Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

SUPPORTING INFORMATION

Vianney Regnier, Florian Molton, Christian Philouze, David Martin*

UMR CNRS 5250, Département de Chimie Moléculaire, Université Grenoble-Alpes B. P. 53, 38041 Cedex 9 Grenoble, France E-mail: david.martin@univ-grenoble-alpes.fr General considerations: Reactions were performed under an atmosphere of argon by using standard Schlenk or dry box techniques; solvents were dried over sodium or CaH₂. Compound **2** was synthesized according to the literature procedure.¹ NMR spectra were performed on the NMR-ICMG platform of Grenoble with an Avance III 400 MHz Brucker spectrometer at room temperature. ¹H NMR and ¹³C NMR chemical shifts (δ) are reported in parts per million (ppm) relative to TMS and were referenced to the residual solvent peak. NMR multiplicities are abbreviated as follows: s = singlet, br = broad signal. Melting points were measured with a Büchi B-545 melting point apparatus system. Crystallographic studies were performed on the RX-ICMG platform of Grenoble with a Bruker AXF-APEXII X-ray diffraction instrument (with Mo/K α -radiation). Infrared spectra were recorded on a Thermo Scientific Nicolet iS10 FT-IR ATR spectrometer.

Electrochemical measurements were conducted in a standard one-compartment, three-electrode electrochemical cell with a Bio-logic SP-300 potentiostat. Electrochemical reduction was monitored with a Zeiss MCS 501 UV-NIR spectrophotometer. Isotropic EPR spectra were obtained at room temperature on a X-band Brüker EMX Plus spectrometer.

Synthesis of bis(hexafluorophosphate) salt of 1^{2+} : A dichloromethane (DCM) solution (27 mL) of *m*-CPBA (freshly dried with Na₂SO₄; 1.50 g, 8.7 mmol) was added dropwise at room temperature to a solution of **2** (1.50 g, 2.9 mmol) in DCM (15mL). After stirring for an additional 30 minutes, a supernatant was removed by filtration. The remaining yellow solid was dried under vacuum. Extraction with diethyl ether (8 mL x 3) and removal of volatiles *in vaccuo* afforded salt 1^{2+} as a yellow powder. (620 mg, 29 % yield). Crystals suitable for an X-ray study were obtained by recrystallization in hot acetonitrile. mp 196-197°C (decomp.). ¹H NMR (DMSO-*d*₆, 400 MHz): $\delta = 3.30$ (br s, 24H); ¹³C NMR (DMSO-*d*₆, 100 MHz): $\delta = 43.3$ (CH₃), 156.6 (NCN), 177.4 (CO). IR (ν_{max}/cm^{-1}): 1647 (CO). UV-vis (acetonitrile, $\lambda max/nm$): 241 and 351 (ε/dm^3 mol⁻¹ cm⁻¹ 8692 and 3331). HRMS: m/z calcd. for C₁₁H₂₄N₄OPF₆⁺: 373.1592 [M+PF₆]⁺ , found: 373.1581; m/z calcd. for C₁₁H₂₄N₄O²⁺: 114.0970 [M]²⁺, found: 114.0977.

^{1.} A. Fürstner, M. Alcazaro, H. Krause, Org. Synth. 2009, 298.

Crystal data for $1^{2+}(PF_6)_2$: $C_{5.5}H_{12}N_2O_{0.5}PF_6$, M = 259.14, monoclinic, a = 16.155(3)Å, b = 6.7318(13) Å, c = 19.587(4)Å, $a = 90^\circ$, $\beta = 109.09(3)^\circ$, $\gamma = 90^\circ$, V = 2013.0(7) Å³, T = 200(0) K, space group C2/c, Z = 8, $\mu(MoK\alpha) = 0.71073$ mm⁻¹, 2935 reflections measured ($R_{int} = 0.0556$). The final $wR(F^2)$ values were 0.1491 ($I > 2\sigma(I)$). The final R_I values were 0.061 (all data). The final $wR(F^2)$ values were 0.1557 (all data). The goodness of fit on F^2 was 1.036. CCDC 1496180.

Figure S1: a) UV-vis monitoring (1 scan per 20 seconds) of electrochemical reduction of at -1.80 V on a reticulated vitreous carbon electrode of a 10^{-3} M solution of 1^{++} and 0.1 M of Bu₄N•PF₆ in acetonitrile; b) cyclic voltammogram of a 10^{-3} M solution of 1^{++} and 0.1 M of Bu₄N•PF₆ in acetonitrile at 100 mV.s⁻¹ rate (before electrolysis); c) cyclic voltammogram after electrolysis; c) cyclic voltammogram after full decomposition.

DFT Calculations: The DFT calculations were carried at the B3LYP/TZVP level of theory, using the program package Gaussian09.^[2] Optimized structures were identified as energy minima by calculating the vibrational frequencies. E is the absolute electronic energy with zero point energy correction (in hartrees).

Cartesians coordinates for the optimized geometry of 1²⁺ (in vaccuo)

(E = -727.121278)

Atom	х	у	Z	A	tom	Х	у	
С	1.34760900	0.14063900	0.17640400	I	ł	0.14716500	-2.10285400	-1
С	-1.34765600	0.14058600	-0.17640200	I	H	0.22518200	-0.35131200	-2
С	-0.00004400	0.88928400	0.00004200	I	ł	-0.99512900	-1.34089000	
С	2.41861600	-2.00642200	0.80470600	(2	-2.41841900	-2.00660300	
Н	3.16641100	-1.94272300	1.59488700	I	ł	-3.16616900	-1.94302500	
Н	2.89770200	-1.95165100	-0.16750300	H	ł	-2.89757800	-1.95186000	
Н	1.91017100	-2.96694000	0.89215400	I	ł	-1.90985400	-2.96706300	
С	0.43360300	-1.20110300	2.02817200	(2	-2.35492900	1.61250700	
Η	-0.14688600	-2.10289800	1.83276800	H	ł	-2.56038800	2.63044900	
Η	-0.22502300	-0.35135700	2.18262400	H	ł	-1.39325500	1.58556200	
Н	0.99545300	-1.34080600	2.95343000	I	ł	-3.12385500	1.29657700	
С	3.78140900	0.52676000	0.13323900	(2	-3.78147500	0.52667500	
Η	4.25547900	1.50641500	0.08506400	H	ł	-3.75581000	0.20542900	
Н	4.36282700	-0.16994400	-0.47012200	H	ł	-4.25556500	1.50631700	
Н	3.75581700	0.20543400	1.16880000	I	ł	-4.36292100	-0.17008400	
С	2.35471200	1.61263900	-1.55352300	1	V	1.38760600	-0.95611000	
Н	2.56019200	2.63057400	-1.22522200	1	V	2.40747300	0.69304700	
Н	1.39299200	1.58569800	-2.05298700	1	V	-1.38752000	-0.95617500	
Н	3.12357600	1.29673400	-2.25818100	1	V	-2.40758000	0.69295100	
С	-0.43338400	-1.20111400	-2.02805800	()	-0.00008000	2.08564300	

Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.; Staroverov, R. Kobayashi, J. Normand, K., Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski a, d D. J. Fox, Gaussian Inc., Wallingford CT, 2009.

Cartesians coordinates for the optimized g	geometry of 1 ^{•+} (in vaccuo)
--	---

(E = -/2/.4/2490)								
Atom	Х	у	Z		Atom	Х	у	Z
С	-1.27714100	0.15922700	-0.13258200		Н	-0.16875900	-2.20593400	1.62169500
С	1.27717700	0.15917000	0.13242300		Н	-0.08488500	-0.53550100	2.22859900
С	0.00004800	0.87318700	-0.00021900		Н	1.10979400	-1.72617200	2.74688300
С	-2.39199300	-2.02839700	-0.47058500		С	2.39180700	-2.02849200	0.47094800
Н	-3.17847600	-2.08822100	-1.22623000		Н	3.17811500	-2.08828500	1.22677800
Н	-2.84023900	-1.81367400	0.49526300		Н	2.84028900	-1.81392000	-0.49482400
Н	-1.90093300	-3.00247700	-0.41795100		Н	1.90068500	-3.00254100	0.41832200
С	-0.50124200	-1.39041000	-1.90449100		С	2.35991000	1.70410900	-1.46044900
Н	0.16829300	-2.20617100	-1.62190500		Н	2.41248800	2.72425700	-1.08115300
Н	0.08438900	-0.53581200	-2.22901000		Н	1.44967500	1.60083300	-2.04123600
Н	-1.11050100	-1.72646600	-2.74684100		Н	3.21881300	1.50672700	-2.10392200
С	-3.69332800	0.63216200	-0.30457400		С	3.69336600	0.63191900	0.30484100
Н	-4.10061900	1.63943100	-0.40366900		Н	3.58340100	0.20870700	1.29881000
Н	-4.39833000	0.03138200	0.27358500		Н	4.10074300	1.63916000	0.40386000
Н	-3.58361000	0.20878300	-1.29849900		Н	4.39842300	0.03097400	-0.27308100
С	-2.35937600	1.70451000	1.46025500		Ν	-1.38374400	-1.01722600	-0.80004100
Н	-2.41195400	2.72459600	1.08078900		Ν	-2.38799400	0.73613200	0.35691200
Н	-1.44900300	1.60125000	2.04083300		Ν	1.38356100	-1.01720400	0.80005400
Н	-3.21813700	1.50732000	2.10397500		Ν	2.38817800	0.73592100	-0.35692700
С	0.50076600	-1.39018400	1.90433900	-	0	0.00004500	2.13720000	-0.00006200

Cartesians coordinates for the optimized geometry of 1⁺⁺

(in "acetonitrile", using the default polarizable continuum model)

(E = -727.539188)

Atom	х	У	Z	А	tom	х	У	Z
C	1 26028000	0 17753400	0 15455000		г	0 22260200	2 14452800	1 65705800
C	1.20928000	0.17733400	0.13433900	1.	1	0.22209300	-2.14452800	-1.03/93800
C	-1.26922600	0.17764100	-0.15458/00	F	1	0.1246/100	-0.46786100	-2.24750100
С	0.00006600	0.90290400	-0.00003600	H	I	-1.05523300	-1.66373000	-2.78480600
С	2.34177500	-2.02047200	0.52659200	C	2	-2.34192400	-2.02025400	-0.52662500
Н	3.12298500	-2.07435600	1.28715100	H	I	-3.12323600	-2.07402300	-1.28708600
Н	2.79245400	-1.83303700	-0.44318700	H	I	-2.79246000	-1.83284200	0.44322500
Н	1.82962800	-2.98338200	0.49331100	H	I	-1.82985100	-2.98320800	-0.49347000
С	0.45119100	-1.33336000	1.93685400	C	2	-2.39761900	1.62843000	1.49245800
Н	-0.22296700	-2.14466000	1.65757500	H	I	-2.57216900	2.65860400	1.18020200
Н	-0.12500300	-0.46800400	2.24715900	H	I	-1.45445600	1.57826400	2.02452900
Н	1.05478100	-1.66391500	2.78465300	H	I	-3.20132200	1.31723400	2.16219500
С	3.69649200	0.59297400	0.31885600	C	2	-3.69642200	0.59319200	-0.31867600
Н	4.14669300	1.58494700	0.37810700	H	I	-3.57397200	0.20951300	-1.32686700
Н	4.36941200	-0.05809200	-0.24232200	H	I	-4.14661200	1.58518000	-0.37776600
Н	3.57396900	0.20916400	1.32698900	H	I	-4.36931400	-0.05793800	0.24246100
С	2.39779200	1.62854500	-1.49216700	Ν	1	1.34847300	-0.98718400	0.83439000
Н	2.57239100	2.65865100	-1.17970700	Ν	1	2.39266100	0.73063700	-0.33561500
Н	1.45462100	1.57853000	-2.02424300	Ν	1	-1.34858100	-0.98702500	-0.83448900
Н	3.20147600	1.31744300	-2.16196800	Ν	1	-2.39254600	0.73074400	0.33572900
С	-0.45148900	-1.33320500	-1.93710600	C)	0.00016000	2.17228500	-0.00019000

	12+	1•+
Bond lengths (pm) ^{a,b}		
N1-C1	132.4 (132.1)	134.4
N2-C1	133.3 (132.3)	135.7
C1-C2	155.2 (153.7)	147.0
C2-01	119.6 (120.0)	126.4
Angles (°) ^{a,b}		
N1-C1-N2	124.3 (125.4)	119.1
C1-C2-C1'	122.3(120.9)	121.8
Torsion (°) ^{a,b}		
N1-C1-C2-O1	36.3 (36.8)	30.6

Table S1: computed geometric parameters of 1^{2+} and 1^{++} (*in vaccuo*). Experimental values from single crystal X-ray diffraction study are in brackets.

Figure S2: representation of relevant frontier π -molecular orbitals of 1^{2+} (left) and 1^{*+} (right); qualitative construction from π^* molecular orbitals of NCN and CO fragments.