Supporting Information

Nanocubic KTi₂(PO₄)₃ Electrodes for Potassium-Ion Batteries

Jin Han^{a,b}, Yubin Niu^{a,b}, Shu-juan Bao^{a,b*}, Ya-Nan Yu^{a, b}, Shi-Yu Lu^{a,b}and Maowen Xu^{a,b*}

Fig. S1. XRD patterns of the precursor of $KTi_2(PO_4)_3$ and $KTi_2(PO_4)_3$ annealed at 500 $^\circ$ C, respectively.

Fig. S2. (a) TGA analysis of the precursor of $KTi_2(PO_4)_3$; (b) TGA analysis of $KTi_2(PO_4)_3/C$.

•

Fig. S3. Full XPS spectra of final KTi₂(PO₄)₃ product,

Fig. S4. EDS element distribution mapping images of KTi₂(PO₄)₃.

Fig. S5. Rate capability of the $KTi_2(PO_4)_3$ and $KTi_2(PO_4)_3/C,$ respectively

Fig. S6. (a) EIS of $KTi_2(PO_4)_3$ and $KTi_2(PO_4)_3/C$ electrodes when discharged to 1.62 V after 10 cycles, respectively; (b) and (c) The corresponding plots of the real part of impedance (Z') as a function of the inverse square root of the angular frequency ($\omega^{-1/2}$) in the Warburg region.