Electronic supplementary Information (ESI)

Enhancing the Magnetic Blocking Temperature and Magnetic Coercivityof $\left\{\mathrm{Cr}^{\prime \prime \prime}{ }_{2}\right.$ Ln" ${ }^{1 \mathrm{I}}{ }_{2}$ \} Single-Molecule Magnets via Bridging Ligand Modification

Stuart K. Langley ${ }^{*}$, Daniel P. Wielechowskib ${ }^{\text {b }}$, Boujemaa Moubarakib ${ }^{\text {b }}$ and Keith S. Murray ${ }^{* b}$

${ }^{a}$ School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester, UK.email: s.langley@mmu.ac.uk
${ }^{\mathrm{b}}$ School of Chemistry, Monash University, Victoria 3800, Australia. Email:
keith.murray@monash.edu

Experimental details

General Information. All reactions were carried out under aerobic conditions. Chemicals and solvents were obtained from commercial sources and used without further purification. Elemental analyses (CHN) were carried out by Campbell Microanalytical Laboratory, University of Otago, Dunedin, New Zealand.

Synthesis of $\left[\mathrm{Cr}^{\mathrm{III}}{ }_{2} \mathrm{~Tb}^{\mathrm{III}}{ }_{2}(\mathrm{OMe})_{0.8}(\mathrm{OH})_{1.2}(2-\mathrm{Cl}-4,5-\mathrm{F}-\mathrm{benz})_{4}(\mathrm{mdea})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 1.2 \mathrm{MeOH}$ (4). $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.13 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.22 \mathrm{~g}, 0.5 \mathrm{mmol})$ were dissolved in $\mathrm{MeCN}(20 \mathrm{~mL})$, followed by the addition of N -methyldiethanolamine ($0.06 \mathrm{~mL}, 0.5 \mathrm{mmol}$), 2-chloro-4,5-fluorobenzoic acid $(0.19 \mathrm{~g}, 1.0 \mathrm{mmol})$ and triethylamine ($0.28 \mathrm{~mL}, 2.0 \mathrm{mmol}$) resulting in a green/blue solution. The solution quickly turned deep purple and was stirred for 2 hours after which the solvent was removed to give a purple oil. This was re-dissolved in MeOH and layered with diethylether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$. Within $5-7$ days magenta crystals of 4 had appeared, in approximate yield of 42% Anal. Calculated (found) for 4 : $\mathrm{Cr}_{2} \mathrm{~Tb}_{2} \mathrm{C}_{40} \mathrm{H}_{38.4} \mathrm{O}_{21.2} \mathrm{~N}_{4} \mathrm{Cl}_{4} \mathrm{~F}_{8}$: C, 29.54 (29.49); H, 4.36 (4.37); N, 3.44 (3.09).
Synthesis of $\left[\mathrm{Cr}^{I I I}{ }_{2} \mathrm{Dy}^{I I I}{ }_{2}(\mathrm{OMe})_{1.4}(\mathrm{OH})_{0.6}(2-\mathrm{Cl}-4,5-\mathrm{F}-\mathrm{benz})_{4}(\mathrm{mdea})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 0.6 \mathrm{MeOH}$ (5).
The synthesis for 4 was followed but $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.22 \mathrm{~g}, 0.5 \mathrm{mmol})$ was used in place of $\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Magenta crystals of 5 appeared within5-7 days, in approximate yield of

49 \%. Anal. Calculated (found) for 5: $\mathrm{Cr}_{2} \mathrm{Dy}_{2} \mathrm{C}_{40} \mathrm{H}_{37.20} \mathrm{O}_{20.6} \mathrm{~N}_{4} \mathrm{Cl}_{4} \mathrm{~F}_{8}: \mathrm{C}, 29.42$ (29.21); $\mathrm{H}, 2.36$ (2.42); N, 3.44 (3.22).

Synthesis of $\left[\mathrm{Cr}^{I \mathrm{II}}{ }_{2} \mathrm{Ho}^{\mathrm{III}}{ }_{2}(\mathrm{OMe})_{1.16}(\mathrm{OH})_{0.84}(2-\mathrm{Cl}-4,5-\mathrm{F}-\mathrm{benz})_{4}(\text { mdea })_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 0.84 \mathrm{MeOH}$ (6).

The synthesis for 4 was followed but $\mathrm{Ho}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.22 \mathrm{~g}, 0.5 \mathrm{mmol})$ was used in place of $\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Magenta crystals of $\mathbf{6}$ appeared within5-7 days, in approximate yield of 39 \%. Anal. Calculated (found) for 6: $\mathrm{Cr}_{2} \mathrm{Ho}_{2} \mathrm{C}_{40} \mathrm{H}_{37.67} \mathrm{O}_{20.83} \mathrm{~N}_{4} \mathrm{Cl}_{4} \mathrm{~F}_{8}$: C, 29.32 (29.40); H, 2.34 (2.41); N, 3.42 (3.32).

Synthesis of $\left[\mathrm{Cr}^{\mathrm{III}}{ }_{2} \mathrm{Dy}^{I I I}{ }_{2}(\mathrm{OMM})(\mathrm{OH})\left(4-{ }^{-} \text {Bubenz }\right)_{4}\left(\right.\right.$ medea $_{2}\left(\mathrm{NO}_{3}\right)_{2} / \cdot \mathrm{MeOH} \cdot 2 \mathrm{Et}_{2} \mathrm{O}$ (7).

$\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.13 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.22 \mathrm{~g}, 0.5 \mathrm{mmol})$ were dissolved in $\mathrm{MeCN}(20 \mathrm{~mL})$, followed by the addition of tert-butyldiethanolamine $(0.08 \mathrm{~g}, 0.5 \mathrm{mmol}), 4$ -tert-butylbenzoic acid $(0.18 \mathrm{~g}, 1.0 \mathrm{mmol})$ and triethylamine $(0.28 \mathrm{~mL}, 2.0 \mathrm{mmol})$ resulting in a green/blue solution. The solution quickly turned deep purple and was stirred for 2 hours after which the solvent was removed to give a purple oil. This was re-dissolved in MeOH and layered with diethylether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$. Within $5-7$ days red/pink crystals of 7 had appeared, in approximate yield of 32%.Anal. Calculated (found) for 7: $\mathrm{Cr}_{2} \mathrm{Dy}_{2} \mathrm{C}_{70} \mathrm{H}_{114} \mathrm{O}_{23} \mathrm{~N}_{4}$: C, 46.48 (46.21); H, 6.35 (6.39); N, 3.10 (3.29).

X-ray Crystallography.X-ray crystallographic measurements for $\mathbf{4}$ were performed using a Bruker Smart Apex X8 diffractometer with $\mathrm{Mo} \mathrm{K} \alpha$ radiation. The data collection and integration were performed within SMART and SAINT+ software programs, and corrected for absorption using the Bruker SADABS program.X-ray diffraction measurements for 5 7were performed at 100(2) K at the Australian synchrotron MX1 beam-line. The data collection and integration were performed within Blu-Ice ${ }^{1}$ and XDS ${ }^{2}$ software programs. Compounds 4 - 7 were all solved by direct methods (SHELXS-97), and refined (SHELXL97) by full least matrix least-squares on all F^{2} data. ${ }^{3}$ Crystallographic data and refinement parameters for $\mathbf{4 - 7}$ are summarized in Table S1. Crystallographic details are available in the Supporting Information (ESI) in CIF format. CCDC numbers 1495740 (4), 1495741 (5), 1495742 (6), 1495743 (7). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Table S1. Crystallographic data for complexes 4-7.

	4	5	6	7
Formula ${ }^{\text {a }}$	$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{~Tb}_{2} \mathrm{C}_{40} \mathrm{H}_{38.4} \\ & \mathrm{O}_{21.2} \mathrm{~N}_{4} \mathrm{Cl}_{4} \mathrm{~F}_{8} \end{aligned}$	$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{Dy}_{2} \mathrm{C}_{40} \mathrm{H}_{37.20} \\ & \mathrm{O}_{20.6} \mathrm{~N}_{4} \mathrm{Cl}_{4} \mathrm{~F}_{8} \end{aligned}$	$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{Ho}_{2} \mathrm{C}_{40} \mathrm{H}_{37.67} \\ & \mathrm{O}_{20.83} \mathrm{~N}_{4} \mathrm{Cl}_{4} \mathrm{~F}_{8} \end{aligned}$	$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{Dy}_{2} \mathrm{C}_{70} \mathrm{H}_{114} \\ & \mathrm{O}_{23} \mathrm{~N}_{4} \end{aligned}$
$\mathrm{M}, \mathrm{gmol}^{-1}$	1629.98	1626.33	1635.34	1808.64
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	$P-1$	$P-1$	$P-1$	$P-1$
$\mathrm{a} /[\AA]$	9.6481(6)	9.5430(19)	9.6670(19)	11.164(2)
b/[\AA]	11.3861(7)	11.414(2)	11.331(2)	11.907(2)
c/[\AA]	13.3598(8)	13.306(3)	13.316(3)	16.534(3)
$\alpha /\left[{ }^{\circ}\right]$	67.617(5)	67.56(3)	67.54(3)	70.77(3)
$\beta /\left[{ }^{\circ}\right]$	78.339(5)	77.95 (3)	78.27(3)	73.76(3)
$\gamma /\left[{ }^{\circ}\right]$	87.410(5)	87.25(3)	87.69(3)	82.43(3)
$\mathrm{V} /\left[\AA^{3}\right]$	1328.23(14)	1309.2(5)	1318.7(5)	1990.5(7)
T/K	123(2)	100(2)	100(2)	100(2)
Z	1	1	1	1
ρ, calc $\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	2.036	2.062	2.058	1.508
$\lambda /[\AA]$	0.71073	0.71079	0.71079	0.71079
Data Measured	18565	16519	27401	32265
Ind. Reflns	6101	4234	5907	8352
$\mathrm{R}_{\text {int }}$	0.0427	0.0318	0.0391	0.0344
Reflns with $\mathrm{I}>2 \sigma(\mathrm{I})$	5374	4040	5734	8051
Parameters	384	383	384	512
Restraints	0	0	0	66
$\mathrm{R}_{1}{ }^{\mathrm{b}}$ (obs), $w R_{2}{ }^{\mathrm{b}}$ (all) goodness of fit	$0.0284,0.0645$ 1.091	$0.0310,0.0826$ 1.068	$0.0315,0.0819$ 1.059	$0.0432,0.1177$ 1.059
Largest residuals/ [$\mathrm{e} \AA^{-3}$]	0.991, -0.899	0.919, -1.435	1.106, -1.734	2.369, -1.463

${ }^{\text {a }}$ Includes solvate molecules.
${ }^{\mathrm{b}} \mathrm{R}_{1}=\Sigma| | \mathrm{Fo}|-|\mathrm{Fc}|| \Sigma|\mathrm{Fo}|, \mathrm{wR}_{2}=\left\{\Sigma\left[\mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{Fo}^{2}\right)^{2}\right]\right\}^{1 / 2}$.

Magnetic Measurements. The magnetic susceptibility measurements were carried out on a Quantum Design SQUID magnetometer MPMS-XL 7 operating between 1.8 and 300 K for dc-applied fields ranging from $0-5 \mathrm{~T}$. Microcrystalline samples were dispersed in Vaseline in order to avoid torquing of the crystallites. The sample mulls were contained in a calibrated gelatine capsule held at the centre of a drinking straw that was fixed at the end of the sample rod. Alternating current (ac) susceptibility measurements were carried out under an oscillating ac field of 3.5 Oe and frequencies ranging from 0.1 to 1500 Hz .

Fig. S1. Molecular structure of 4 (left) and 6 (right), the H -atoms are omitted for clarity. Colour scheme; Cr ${ }^{\text {III }}$, yellow; Ln ${ }^{\text {III }}$, purple; O, red; N, blue; C, light grey.

Table S2. Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ for $\mathbf{4 - 7}$, using the labelling scheme shown below. The first coordination sphere for $\mathbf{7}$ is identical to that shown below.

Atom	$\mathbf{4}\left\{\mathbf{C r}_{2} \mathbf{T b}_{\mathbf{2}}\right\}$	$\mathbf{5}\left\{\mathbf{C r}_{2} \mathbf{D y}_{\mathbf{2}}\right\}$	$\mathbf{6}\left\{\mathrm{Cr}_{2} \mathbf{H o}_{\mathbf{2}}\right\}$	$\mathbf{7}\left\{\mathbf{C r}_{2} \mathbf{D y}_{\mathbf{2}}\right\}$
Cr1-O4	$1.952(2)$	$1.953(3)$	$1.953(3)$	$1.955(3)$
Cr1-O5	$1.954(2)$	$1.954(3)$	$1.949(3)$	$1.951(3)$
Cr1-O1	$1.967(2)$	$1.968(3)$	$1.972(3)$	$1.970(3)$
Cr1-O3	$1.983(2)$	$1.972(3)$	$1.977(3)$	$1.979(3)$
Cr1-O6	$1.993(2)$	$1.989(3)$	$1.993(3)$	$1.982(3)$
Cr1-N1	$2.074(3)$	$2.082(4)$	$2.083(3)$	$2.176(4)$
Ln1-O5	$2.260(2)$	$2.241(3)$	$2.236(3)$	$2.243(3)$
Ln1-O4'	$2.265(2)$	$2.242(3)$	$2.238(3)$	$2.249(3)$
Ln1-O2'	$2.388(2)$	$2.387(3)$	$2.365(3)$	$2.365(3)$
Ln1-07	$2.391(2)$	$2.384(3)$	$2.365(3)$	$2.356(3)$
Ln1-01	$2.429(2)$	$2.432(3)$	$2.418(3)$	$2.423(3)$
Ln1-O1'	$2.449(2)$	$2.449(3)$	$2.428(3)$	$2.425(3)$
Ln-O8	$2.460(2)$	$2.442(3)$	$2.428(3)$	$2.437(4)$
Ln-O9	$2.463(2)$	$2.439(3)$	$2.424(3)$	$2.445(3)$
Ln1-O1-Ln1'	$95.65(9)$	$95.00(11)$	$95.44(10)$	$97.23(11)$
Cr1-O1-Ln1	$96.73(8)$	$95.88(12)$	$95.81(11)$	$97.26(13)$
Cr1-O4-Ln1'	$102.23(9)$	$102.34(12)$	$102.36(11)$	$103.72(13)$

Cr1-O5-Ln1	$102.84(9)$	$102.78(13)$	$102.61(11)$	$104.06(14)$
Ln1-O1-Ln1	$113.79(9)$	$113.88(12)$	$114.17(10)$	$113.59(12)$

Fig. S2. Plots of $\chi_{M} T$ versus T for $\mathbf{4 - 6}$ (top) and 7 (bottom), using an applied magnetic field of 0.1 T .

Fig. S3. Plots of $\chi_{M} T$ versus T for $\mathbf{1}$ and $\mathbf{4}$ (top left), $\mathbf{2}$ and $\mathbf{5}$ (top right), $\mathbf{3}$ and $\mathbf{6}$ (bottom left) and $\mathbf{2}$ and 7 (bottom right) using an applied magnetic field of 0.1 T .

Fig. S4. Alternating current magnetic susceptibility measurements. In-phase (χ_{m}) and out of phase (χ_{m} ") signals for $\mathbf{4}$ (top left), $\mathbf{5}$ (top right), $\mathbf{6}$ (bottom left) and $\mathbf{7}$ (bottom right).

Fig. S5. Relaxation data for $\mathbf{1}$ and $\mathbf{3}$ plotted as $\ln (\tau)$ versus T^{-1}. At the lowest temperatures the data begins to deviate from linearity.

References

1. T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K.Sauter, R. P.Phizackerley, S. M.SoltisP. Kuhn, Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines., J. Synchrotron Rad., 2002, 9, 401-406.
2. W. J. Kabsch, Appl. Crystallogr., 1993, 26, 795-800.
3. G. M. Sheldrick, Acta Cryst. A, 2008, A64, 112.
