### Palladium-Catalyzed Mizoroki-Heck-Type Reactions of [Ph<sub>2</sub>SR<sub>fn</sub>][OTf] with Alkenes at Room Temperature

### Shi-Meng Wang, Hai-Xia Song, Xiao-Yan Wang, Nan Liu, Hua-Li Qin, Cheng-Pan Zhang\*

School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China

Email: cpzhang@whut.edu.cn

#### Table of content

| 1. | General considerations                                                  | S2                  |
|----|-------------------------------------------------------------------------|---------------------|
| 2. | Screening the optimized conditions for Pd-catalyzed Heck-type react     | ion of <b>2a</b> or |
|    | 2b with 1a                                                              | S2                  |
| 3. | Procedures for the synthesis of <b>2c-d</b> , <b>2g</b> , <b>and 2k</b> | S9                  |
| 4. | General procedure for Pd-catalyzed Heck-type reaction of 2 with 1       | S11                 |
| 5. | The one-pot synthesis of <b>3w</b> from <b>1w</b>                       | S17                 |
| 6. | <sup>19</sup> F NMR analysis of the reaction mixtures                   | S19                 |
| 7. | NMR spectra of 2c-d, 2g, 2k, and 3                                      | S23                 |
| 8. | Pd-catalyzed Heck-type reaction of non-symmetric arylphenyl trif        | luoromethyl         |
|    | sulfonium triflate with <b>1a</b>                                       |                     |

#### **1.** General considerations

All reactions were carried out under a nitrogen atmosphere. Unless otherwise specified, NMR spectra were recorded in CDCl<sub>3</sub> on a 500 or 400 MHz (for <sup>1</sup>H), 471 or 376 MHz (for <sup>19</sup>F), and 126 or 100 MHz (for <sup>13</sup>C) spectrometer. All chemical shifts were reported in ppm relative to TMS (<sup>1</sup>H NMR, 0 ppm) and PhCF<sub>3</sub> (<sup>19</sup>F NMR, -63.0 ppm) as internal or external standards. The HPLC experiments were carried out on a Waters e2695 instrument (column: J&K, RP-C18, 5  $\mu$ m, 4.6 × 150 mm), and the yields of the products were determined by using the corresponding pure compounds as the external standards. Fluorinated alkyl arylsulfonium salts 2a<sup>[1]</sup>, 2b<sup>[2]</sup>, 2c<sup>[2]</sup>, 2d<sup>[2]</sup>, 2e<sup>[3]</sup>, 2f<sup>[4]</sup>, 2g<sup>[2]</sup>, 2h<sup>[5]</sup>, 2i<sup>[3]</sup>, 2j<sup>[6]</sup>, and 2k<sup>[7]</sup> were synthesized according to the literatures or by modified procedures.<sup>[1-7]</sup> Alkenes 1b-c<sup>[8]</sup>, 1h<sup>[8]</sup>, 11-p<sup>[8]</sup>, and 1r<sup>[9]</sup> were prepared according to literatures.<sup>[8,9]</sup> Solvents were dried before use according to literature.<sup>[10]</sup> Other reagents were all purchased from commercial sources and used without further purification.

# 2. Screening the optimized conditions for Pd-catalyzed Heck-type reaction of 2a or 2b with 1a.

| MeO<br>(1.0 equiv)<br>1a | + <u>Pd-catalyst (10 mol%</u><br><u>CF<sub>3</sub> <sup>-</sup>OTf</u><br>(1.5 equiv)<br><b>2a</b> | MeO 3a                                |
|--------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------|
| Entry                    | Pd-catalyst                                                                                        | Yield ( <b>3a</b> , %) <sup>[b]</sup> |
| 1                        | PdCl <sub>2</sub>                                                                                  | 30                                    |
| 2                        | Pd/C                                                                                               | 4                                     |
| 3                        | $Pd_2(dba)_3$                                                                                      | 30                                    |
| 4                        | Pd(dba) <sub>2</sub>                                                                               | 30                                    |
| 5                        | $Pd(OAc)_2$                                                                                        | 64                                    |
| 6                        | $Pd(PPh_3)_4$                                                                                      | 30                                    |
| 7                        | $Pd[P(t-Bu)_3]_2$                                                                                  | 76                                    |
| 8                        | $Pd(Cy_3)_2$                                                                                       | 0.2                                   |

Table 1. The reaction of 1a with 2a in the presence of diverse Pd-catalysts<sup>[a]</sup>

[a] Reaction conditions: a mixture of **1a** (0.1 mmol), **2a** (0.15 mmol), Pd-catalyst (0.01 mmol, 10 mol%), and DMF (2 mL) was reacted at 80 °C in a sealed tube under

a N<sub>2</sub> atmosphere for 24 h. [b] The yield was determined by HPLC using **3a** (Retention time: 8.468 min,  $\lambda_{max} = 302.2$  nm, water/methanol = 20 : 80 (v / v)) as the external standard.

| MeO<br>(1.0 equiv)<br>1a | + $CF_3$ OTf<br>(1.5 equiv)<br>2a              | Pd-catalyst (10 mol%)<br>Temp., DMF, 24 h, N <sub>2</sub> | MeO 3a                                |
|--------------------------|------------------------------------------------|-----------------------------------------------------------|---------------------------------------|
| Entry                    | Pd-catalyst                                    | Temperature (°C)                                          | Yield ( <b>3a</b> , %) <sup>[b]</sup> |
| 1                        | $Pd(OAc)_2$                                    | 80                                                        | 64                                    |
| 2                        | $Pd(OAc)_2$                                    | 60                                                        | 67                                    |
| 3                        | $Pd(OAc)_2$                                    | 40                                                        | 54                                    |
| 4                        | $Pd(OAc)_2$                                    | r.t.                                                      | 39                                    |
| 5                        | Pd(PPh <sub>3</sub> ) <sub>4</sub>             | 80                                                        | 30                                    |
| 6                        | Pd(PPh <sub>3</sub> ) <sub>4</sub>             | 60                                                        | 72                                    |
| 7                        | Pd(PPh <sub>3</sub> ) <sub>4</sub>             | 40                                                        | 4                                     |
| 8                        | $Pd(PPh_3)_4$                                  | r.t.                                                      | 0                                     |
| 9[c]                     | $Pd[(t-Bu)_3]_2$                               | 80                                                        | 60                                    |
| 10 <sup>[c]</sup>        | $Pd[(t-Bu)_3]_2$                               | 60                                                        | 80                                    |
| 11[c]                    | $Pd[(t-Bu)_3]_2$                               | 40                                                        | 70                                    |
| 12 <sup>[c]</sup>        | Pd[( <i>t</i> -Bu) <sub>3</sub> ] <sub>2</sub> | r.t.                                                      | 86                                    |

Table 2. The temperature effects on Pd-catalyzed Heck reaction<sup>[a]</sup>

[a] Reaction conditions: a mixture of **1a** (0.1 mmol), **2a** (0.15 mmol), Pd-catalyst (0.01 mmol, 10 mol%), and DMF (2 mL) was reacted at different temperature in a sealed tube under a N<sub>2</sub> atmosphere for 24 h. [b] The yield was determined by HPLC using **3a** (Retention time: 8.468 min,  $\lambda_{max} = 302.2$  nm, water/methanol = 20 : 80 (v / v)) as the external standard. [c] TsOH (0.01 mmol, 10 mol%) was used.

Table 3. The Pd-catalyzed Heck reaction with 2a in the presence of bases<sup>[a]</sup>



| Entry            | Pd-catalyst                                    | Base                           | Yield ( <b>3a</b> , %) <sup>[b]</sup> |
|------------------|------------------------------------------------|--------------------------------|---------------------------------------|
| 1                | Pd(OAc) <sub>2</sub>                           | -                              | 64                                    |
| 2 <sup>[c]</sup> | $Pd(OAc)_2$                                    | NaHCO <sub>3</sub>             | 63                                    |
| 5                | $Pd(PPh_3)_4$                                  | -                              | 30                                    |
| 6 <sup>[c]</sup> | $Pd(PPh_3)_4$                                  | NaHCO <sub>3</sub>             | 34                                    |
| 7                | Pd[( <i>t</i> -Bu) <sub>3</sub> ] <sub>2</sub> | -                              | 76                                    |
| 8                | $Pd[(t-Bu)_3]_2$                               | NaHCO <sub>3</sub>             | 35                                    |
| 9                | $Pd[(t-Bu)_3]_2$                               | K <sub>2</sub> CO <sub>3</sub> | 7                                     |
| 10               | $Pd[(t-Bu)_3]_2$                               | K <sub>3</sub> PO <sub>4</sub> | 14                                    |
| 11               | $Pd[(t-Bu)_3]_2$                               | NaOAc                          | 7                                     |
| 12               | $Pd[(t-Bu)_3]_2$                               | DBU                            | 5                                     |
| 13               | $Pd[(t-Bu)_3]_2$                               | DMAP                           | 28                                    |

[a] Reaction conditions: a mixture of **1a** (0.1 mmol), **2a** (0.15 mmol), Pd-catalyst (0.01 mmol, 10 mol%), base (0.15 mmol), and DMF (2 mL) was reacted at 80 °C in a sealed tube under a N<sub>2</sub> atmosphere for 24 h. [b] The yield was determined by HPLC using **3a** (Retention time: 8.468 min,  $\lambda_{max} = 302.2$  nm, water/methanol = 20 : 80 (v / v)) as the external standard. [c] base (0.1 mmol).

Table 4. The Pd-catalyzed Heck reaction at different reaction time<sup>[a]</sup>

| MeO<br>(1.0 equiv)<br>1a | + CF <sub>3</sub> <sup>-</sup> OTf<br>(1.5 equiv)<br>2a | Pd-catalyst (10 mol%)<br>80 °C, DMF, <i>Time</i> , N <sub>2</sub> | MeO 3a                                |
|--------------------------|---------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------|
| Entry                    | Pd-catalyst                                             | Time (h)                                                          | Yield ( <b>3a</b> , %) <sup>[b]</sup> |
| 1                        | $Pd(OAc)_2$                                             | 12                                                                | 52                                    |
| 2                        | $Pd(OAc)_2$                                             | 24                                                                | 64                                    |
| 3                        | $Pd(OAc)_2$                                             | 36                                                                | 28                                    |
| 4                        | $Pd(OAc)_2$                                             | 48                                                                | 66                                    |
| 5 <sup>[c]</sup>         | $Pd(OAc)_2$                                             | 24                                                                | 54                                    |
| 6 <sup>[c]</sup>         | $Pd(OAc)_2$                                             | 48                                                                | 60                                    |
| 7 <sup>[d]</sup>         | $Pd[(t-Bu)_3]_2$                                        | 6                                                                 | 78                                    |
| 8[d]                     | $Pd[(t-Bu)_3]_2$                                        | 12                                                                | 79                                    |

| 9 <sup>[d]</sup>  | $Pd[(t-Bu)_3]_2$ | 24 | 86 |
|-------------------|------------------|----|----|
| 10 <sup>[d]</sup> | $Pd[(t-Bu)_3]_2$ | 36 | 76 |

[a] Reaction conditions: a mixture of **1a** (0.1 mmol), **2a** (0.15 mmol), Pd-catalyst (0.01 mmol, 10 mol%), and DMF (2 mL) was stirred at 80 °C or room temperature in a sealed tube under N<sub>2</sub> atmosphere for several hours. TsOH was added under schlenk line. [b] The yield was determined by HPLC using **3a** (Retention time: 8.468 min,  $\lambda_{max} = 302.2$  nm, water/methanol = 20 : 80) as external standard. [c] [Ph<sub>2</sub>SCF<sub>3</sub>]<sup>+</sup>[OTf]<sup>-</sup> (0.2 mmol). [d] TsOH (0.01 mmol, 10 mol%) was used and the reaction was run at room temperature.

| MeO<br>(X equiv.)<br>1a | + CF <sub>3</sub> OTf<br>(Y equiv.)<br>2a | Pd-catalyst (10 mol%)<br>80 °C, DMF, 24 h, N <sub>2</sub> | MeO 3a                                |
|-------------------------|-------------------------------------------|-----------------------------------------------------------|---------------------------------------|
| Entry                   | Pd-catalyst                               | X : Y                                                     | Yield ( <b>3a</b> , %) <sup>[b]</sup> |
| 1                       | $Pd(OAc)_2$                               | 1:1.5                                                     | 64                                    |
| 2                       | $Pd(OAc)_2$                               | 1:2                                                       | 54                                    |
| 3[c]                    | $Pd(OAc)_2$                               | 1:1.5                                                     | 66                                    |
| 4[c]                    | $Pd(OAc)_2$                               | 1:2                                                       | 60                                    |
| 5 <sup>[d]</sup>        | Pd(PPh <sub>3</sub> ) <sub>4</sub>        | 1:1.5                                                     | 72                                    |
| 6 <sup>[d]</sup>        | Pd(PPh <sub>3</sub> ) <sub>4</sub>        | 1:2                                                       | 67                                    |
| 7                       | $Pd[P(t-Bu)_3]_2$                         | 1:1.5                                                     | 76                                    |
| 8                       | $Pd[P(t-Bu)_3]_2$                         | 1.5 : 1                                                   | 75                                    |
| <b>9</b> [e]            | $Pd[P(t-Bu)_3]_2$                         | 1:1.2                                                     | 73                                    |
| 10 <sup>[e]</sup>       | $Pd[P(t-Bu)_3]_2$                         | 1:1.5                                                     | 60                                    |

Table 5. The Pd-catalyzed Heck reaction at different molar ratio of 1a and 2a<sup>[a]</sup>

[a] Reaction conditions: a mixture of **1a** (X equiv.), **2a** (Y equiv.), Pd-catalyst (0.01 mmol, 10 mol%), and DMF (2 mL) was reacted at 80 °C in a sealed tube under a N<sub>2</sub> atmosphere for 24 h. [b] The yield was determined by HPLC using **3a** (Retention time: 8.468 min,  $\lambda_{max} = 302.2$  nm, water/methanol = 20 : 80 (v / v)) as the external standard. [c] 48 h. [d] 60 °C. [e] TsOH (0.01 mmol, 10 mol%) was used.

Table 6. The Pd-catalyzed Heck reaction with 2a in the presence of acids<sup>[a]</sup>

| MeO<br>(1.0 equiv.)<br>1a | + CF <sub>3</sub> OTf<br>(1.5 equiv.)          | Pd-catalyst (10 mol%)<br>Acid (10 mol%)<br>r.t., DMF, 24 h, N₂ | MeO 3a                                |
|---------------------------|------------------------------------------------|----------------------------------------------------------------|---------------------------------------|
| Entry                     | Pd-catalyst                                    | Acid                                                           | Yield ( <b>3a</b> , %) <sup>[b]</sup> |
| 1                         | Pd(PPh <sub>3</sub> ) <sub>4</sub>             | TsOH                                                           | 0                                     |
| 2 <sup>[c]</sup>          | Pd(PPh <sub>3</sub> ) <sub>4</sub>             | TsOH                                                           | 45                                    |
| 3 <sup>[c]</sup>          | $Pd(OAc)_2$                                    | TsOH                                                           | 46                                    |
| 4 <sup>[d]</sup>          | $Pd[(t-Bu)_3]_2$                               | TsOH                                                           | 60                                    |
| 5 <sup>[d]</sup>          | $Pd[(t-Bu)_3]_2$                               | CF <sub>3</sub> SO <sub>3</sub> H                              | 74                                    |
| 6 <sup>[d]</sup>          | $Pd[(t-Bu)_3]_2$                               | CH <sub>3</sub> CO <sub>2</sub> H                              | 84                                    |
| 7 <sup>[d]</sup>          | $Pd[(t-Bu)_3]_2$                               | PhCO <sub>2</sub> H                                            | 60                                    |
| 8[d]                      | $Pd[(t-Bu)_3]_2$                               | CF <sub>3</sub> CO <sub>2</sub> H                              | 74                                    |
| 9[d]                      | $Pd[(t-Bu)_3]_2$                               | CH <sub>3</sub> SO <sub>3</sub> H                              | 83                                    |
| 10 <sup>[c]</sup>         | $Pd[(t-Bu)_3]_2$                               | TsOH                                                           | 80                                    |
| 11                        | Pd[( <i>t</i> -Bu) <sub>3</sub> ] <sub>2</sub> | TsOH                                                           | 86                                    |
| 12                        | $Pd[(t-Bu)_3]_2$                               | CF <sub>3</sub> SO <sub>3</sub> H                              | 78                                    |
| 13                        | $Pd[(t-Bu)_3]_2$                               | $CH_3CO_2H$                                                    | 82                                    |
| 14                        | $Pd[(t-Bu)_3]_2$                               | PhCO <sub>2</sub> H                                            | 67                                    |
| 15                        | $Pd[(t-Bu)_3]_2$                               | CF <sub>3</sub> CO <sub>2</sub> H                              | 75                                    |
| 16                        | $Pd[(t-Bu)_3]_2$                               | CH <sub>3</sub> SO <sub>3</sub> H                              | 77                                    |

[a] Reaction conditions: a mixture of **1a** (0.1 mmol), **2a** (0.15 mmol), Pd-catalyst (0.01 mmol, 10 mol%), acid (0.01 mmol, 10 mol%), and DMF (2 mL) was reacted at room temperature in a sealed tube under a N<sub>2</sub> atmosphere for 24 h. [b] The yield was determined by HPLC using **3a** (Retention time: 8.468 min,  $\lambda_{max} = 302.2$  nm, water/methanol = 20 : 80 (v / v)) as the external standard. [c] 60 °C. [d] 80 °C.

| Table 7 | . The | Pd-cataly | vzed Heck | c reaction | with | different | catalvst | loading <sup>[a]</sup> |
|---------|-------|-----------|-----------|------------|------|-----------|----------|------------------------|
|         |       |           | /         |            |      |           |          |                        |



| 1                | 10  | 60 |
|------------------|-----|----|
| 2 <sup>[c]</sup> | 10  | 86 |
| 3[c]             | 7.5 | 85 |
| 4                | 5   | 28 |
| 5                | 1   | 19 |

[a] Reaction conditions: a mixture of **1a** (0.1 mmol), **2a** (0.15 mmol), Pd[P(*t*-Bu)<sub>3</sub>]<sub>2</sub> (Z mol%), TsOH (0.01 mmol, 10 mol%), and DMF (2 mL) was reacted at 80 °C in a sealed tube under a N<sub>2</sub> atmosphere for 24 h. [b] The yield was determined by HPLC using **3a** (Retention time: 8.468 min,  $\lambda_{max} = 302.2$  nm, water/methanol = 20 : 80 (v / v)) as the external standard. [c] at room temperature.

**Table 8**. The solvent effects on Pd-catalyzed Heck reaction<sup>[a]</sup>

| MeO<br>(1.0 equiv.)<br>1a | + $Pd[P(t-Bu)_{3}]_{2}$ (1<br>TSOH (10 m<br>r.t., solvent, 24<br>(1.5 equiv.)<br>2a | 0 mol%)<br>1 h, N <sub>2</sub><br>MeO<br>3a |
|---------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|
| Entry                     | solvent                                                                             | Yield ( <b>3a</b> , %) <sup>[b]</sup>       |
| 1                         | DMF                                                                                 | 86                                          |
| 2                         | DMSO                                                                                | 24                                          |
| 3                         | MeCN                                                                                | 3                                           |
| 4                         | Toluene                                                                             | 13                                          |
| 5                         | DCM                                                                                 | 26                                          |
| 6                         | THF                                                                                 | 23                                          |

[a] Reaction conditions: a mixture of **1a** (0.1 mmol), **2a** (0.15 mmol),  $Pd[P(t-Bu)_3]_2$  (0.01 mmol, 10 mol%), TsOH (0.01 mmol, 10 mol%), and solvent (2 mL) was reacted at room temperature in a sealed tube under a N<sub>2</sub> atmosphere for 24 h. [b] The yield was determined by HPLC using **3a** (Retention time: 8.468 min,  $\lambda_{max} = 302.2$  nm, water/methanol = 20 : 80 (v / v)) as the external standard.

Table 9. The Pd-catalyzed Heck reaction in air or with moisture<sup>[a]</sup>



| Entry | Condition                             | Yield ( <b>3a</b> , %) <sup>[b]</sup> |
|-------|---------------------------------------|---------------------------------------|
| 1     | N <sub>2</sub>                        | 86                                    |
| 2     | TsOH•H2O was used instead of TsOH, N2 | 65                                    |
| 3     | air                                   | 69                                    |
| 4     | $N_2$ , 1 drop water                  | 79                                    |

[a] Reaction conditions: a mixture of **1a** (0.1 mmol), **2a** (0.15 mmol),  $Pd[P(t-Bu)_3]_2$  (10 mol%), TsOH (10 mol%), and DMF (2 mL) was reacted at room temperature in a sealed tube for 24 h. TsOH was added under N<sub>2</sub>. [b] The yield was determined by HPLC using **3a** (Retention time: 8.468 min,  $\lambda_{max} = 302.2$  nm, water/methanol = 20 : 80 (v / v)) as the external standard.

Table 10. The Pd-catalyzed Heck reaction with 2b<sup>[a]</sup>

| MeO<br>(1.0 equ<br>1a | + -( | $\begin{array}{c} Pd[P(t-Bu)] \\ Additive \\ \hline \\ CF_3 \\ 1.5 equiv.) \\ 2b \end{array}$ | 3]₂ (Z mol%)<br>( <u>10 mol%)</u><br>, <i>Tim</i> e, N₂<br>MeO | Ja Sa                               |
|-----------------------|------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------|
| Entry                 | Ζ    | Additive                                                                                      | Time (h)                                                       | Yield ( <b>3a</b> , %) <sup>b</sup> |
| 1                     | 10   | -                                                                                             | 24                                                             | 84                                  |
| 2                     | 10   | TsOH                                                                                          | 24                                                             | >99                                 |
| 3 °                   | 10   | NaHCO <sub>3</sub>                                                                            | 24                                                             | 6                                   |
| 4                     | 10   | TsOH                                                                                          | 6                                                              | 73                                  |
| 5                     | 10   | TsOH                                                                                          | 12                                                             | 89                                  |
| 6                     | 10   | TsOH                                                                                          | 36                                                             | 83                                  |
| 7                     | 7.5  | TsOH                                                                                          | 24                                                             | 96                                  |
| 8                     | 5    | TsOH                                                                                          | 24                                                             | 47                                  |
| 9                     | 1    | TsOH                                                                                          | 24                                                             | 9                                   |

[a] Reaction conditions: a mixture of **1a** (0.1 mmol), **2b** (0.15 mmol),  $Pd[P(t-Bu)_3]_2$  (0.01 mmol, 10 mol%), TsOH (0.01 mmol, 10 mol%), and DMF (2 mL) was reacted at room temperature in a sealed tube under a N<sub>2</sub> atmosphere. [b] The yield was determined by HPLC using **3a** (Retention time: 8.468 min,  $\lambda_{max} = 302.2$  nm, water/methanol = 20 : 80 (v / v)) as the external standard. [c] NaHCO<sub>3</sub> (1 equiv) was used instead of TsOH (10 mol%).

| MeO<br>(1.0 eq<br>1a | + - OTf CF <sub>3</sub><br>(1.5 equiv.)<br>2b | Pd-catalyst (10 mol%)<br>TsOH (10 mol%)<br>Ligand (20 mol%)<br>r.t., DMF, 24 h, N <sub>2</sub> | MeO 3a                                |
|----------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------|
| Entry                | Pd-catalyst                                   | Ligand                                                                                         | Yield ( <b>3a</b> , %) <sup>[b]</sup> |
| 1                    | PdCl <sub>2</sub>                             | -                                                                                              | 2                                     |
| 2                    | PdCl <sub>2</sub>                             | $P(t-Bu)_3$                                                                                    | 1                                     |
| 3 <sup>[c]</sup>     | PdCl <sub>2</sub>                             | IPr•HCl / NaHCO <sub>3</sub>                                                                   | < 1                                   |
| 4[c]                 | (MeCN) <sub>2</sub> PdCl <sub>2</sub>         | IPr•HCl / NaHCO <sub>3</sub>                                                                   | < 1                                   |
| 5                    | Pd/C                                          | -                                                                                              | < 1                                   |
| 6                    | $Pd_2(dba)_3$                                 | -                                                                                              | 16                                    |
| 7                    | $Pd_2(dba)_3$                                 | $P(t-Bu)_3$                                                                                    | 12                                    |
| 8                    | $Pd(dba)_2$                                   | -                                                                                              | 1                                     |
| 9                    | $Pd(OAc)_2$                                   | -                                                                                              | < 1                                   |
| 10                   | $Pd(PPh_3)_4$                                 | -                                                                                              | 0                                     |
| 11                   | $[Pd(\eta^3-allyl)Cl]_2$                      | -                                                                                              | < 1                                   |
| 12                   | $Pd(Cy_3)_2$                                  | -                                                                                              | 0                                     |

Table 11 The reaction of 1a with 2b in the presence of diverse Pd-catalysts<sup>[a]</sup>

[a] Reaction conditions: a mixture of **1a** (0.1 mmol), **2b** (0.15 mmol), Pd-catalyst (0.01 mmol, 10 mol%), TsOH (0.01 mmol, 10 mol%), ligand (0.02 mmol, 20 mol%), and DMF (2 mL) was reacted at room temperature in a sealed tube under a N<sub>2</sub> atmosphere. [b] The yield was determined by HPLC using **3a** (Retention time: 8.468 min,  $\lambda_{max} = 302.2$  nm, water/methanol = 20 : 80 (v / v)) as the external standard. [c] A mixture of Pd-catalyst (0.009 mmol, 3 mol%), IPr•HCl (0.0135 mmol, 4.5 mol%), and NaHCO<sub>3</sub> (0.018 mmol, 6 mol%) was reacted in DMF (1 mL) at room temperature for 0.5 h, which was then added into a mixture of **1a** (0.3 mmol), **2b** (0.45 mmol), TsOH (0.03 mmol, 10 mol%), and DMF (2 mL) in a sealed tube under a N<sub>2</sub> atmosphere, and reacted for another 24 h.

#### 3. Procedures for the synthesis of 2c-d, 2g, and 2k

TfOCH<sub>2</sub>CF<sub>2</sub>H (2.1 g, 10.0 mmol) and diphenyl sulfide (5.5 g, 30.0 mmol) were placed in a closed Schlenk flask under a  $N_2$  atmosphere with stirring. The mixture was

reacted at 120 °C for 48 h, cooled to room temperature, and washed by diethyl ether till the excess sulfide was completely removed. The resulting solid was dried in vacuum to give 3.6 g of **2c** as a white solid (9.0 mmol, 90%). M.p. 82-83 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, J = 7.7 Hz, 4H), 7.75 (t, J = 7.4 Hz, 2H), 7.69 (t, J = 7.6 Hz, 4H), 6.51 (t, J = 53.7 Hz, 1H), 4.95 (t, J = 15.3 Hz, 2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -78.5 (s, 3F), -114.2 (dt, J = 53.8, 15.0 Hz, 2F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  135.0 (s), 131.7 (s), 130.6 (s), 124.4 (s), 120.7 (q, J = 320.0 Hz), 111.7 (t, J = 244.8 Hz), 47.4 (t, J = 23.6 Hz). IR (KBr): 3066, 3001, 2921, 2850, 1480, 1449, 1410, 1370, 1225, 1158, 1110, 1074, 1029, 998, 744, 638, 574, 516 cm<sup>-1</sup>. ESI-MS (m/z): 251.1 ([M]<sup>+</sup>). Anal. Calcd for C<sub>15</sub>H<sub>13</sub>F<sub>5</sub>O<sub>3</sub>S<sub>2</sub>: C 45.00, H 3.27; Found: C 45.14, H 3.34.

TfOCH<sub>2</sub>CH<sub>2</sub>F (16.4 g, 83.9 mmol) and diphenyl sulfide (23.4 g, 125.8 mmol) were placed in a closed Schlenk flask with stirring. The mixture was heated at 60 °C for 15 h, cooled to room temperature, and washed by diethyl ether till the excess sulfide was completely removed. The resulting solid was dried in vacuum to give 26.8 g of **2d** as a light grey solid (70.2 mmol, 84%). M.p. 60-62 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, *J* = 7.1 Hz, 4H), 7.74 (d, *J* = 7.3 Hz, 2H), 7.69 (t, *J* = 7.0 Hz, 4H), 4.86 (d, *J* = 46.7 Hz, 2H), 4.72 (d, *J* = 23.7 Hz, 2H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  - 78.4 (s, 3F), -218.8 (m, 1F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  135.0 (s), 131.7 (s), 130.9 (s), 123.6 (s), 120.7 (q, *J* = 320.0 Hz), 77.5 (d, *J* = 173.4 Hz), 46.3 (d, *J* = 18.1 Hz). IR (KBr): 3096, 3002, 2962, 1583, 1479, 1448, 1254, 1225, 1158, 1062, 1029, 998, 799, 748, 684, 638, 574, 517 cm<sup>-1</sup>. ESI-MS (m/z): 233.1 ([M]<sup>+</sup>). Anal. Calcd for C<sub>15</sub>H<sub>14</sub>F<sub>4</sub>O<sub>3</sub>S<sub>2</sub>: C 47.11, H 3.69; Found: C 46.81, H 3.75.

TfOCH<sub>2</sub>CF<sub>2</sub>CF<sub>3</sub> (9.0 g, 31.9 mmol) and diphenyl sulfide (35.6 g, 191.4 mmol) were placed in a closed Schlenk flask under a N<sub>2</sub> atmosphere with stirring. The mixture was heated at 150 °C for 72 h, cooled to room temperature, and washed by diethyl ether till the excess sulfide was completely removed. The resulting solid was dried in vacuum to give 1.0 g of **2g** as a white solid (2.1 mmol, 7%). M.p. 94-96 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (d, *J* = 8.1 Hz, 4H), 7.77 (t, *J* = 7.4 Hz, 2H), 7.71 (t, *J* = 7.6 Hz, 4H), 5.31 (t, *J* = 15.1 Hz, 2H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -78.6 (s, 3F), -84.0 (s, 3F), -111.4 (t, *J* = 15.1 Hz, 2F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  135.5 (s), 131.8 (s), 131.0 (s), 123.8 (s), 120.6 (q, *J* = 319.9 Hz), 44.9 (t, *J* = 21.8 Hz). IR (KBr): 3066, 2981, 2921, 1481, 1449, 1351, 1250, 1197, 1161, 1093, 1030, 998, 751,

685, 638, 574, 517 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd for  $C_{15}H_{12}F_5S^+$  ([M]<sup>+</sup>): 319.0574; Found: 319.0576. Anal. Calcd for  $C_{16}H_{12}F_8O_3S_2 \cdot 0.5H_2O$ : C 40.25, H 2.74; Found: C 40.57, H 2.67.

Thiophenol (1.0 g, 9.1 mmol) was added into a solution of NaOH (0.36 g, 9.1 mmol) in a mixture solvent of EtOH and  $H_2O$  (1 : 1 (v / v), 65 mL) with vigorous stirring. After 10 min, 1-bromo-4-chlorobutane (1.15 mL, 10.0 mmol) was introduced and the mixture was reacted at room temperature for 8 h. The volatile species were removed by rotary evaporator under reduced pressure. The residue was then extracted with Et<sub>2</sub>O (3  $\times$  20 mL) and the combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated to dryness to give 1.5 g of (4-chlorobutylsulfanyl)benzene as a yellow oil (7.5 mmol, 82%). Next, AgOTf (1.8 g, 7.0 mmol) was added into a solution of (4-chlorobutylsulfanyl)benzene (1.4 g, 7.0 mmol) in ClCH<sub>2</sub>CH<sub>2</sub>Cl (30 mL) and reacted at room temperature in the darkness for 8 h. The gray precipitates were removed and the solution was treated with Na<sub>2</sub>SO<sub>4</sub> and filtered. The filter cake was washed by ClCH<sub>2</sub>CH<sub>2</sub>Cl ( $3 \times 5$  mL). The combined filtrates were concentrated under the reduced pressure to give a viscous yellow oil, which was further washed by Et<sub>2</sub>O to provide 2.1 g of 2k as a white solid (2.1 g, 96%). M.p. 44-45 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.79 (m, 2H), 7.71-7.62 (m, 3H), 4.19 (m, 2H), 3.68 (m, 2H), 2.59-2.48 (m, 4H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -78.3 (s, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  134.1 (s), 131.3 (s), 129.8 (s), 125.9 (s), 120.7 (q, J = 320.3 Hz), 48.5 (s), 29.1 (s). IR (KBr): 3093, 3015, 2957, 2878, 2287, 1582, 1484, 1447, 1423, 1266, 1223, 1160, 1078, 1030, 1001, 894, 876, 749, 686, 638, 573, 517 cm<sup>-1</sup>. ESI-MS (m/z): 165.1 ( $[M]^+$ ). Anal. Calcd for C<sub>11</sub>H<sub>13</sub>F<sub>3</sub>O<sub>3</sub>S<sub>2</sub>•0.5H<sub>2</sub>O: C 40.86, H 4.36; Found: C 40.60, H 4.45.

#### 4. General procedure for Pd-catalyzed Heck reaction of 2 with 1

In a nitrogen filled glovebox, a sealed tube was charged with alkene (1, 0.3 mmol),  $[Ph_2SR_{fn}]^+[OTf]^-$  (2, 0.45mmol),  $Pd[P(t-Bu)_3]_2$  (0.03 mmol, 10 mol%), TsOH (0.03 mmol, 10 mol%), and DMF (3 mL) with stirring. After 24 h, the mixture was quenched by water (30 mL) and extracted with ethyl acetate (3 × 20 mL). The extracts were washed by water, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether or a mixture of petroleum ether and ethyl acetate as eluents to give

the desired product (3).

*(E)-1-Methoxy-4-styrylbenzene* (**3a**).<sup>[11]</sup> White solid (52.4 mg (83% yield) from **2a** ( $R_{fn} = CF_3$ ); 20.3 mg (97% yield) from **2b** ( $R_{fn} = CH_2CF_3$ ) and 0.1 mmol of **1a**), petroleum ether / ethyl acetate = 40 : 1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.53 (d, J = 7.6 Hz, 2H), 7.50 (d, J = 8.6 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 8.5 Hz, 1H), 7.06 (AB peak, J = 45.9, 16.3 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 3.87 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  159.4 (s), 137.7 (s), 130.2 (s), 128.7 (s), 128.3 (s), 127.7 (s), 127.2 (s), 126.7 (s), 126.3 (s), 114.2 (s), 55.3 (s).

(*E*)-1-Methoxy-2-styrylbenzene (**3b**).<sup>[12]</sup> White solid (73.6 mg (70% yield) from **2a** ( $R_{fn} = CF_3$ ) and 0.5 mmol of **1b**; 47.5 mg (75% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether / ethyl acetate = 40 : 1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (dd, J = 7.7, 1.5 Hz, 1H), 7.54-7.47 (m, 3H), 7.34 (t, J = 7.6 Hz, 2H), 7.26-7.22 (m, 2H), 7.11 (d, J = 16.5 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 8.1 Hz, 1H), 3.88 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  157.0 (s), 138.0 (s), 129.1 (s), 128.7 (s), 128.6 (s), 127.4 (s), 126.6 (s), 126.5 (s), 126.5 (s), 123.5 (s), 120.8 (s), 111.0 (s), 55.6 (s).

*(E)-1-Methoxy-3-styrylbenzene* (**3c**).<sup>[13]</sup> Colorless oil (60.5 mg (96% yield) from **2a** ( $R_{fn} = CF_3$ ); 100.7 mg (96% yield) from **2b** ( $R_{fn} = CH_2CF_3$ ) and 0.5 mmol of **1c**), petroleum ether / ethyl acetate = 40 : 1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (d, *J* = 7.3 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.29-7.24 (m, 2H), 7.12-7.05 (m, 4H), 6.82 (dd, *J* = 7.9, 2.1 Hz, 1H), 3.84 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  159.9 (s), 138.8 (s), 137.3 (s), 129.7 (s), 129.0 (s), 128.7 (s), 128.6 (s), 127.7 (s), 126.6 (s), 119.3 (s), 113.3 (s), 111.8 (s), 55.3 (s).

(*E*)-1,2-Diphenylethene (3d).<sup>[11]</sup> White solid (39.8 mg (74% yield) from 2b ( $R_{fn} = CH_2CF_3$ )), petroleum ether as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 (d, *J* = 7.2 Hz, 4H), 7.35 (t, *J* = 7.6 Hz, 4H), 7.25 (t, *J* = 7.3 Hz, 2H), 7.11 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.4 (s), 128.7 (s), 128.7 (s), 127.7 (s), 126.6 (s).

(*E*)-1-Methyl-4-styrylbenzene (**3e**).<sup>[12]</sup> White solid (44.2 mg (76% yield) from **2a** ( $R_{fn} = CF_3$ ); 46.3 mg (79% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (d, *J* = 7.4 Hz, 2H), 7.42 (d, *J* = 7.7 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 2H), 7.25 (t, *J* = 7.2 Hz, 1H), 7.17 (d, *J* = 7.6 Hz, 2H), 7.11-7.04 (m, 2H), 2.36 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  137.6 (s), 137.5 (s), 134.6 (s), 129.4 (s), 128.7 (s), 127.7 (s), 127.4 (s), 126.5 (s), 126.4 (s), 21.3 (s).

(*E*)-1-(*Tert-butyl*)-4-styrylbenzene (**3f**).<sup>[14]</sup> White solid (70.8 mg (99% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (d, *J* = 7.6 Hz, 2H), 7.48 (d, *J* = 7.9 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.2 Hz, 1H), 7.14-7.07 (m, 2H), 1.36 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.8 (s), 137.6 (s), 134.6 (s), 128.7 (s), 128.5 (s), 128.0 (s), 127.4 (s), 126.5 (s), 126.3 (s), 125.6 (s), 34.7 (s), 31.3 (s).

(*E*)-4-Styrylphenyl acetate (**3g**).<sup>[15]</sup> White solid (98.9 mg (83% yield) from **2a** ( $R_{fn} = CF_3$ ) and 0.5 mmol of **1g**; 70.8 mg (99% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether / ethyl acetate = 30 : 1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (d, J = 8.4 Hz, 4H), 7.36 (t, J = 7.1 Hz, 2H), 7.26 (t, J = 7.2 Hz, 1H), 7.09-7.02 (m, 4H), 2.30 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.5 (s), 150.1 (s), 137.2 (s), 135.1 (s), 129.0 (s), 128.7 (s), 127.7 (s), 127.7 (s), 127.5 (s), 126.5 (s), 121.8 (s), 21.2 (s).

*(E)-4-Styryl-1,1'-biphenyl* (**3h**).<sup>[16]</sup> White solid (70.6 mg (92% yield) from **2a** ( $R_{fn} = CF_3$ )), petroleum ether as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63-7.57 (m, 6H), 7.54 (d, J = 7.4 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.39-7.33 (m, 3H), 7.29-7.25 (m, 1H), 7.15 (s, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  140.7 (s), 140.4 (s), 137.4 (s), 136.4 (s), 128.8 (s), 128.8 (s), 128.7 (s), 128.2 (s), 127.7 (s), 127.4 (s), 127.4 (s), 127.0 (s), 126.9 (s), 126.6 (s).

(*E*)-1-Fluoro-4-styrylbenzene (**3i**).<sup>[12]</sup> White solid (54.8 mg (92% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether as eluent for column chromatography. <sup>1</sup>H NMR (400

MHz, CDCl<sub>3</sub>)  $\delta$  7.51-7.46 (m, 3H), 7.38-7.32 (m, 3H), 7.29 (d, J = 7.7 Hz, 1H), 7.26 (d, J = 7.7 Hz, 1H), 7.10-6.99 (m, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -114.2 (m, 1F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.4 (d, J = 247.2 Hz), 137.2 (s), 133.5 (d, J = 3.4 Hz), 128.7 (s), 128.5 (d, J = 2.3 Hz), 128.0 (d, J = 8.0 Hz), 127.7 (s), 127.5 (s), 126.5 (s), 115.6 (d, J = 21.7 Hz).

(*E*)-1-Chloro-4-styrylbenzene (**3j**).<sup>[12]</sup> White solid (64.1 mg (99% yield) from **2a** ( $R_{fn}$  = CF<sub>3</sub>); 53.3 mg (83% yield) from **2b** ( $R_{fn}$  = CH<sub>2</sub>CF<sub>3</sub>)), petroleum ether as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 (d, *J* = 7.5 Hz, 2H), 7.45 (d, *J* = 8.1 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.07 (AB peak, *J* = 20.3, 16.6 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.0 (s), 135.9 (s), 133.2 (s), 129.4 (s), 128.9 (s), 128.8 (s), 127.9 (s), 127.7 (s), 127.4 (s), 126.6 (s)

(*E*)-1-Bromo-4-styrylbenzene (**3k**).<sup>[17]</sup> White solid (53.9 mg (69% yield) from **2a** ( $R_{fn} = CF_3$ ); 54.9 mg (71% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52-7.47 (m, 4H), 7.39-7.35 (m, 4H), 7.32-7.26 (m, 1H), 7.07 (AB peak, J = 28.4, 16.2 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.0 (s), 136.3 (s), 131.8 (s), 129.5 (s), 128.9 (s), 128.0 (s), 127.9 (s), 127.4 (s), 126.6 (s), 121.3 (s).

(*E*)-1-Iodo-4-styrylbenzene (**3I**).<sup>[18]</sup> White solid (13.9 mg (23% yield) from **2a** ( $R_{fn} = CF_3$ ) and 0.2 mmol of **1i**; 12.6 mg (21% yield) from **2b** ( $R_{fn} = CH_2CF_3$ ) and 0.2 mmol of **1i**), petroleum ether as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, J = 7.5 Hz, 2H), 7.50 (d, J = 7.4 Hz, 2H), 7.36 (t, J = 7.1 Hz, 2H), 7.29-7.23 (m, 3H), 7.06 (AB peak, J = 46.9, 16.4 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  137.8 (s), 137.0 (s), 136.9 (s), 129.6 (s), 128.7 (s), 128.2 (s), 127.9 (s), 127.5 (s), 126.6 (s), 92.7 (s).

*(E)-1-Styryl-4-(trifluoromethyl)benzene* (**3m**).<sup>[11]</sup> White solid (37.7 mg (76% yield) from **2a** ( $R_{fn} = CF_3$ ) and 0.2 mmol of **1m**), petroleum ether as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 (s, 4H), 7.54 (d, *J* = 7.3 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 1H), 7.16 (AB peak, *J* = 38.7, 16.3 Hz,

2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.4 (s). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 140.8 (s), 136.7 (s), 131.2 (s), 129.3 (q, *J* = 32.4 Hz), 128.8 (s), 128.3 (s), 127.1 (s), 126.8 (s), 126.6 (s), 125.6 (q, *J* = 3.7 Hz), 124.3 (q, *J* = 271.7 Hz).

(*E*)-4-Styrylbenzonitrile (**3n**).<sup>[16]</sup> White solid (75.3 mg (73% yield) from **2a** ( $R_{fn} = CF_3$ ) and 0.5 mmol of **1n**; 53.5 mg (87% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether / ethyl acetate = 30 : 1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 7.6 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.32 (t, J = 7.2 Hz, 1H), 7.15 (AB peak, J = 63.0, 16.3 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  141.9 (s), 136.3 (s), 132.5 (s), 132.4 (s), 128.9 (s), 128.7 (s), 126.9 (s), 126.9 (s), 126.8 (s), 119.0 (s), 110.6 (s).

*(E)-1-Nitro-4-styrylbenzene* (**3o**).<sup>[11]</sup> Yellow solid (43.6 mg (65% yield) from **2a** ( $R_{fn} = CF_3$ ); 60.0 mg (89% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether / ethyl acetate = 40 : 1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.22 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 8.7 Hz, 2H), 7.56 (d, J = 7.3 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.22 (dd, J = 51.8, 16.2 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  146.8 (s), 143.9 (s), 136.2 (s), 133.3 (s), 128.9 (s), 128.9 (s), 127.0 (s), 126.9 (s), 126.3 (s), 124.2 (s).

(*E*)-4-Styrylbenzaldehyde (**3p**).<sup>[16]</sup> White solid (41.2 mg (66% yield) from **2a** ( $R_{fn} = CF_3$ ); 45.5 mg (73% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether / ethyl acetate = 20 : 1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.99 (s, 1H), 7.87 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 7.4 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.3 Hz, 1H), 7.20 (AB peak, J = 49.3, 16.4 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  191.6 (s), 143.4 (s), 136.5 (s), 135.3 (s), 132.2 (s), 130.3 (s), 128.9 (s), 128.5 (s), 127.4 (s), 126.9 (s).

*Cinnamyl acetate* (**3q**).<sup>[19]</sup> Colorless oil (27.6 mg (52% yield) from **2a** ( $R_{fn} = CF_3$ ); 32.4 mg (61% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether / ethyl acetate = 30 : 1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (d, *J* = 7.2 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 2H), 7.26 (t, *J* = 7.2 Hz, 1H), 6.65 (d, *J* = 15.9 Hz, 1H), 6.28 (dt, *J* = 15.9, 6.5 Hz, 1H), 4.73 (dd, *J* = 6.5, 1.1 Hz, 2H), 2.10 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 170.9 (s), 136.2 (s), 134.2 (s), 128.6 (s), 128.1 (s), 126.6 (s), 123.2 (s), 65.1 (s), 21.0 (s).

(*Cinnamyloxy*)benzene (**3r**).<sup>[20]</sup> White solid (52.6 mg (84% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (d, *J* = 7.2 Hz, 2H), 7.33-7.24 (m, 5H), 6.96 (d, *J* = 7.5 Hz, 3H), 6.73 (d, *J* = 16.0 Hz, 1H), 6.45-6.39 (m, 1H), 4.70 (d, *J* = 4.9 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  158.8 (s), 136.5 (s), 133.0 (s), 129.5 (s), 128.6 (s), 127.9 (s), 126.6 (s), 124.6 (s), 120.9 (s), 114.8 (s), 68.6 (s).

*Styryl benzoate* (**3s**).<sup>[21]</sup> Light yellow solid (62 mg (92% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )), petroleum ether / ethyl acetate = 40 : 1 (v / v) as eluent for column chromatography. A mixture of *E*- and *Z*-isomers (1 : 0.17) was isolated, which were identified by the characteristic signals of  $\delta = 6.59$  ppm (d, J = 12.7 Hz) (for *E*-**3s**)<sup>[21]</sup> and  $\delta = 5.86$  ppm (d, J = 7.4 Hz) (for *Z*-**3s**)<sup>[21]</sup>. <sup>1</sup>H NMR of *E*-**3s** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (dd, J = 8.2, 1.1 Hz, 2H), 8.10 (d, J = 12.8 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.40 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.29-7.23 (m, 1H), 6.59 (d, J = 12.8 Hz, 1H). <sup>13</sup>C NMR of (*E*)-**3s** (126 MHz, CDCl<sub>3</sub>)  $\delta$  163.7 (s), 136.5 (s), 133.8 (s), 133.7 (s), 130.2 (s), 130.1 (s), 128.9 (s), 128.6 (s), 127.5 (s), 126.3 (s), 115.9 (s).

*Ethyl cinnamate* (**3t**).<sup>[22]</sup> Colorless oil (52.0 mg (74% yield) from **2b** ( $R_{fn} = CH_2CF_3$ ) and 0.4 mmol of **1t**), petroleum ether / ethyl acetate = 30 : 1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, J = 16.0 Hz, 1H), 7.52 (d, J = 4.6 Hz, 2H), 7.38 (s, 3H), 6.44 (d, J = 16.0 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.0 (s), 144.6 (s), 134.5 (s), 130.2 (s), 128.9 (s), 128.1 (s), 118.3 (s), 60.5 (s), 14.3 (s).

*Methyl cinnamate* (**3u**).<sup>[22]</sup> Colorless oil (39.2 mg (60% yield) from **2b** ( $R_{fn} = CH_2CF_3$ ) and 0.4 mmol of **1u**), petroleum ether / ethyl acetate = 30 : 1 (v / v) as eluent for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, *J* = 16.0 Hz, 1H), 7.52 (d, *J* = 4.8 Hz, 2H), 7.38-7.39 (m, 3H), 6.45 (d, *J* = 16.0 Hz, 1H), 3.81 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.4 (s), 144.9 (s), 134.4 (s), 130.3 (s), 128.9 (s), 128.1 (s), 117.8 (s), 51.7 (s).

3-Phenylacrylonitrile (3v).<sup>[23]</sup> Colorless oil (42.7 mg (83% yield) from 2b ( $R_{fn}$  =  $CH_2CF_3$ ) and 0.4 mmol of 1v), petroleum ether / ethyl acetate = 15 : 1 (v / v) as eluent for column chromatography. A mixture of E-3v, Z-3v, and 3,3-diphenylacrylonitrile (molar ratio is 1 : 0.12 : 0.14) was isolated, which were identified by the characteristic signals of  $\delta = 5.85$  ppm (d, J = 16.7 Hz) (for *E*-isomer)<sup>[23a]</sup>,  $\delta = 5.42$  ppm (d, J = 12.0Hz) (for Z-isomer)<sup>[23a]</sup>, and  $\delta = 5.71$  ppm (s) (for  $-CH=CPh_2)^{[23b]}$ . <sup>1</sup>H NMR of E-3v  $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.43-7.38 \text{ (m, 6H)}, 5.85 \text{ (d, } J = 16.7 \text{ Hz}, 1\text{H}).$ 

#### 5. The one-pot synthesis of 3w from 1w

In a nitrogen filled glovebox, a sealed tube was charged with 1w (0.3 mmol), 2a or **2b** (0.6 mmol), Pd[P(t-Bu)<sub>3</sub>]<sub>2</sub> (0.03 mmol, 10 mol%), NaHCO<sub>3</sub> (0.3 mmol), and DMF (3 mL) with stirring. After 24 h, the mixture was quenched by water (30 mL) and extracted with ethyl acetate  $(3 \times 20 \text{ mL})$ . The extracts were washed by water, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether as eluent to give **3w** as a light yellow oil.

(*E*)-*Prop-1-ene-1,3-diyldibenzene* (3w)<sup>[24]</sup>, 25.8 mg (44% yield) from 2a ( $R_{fn} = CF_3$ ), 33.2 mg (57% yield) from **2b** ( $R_{fn} = CH_2CF_3$ )). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36-7.17 (m, 10H), 6.47-6.31 (m, 2H), 3.54 (d, J = 6.6 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  140.2 (s), 137.5 (s), 131.1 (s), 129.3 (s), 128.7 (s), 128.6 (s), 128.5 (s), 127.1 (s), 126.2 (s), 126.2 (s), 39.4 (s).

#### **References:**

[1] C. -P. Zhang, Z. -L. Wang, Q. -Y. Chen, C. -T. Zhang, Y. -C. Gu, J. -C. Xiao, Angew. Chem., Int. Ed. 2011, 50, 1896-1900.

[2] Y. Y. Duan, B. Zhou, J. -H. Lin, J. -C. Xiao. Chem. Commun. 2015, 51, 13127-13130.

[3] K. Miyatake, K. Yamamoto, K. Endo, E. Tsuchida. J. Org. Chem. 1998, 63, 7522-7524.

[4] (a) C. -P. Zhang, H. -P. Cao, Z. -L. Wang, C. -T. Zhang, Q. -Y. Chen, J. -C. Xiao, Synlett 2010, 1089-1092. (b) R. Tomita, T. Koike, M. Akita, Angew. Chem. Int. Ed. 2015, 54, 12923-12927.

[5] L. Racicot, T. Kasahara, M. A. Ciufolini. Org. Lett. 2014, 16, 6382-6385.

[6] T. Sakamizu, H. Shiraishi, T. Ueno, Microelectronics Technology, ACS S17

Symposium Series (Chapter 8), American Chemical Society: Washington, DC, 1995, 614, 124-126.

[7] D. Vasu, H, Yorimitsu, A, Osuka. Synthesis 2015, 47, 3286-3291.

[8] M. D. Greenhalgh, D. J. Frank, S. P. Thomas. Adv. Synth. Catal. 2014, 356, 584-590.

[9] B. Schmidt, M. Riemer, U. Schilde, Eur. J. Org. Chem. 2015, 7602-7611.

[10] W. L. F. Armarego, C. L. L. Chai, *Purification of Laboratory Chemicals*, 5th ed.;Butterworth Heinemann: Oxford, 2003.

[11] L. Feng, H. Chong, P. Li, J. Xiang, F. Fu, S. Yang, H. Yu, H. Sheng, M. Zhu, J. Phys. Chem. C, 2015, 119, 11511-11515.

[12] R. K. Arvela, N. E. Leadbeater, J. Org. Chem. 2005, 70, 1786-1790.

[13] J. C. Roberts, J. A. Pincock, J. Org. Chem. 2004, 69, 4279-4282.

[14] J. -Y. Yu, R. Shimizu, R. Kuwano, Angew. Chem. Int. Ed. 2010, 49, 6396-6399.

[15] T. Narender, K. P. Reddy, G. Madhur, Synthesis 2009, 22, 3791-3796.

[16] X. Cui, Z. Li, C. –Z. Tao, Y. Xu, J. Li, L. Liu, Q. –X. Guo, *Org. Lett.* **2006**, *8*, 2467-2470.

- [17] J. Aydin, J. M. Larsson, N. Selander, K. J. Szabo, Org. Lett. 2009, 11, 2852-2854.
- [18] R. Cella, H. A. Stefani, Tetrahedron, 2006, 62, 5656-5662.
- [19] S. Magens, M. Ertelt, A. Jatsch, B. Plietker, Org. Lett. 2008, 10, 53-56.
- [20] R. Trivedi, J. A. Tunge, Org. Lett. 2009, 11, 5650-5652.
- [21] S. Ye, W. K. Leong, J. Organomet. Chem. 2006, 691, 1117-1120.
- [22] Z. Zhang, Z. Zha, C. Gan, C. Pan, Y. Zhou, Z. Wang, M. –M. Zhou, J. Org. Chem. 2006, 71, 4339-4342.
- [23] (a) C. Peppe, P. A. Mello, R. P. Chagas, J. Organomet. Chem. 2006, 691, 2335-
- 2339. (b) K. Kobayashi, M. Ueno, Y. Kondo, Chem. Commun. 2006, 3128-3130.

[24] E. Alacid, C. Najera, Org. Lett. 2008, 10, 5011-5014.

#### 6. <sup>19</sup>F NMR analysis of the reaction mixtures

Figure 1. <sup>19</sup>F NMR spectrum of the reaction mixture of 1a (0.1 mmol), 2a (0.15

mmol),  $Pd[P(t-Bu)_3]_2$  (10 mol%), TsOH (10 mol%), and DMF (2 mL) at room temperature under N<sub>2</sub> for 24 h.



**Figure 2.** <sup>19</sup>F NMR spectrum of the reaction mixture of **1a** (0.1 mmol), **2b** (0.15 mmol),  $Pd[P(t-Bu)_3]_2$  (10 mol%), TsOH (10 mol%), and DMF (2 mL) at room temperature under N<sub>2</sub> for 24 h.

-61.17 -66.73 -79.04



Figure 3. <sup>19</sup>F NMR spectrum of the mixture of 1a (0.4 mmol), 2a (0.6 mmol), TsOH (10 mol%), and DMF (2 mL) at room temperature under  $N_2$  for 24 h. PhCF<sub>3</sub> (0.60

mmol, -63.0 ppm) was used as an internal standard.



Figure 4. <sup>19</sup>F NMR spectrum of the reaction mixture of 2a (0.1 mmol), NaHCO<sub>3</sub> (0.1 mmol), and DMF (2 mL) at room temperature under N<sub>2</sub> for 24 h.



Figure 5. <sup>19</sup>F NMR spectrum of the reaction mixture of **2b** (0.1 mmol), NaHCO<sub>3</sub> (0.1 mmol), and DMF (2 mL) at room temperature under  $N_2$  for 24 h.



Figure 6. <sup>19</sup>F NMR spectrum of the mixture of 2a (0.1 mmol), TsOH (10 mol%), and DMF (2 mL) at room temperature under N<sub>2</sub> for 24 h.



**Figure 7.** <sup>19</sup>F NMR spectrum of the mixture of **2b** (0.1 mmol), TsOH (10 mol%), and DMF (2 mL) at room temperature under  $N_2$  for 24 h.



### 7. NMR spectra of 2c-d, 2g, 2k, and 3



S23





#### 8.22 (7.78 (7.77 (7.77 (7.77 (7.77 (7.77) (7.77) (7.72) (7.72) (7.72) (7.72) (7.72) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7.73) (7







## $\begin{array}{c} 7.54 \\ 7.52 \\ 7.52 \\ 7.53 \\ 7.737 \\ 7.737 \\ 7.737 \\ 7.737 \\ 7.737 \\ 7.737 \\ 7.737 \\ 7.737 \\ 7.709 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.700 \\ 7.7$



## $\begin{array}{c} 7.60\\ 7.60\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.52\\$



## $\begin{array}{c} 7.52\\ 7.52\\ 7.52\\ 7.52\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.52\\ 7.72\\ 7.25\\ 7.72\\ 7.12\\ 7.70\\ 7.709\\ 7.709\\ 7.705\\ 6.81\\ 6.81\\ 6.81\\ 6.81\\ 6.81\\ 6.81\\ 6.81\\ 6.81\\ \end{array}$



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

#### 7.53 7.52 7.50 7.37 7.37 7.37 7.37 7.23 7.23 7.25 7.25









210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)







## 



# 140.70 140.36 137.36 137.36 137.36 138.37 128.73 128.73 128.73 128.73 128.73 128.73 128.73 128.73 128.73 128.73 128.73 128.73 128.73 128.73 128.73 128.73 126.96 126.96 126.96 126.56 77.04 77.04



#### 7.517.517.497.477.477.477.7387.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.7327.



00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 fl (ppm)















210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

## 



## 



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

## $\begin{array}{c} -9.99\\ -9.99\\ 7.88\\ 7.88\\ 7.76\\ 7.756\\ 7.741\\ 7.734\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\ 7.32\\$









## $\begin{array}{c} 7.41\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\ 7.40\\$





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

## 



110 100 90 f1 (ppm) -10 210 200 190 130 120 

 $\begin{array}{c} 7.71\\ 7.53\\ 7.53\\ 7.75\\ 7.75\\ 7.75\\ 7.73\\ 6.42\\ 6.42\\ 6.42\\ 4.25\\ 4.25\\ 4.25\\ 1.34\\ 1.35\\ 1.33\end{array}$ 





## 



 $\begin{array}{c} 7.36\\ 7.34\\ 7.32\\ 7.32\\ 7.32\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\$ 



<sup>1</sup>H NMR in CDCI<sub>3</sub>





# 8. Pd-catalyzed Heck-type reaction of non-symmetric arylphenyl trifluoromethyl sulfonium triflate with 1a

*Note*: The non-symmetric (4-chlorophenyl)(phenyl)(trifluoromethyl)sulfonium triflate (**2q**) and (2,4-dimethylphenyl)(phenyl)(trifluoromethyl)sulfonium triflate (**2r**) were synthesized according to the literature (S. –M. Wang, X. –Y. Wang, H. –L. Qin, C. –P. Zhang, *Chem. Eur. J.* 2016, **22**, 6542-6546)





