581	1.672	2.613	2.271	1.707	1.231	1.909
min	0.00057	0.00003	0.00923	0.00757	0.00015	0.00036	0.0024
max	120	120	120	120	12	12	12

Table S7. ICP result for 2 after five catalytic cycles

Based on above analysis, the leaching amount of copper in 2 after three catalytic runs is only 5.8 %.

Fig. S8 Left: XRPD patterns of UiO-66-NH₂, **2** and **2** after five catalytic runs. Right: HR-TEM image of **2** after five catalytic runs.

Fig. S9 Left: SEM-EDS spectra of 2 after five catalytic runs. Right: XPS spectrum of 2 after five catalytic runs.

Fig. S10 GC spectra of styrene reduction catalysed by $Cu(OAc)_2$, UiO-66-NH₂ and **1** or without any catalyst under the same reaction conditions.

5. References

- J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850-13851.
- M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. S. Varma, *Chem. Rev.* 2016, **116**, 3722–3811.
- (a) K. Liu, Y. Song, S. Chen, J. Power Sources, 2014, 268, 469-475. (b) W. Liao, T. Zheng, P. Wang, S. Tu,
 W. J. Pan, Environ. Sci., 2010, 22, 1800.
- N. V. Maksimchuk, M. N. Timofeeva, M. S. Melgunov, A. N. Shmakov, Y. A. Chesalov, D. N. Dybtsev, V. P. Fedin, O. A. Kholdeeva, *Journal of Catalysis*, 2008, 257, 315–323.
- Y. Lu, M. Tonigold, B. Bredenkötter, D. Volkmer, J. Hitzbleck, G. Langstein, Z. Anorg. Allg. Chem., 2008, 634, 2411-2417
- K. Brown, S. Zolezzi, P. Aguirre, D. Venegas-Yazigi, V. Paredes-Garc, R. Baggio, M. A. Novak, E. Spodine, Dalton Trans., 2009, 1422–1427.
- M. Tonigold, Y. Lu, B. Bredenktter, B. Rieger, S. Bahnmller, J. Hitzbleck, G. Langstein, D. Volkmer, *Angew. Chem. Int. Ed.*, 2009, 48, 7546 –7550.
- M. Tonigold, Y. Lu, A. Mavrandonakis, A. Puls, R. Staudt, J. Mçllmer, J. Sauer, D. Volkmer, *Chem. Eur. J.*, 2011, **17**, 8671 – 8695.
- 9. E. Q. Procopio, F. tima Linares, C. Montoro, V. Colombo, A. Maspero, E. Barea, J. A. R. Navarro, *Chem. Angew. Chem. Int. Ed.*, 2010, **49**, 7308–7311.
- 10. K. Leus, I. Muylaert, M. Vandichel, G. B. Marin, M. Waroquier, V. V. Speybroeck, P. V. D. Voort, *Chem. Commun.*, 2010, **46**, 5085-5087.
- 11. Y.-Y. Liu, K. Leus, M. Grzywa, D. Weinberger, K. Strubbe, H. Vrielinck, R. V. Deun, D. Volkmer, V. V. Speybroeck, P. V. D. Voort, *Eur. J. Inorg. Chem.*, 2012, 2819–2827
- 12. P. Aguirre, K. Brown, D. Venegas-Yazigi, V. Paredes-Garc, E. Spodine, *Macromol. Symp.*, 2011, **304**, 65–71.
- 13. Y. Fu, D. Sun, M. Qin, R. Huang, Z. Li, RSC Advances, 2012, 2, 3309–3314.
- 14. M.-H. Xie, X.-L. Yang, Y. He, J. Zhang, B. Chen, C.-D. Wu, Chem. Eur. J., 2013, 19, 14316 14321.
- 15. R. Sen, D. Saha, D. Mal, P. Brandão, Z. Lin, Eur. J. Inorg. Chem., 2013, 5103–5109.
- Y.-Y. Liu, K. Leus, T. Bogaerts, K. Hemelsoet, E. Bruneel, V. V. Speybroeck, P. V. D. Voort, *ChemCatChem.*, 2013, 5, 3657-3664.

- 17. S. Lymperopoulou, M. Papastergiou, M. Louloudi, C. P. Raptopoulou, V. Psycharis, C. J. Milios, J. C. Plakatouras, *Eur. J. Inorg. Chem.*, 2014, 3638–3644.
- 18. D. Ruano, M. D. az-Garc, A. Alfayate, and M. Snchez-Snchez, ChemCatChem., 2015, 7, 674-681.
- 19. G. Tuci, G. Giambastiani, S. Kwon, P. C. Stair, R. Q. Snurr, and A. Rossin, ACS Catal., 2014, 4, 1032–1039
- 20. P. Cancino, V. Paredes-García, P. Aguirre and E. Spodine, Catal. Sci. Technol., 2014, 4, 2599–2607.
- 21. J. Tang, W. Dong, G. Wang, Y. Yao, L. Cai, Y. Liu, X. Zhao, J. Xu, L. Tan, RSC Adv., 2014, 4, 42977–42982.
- 22. S. Abednatanzi, A. Abbasi and M. Masteri-Farahani, New J. Chem., 2015, 39, 5322-5328.
- 23. H. G. T. Nguyen, L. Mao, A. W. Peters, C. O. Audu, Z. J. Brown, O. K. Farha, J. T. Hupp, S. T. Nguyen, *Catal. Sci. Technol.*, 2015, **5**, 4444–4451.
- 24. H.-Y. Ren, R.-X. Yao, X.-M. Zhang, Inorg. Chem., 2015, 54, 6312–6318.
- 25. D. Sun, F. Sun, X. Deng, Z. Li, Inorg. Chem., 2015, 54, 8639-8643.
- 26. H. Haddadi, S. M. Hafshejani, M. R. Farsani, A. K. Babahydari, New J. Chem., 2015, 39, 9879-9885.
- 27. R.-X. Yao, X.-H. Qiao, X. Cui, X.-X. Jia, X.-M. Zhang, Inorg. Chem. Front., 2016, 3, 78-85
- P. Cancino, A. Vega, A. Santiago-Portillo, S. Navalon, M. Alvaro, P. Aguirre, E. Spodine, H. García, *Catal. Sci. Technol.*, 2016, 6, 3727–3736.
- 29. D. Sarkar, P. C. Rao, H. B. Aiyappa, S. Kurungot, S. Mandal, K. Ramanujam, S. Mandal, *RSC Adv.*, 2016, **6**, 37515–37521.
- 30. W. Zhang, Y. Wang, Y. Leng, P. Zhang, J. Zhang, P. Jiang, Catal. Sci. Technol. DOI: 10.1039/c6cy00538a.
- 31. Y. Kan, A. Clearfield, Inorg. Chem., 2016, 55, 5634–5639.